液压驱动波动鳍仿生推进器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生推进技术是当前水下机器人研究热点之一,其中的中央鳍/对鳍(Medianand/or-Pair Fin,MPF)波动仿生推进方式更是由于其独特的仿生结构和突出的推进性能而倍受科研人员关注。然而受波动推进机理研究和科技发展水平制约,已有波动鳍仿生推进器大多采用刚性运动链结构形式,其综合推进效果离人们期望的高效柔性仿生推进目标还有一定差距,更难与自然界鱼类游动相媲美,因此研制高效柔性波动鳍仿生推进器具有重要意义。
     论文研究来源于国防基础科研项目,针对现有各种驱动方式仿生推进器存在的不足,结合流体传动的柔性体系结构和传动特性,设计了一种采用液压驱动的波动鳍仿生推进器系统,并围绕其液压传动原理和仿生结构、运动规律和动力特性、流体动力行为和推进性能等展开了理论分析与试验研究,主要内容如下:
     1.提出了液压驱动的波动鳍仿生推进器系统设计方案,设计了波动鳍仿生推进器的液压驱动系统,以及旋转式流体分配阀、带复位弹簧的仿生摆动关节等关键零部件和整体仿生结构。由于液压系统独特的作用规律和传动特性,使得各个仿生摆动关节不仅运动彼此保持独立,而且省去了传统驱动系统中用于将电机连续旋转运动转换为仿生关节摆动的运动变换机构。所设计的液压驱动的波动鳍仿生推进器,不仅结构上能够根据水下仿生机器人自身形状合理布置,而且在运动上能够通过改变波动幅度实现全基线上仿生波形柔性启动、停止和运动形态自恢复,并能够被动地适应外界流体负载变化,使仿生结构始终保持在最佳承载状态。仿生鳍面在液压系统不工作时自动回复至平衡位置,以减小形体阻力。
     2.完成了旋转式流体分配阀和带复位弹簧的仿生摆动关节系统建模,分析了阀泵联控液压系统的作用规律。建立了旋转式流体分配阀各阀口编号与编组规则,以及各阀口统一流量方程,分析了流量周期性、有序变化规律,并对由阀芯转动控制多个阀口周期性换向而产生的液动力矩进行了建模,分析了阀芯的谐振特性。建立了带复位弹簧的仿生摆动关节传递函数和运动模型,并对其平衡位置特性及动态角位置刚度特性等进行了研究。根据搭建的阀泵联控液压系统模型,研究了变量泵和旋转式流体分配阀联合作用下,多摆杆拟合波形在初始平衡位置状态与稳定波动状态间的演变规律。
     3.建立了液压仿生波动鳍运动学模型和动力学模型。采用直纹曲面方程建立了液压系统作用下的仿生鳍面运动学模型,对仿生波形可展性进行了研究,并分析了结构参数对仿生运动形态的影响。采用拉格朗日方程建立了液压仿生波动鳍多摆杆系统的动力学模型,并构建了相应的计算多体动力学模型,研究了在不同弹簧刚度、不同阻尼以及不同变化规律液压驱动力作用下多摆杆系统的动力学行为,包括仿生波形的平衡位形稳定性、仿生波形在启动与停止过程中的变化规律等。结果表明,多摆杆系统在周期性液压驱动力作用下能够快速地实现有效的仿生波形,其启动与停止过程具有自稳性和柔性。
     4.建立了仿生鳍面波动时的流体动力和动力矩理论计算模型,根据仿生鳍面运动学模型设计了鳍面网格变化规律,采用计算流体动力学(Computational FluidDynamics,CFD)方法分析了流体动力和流场压力变化规律。结果表明,流体动力和动力矩的变化具有明显的周期性,并存在倍频效应,即推进力、升力和俯仰力矩的变化频率是仿生波动频率的两倍,侧向力、横滚力矩和偏航力矩的周期均值约为零。阐述了液压驱动的波动鳍仿生推进器在流体环境中的负载自适应特性,分析了其内涵和作用原理。
     5.研制了液压驱动的波动鳍仿生推进器原理样机试验系统,利用原理样机对液压驱动系统的工作原理与作用规律进行了研究。开展了旋转分配阀定时、有序地控制液压流体的设计原理验证试验;通过试验对比了有/无复位弹簧两种结构下仿生摆动关节的运动规律,并研究了弹簧刚度大小和液压系统参数的变化对仿生摆动关节运动特性的影响;测试了原理样机的柔性启动特性和负载自适应特性。最后开展了原理样机的水下推进试验。结果表明,仿生鳍面在液压系统驱动下能够形成有效波形并推动原理样机运动,通过改变旋转分配阀转速和转向可调整仿生波动速度的大小和方向。试验结果验证了设计原理的可行性,检验了理论分析的结论,达到了预期研究目的。
Underwater bionic propulsion technology has gained much attention around the world, especially the bionic undulating propulsion in MPF(Median and/or Pair Fin) mode with special structure and outstanding propelling characteristics. However, as is restricted by the development of undulation mechanism and engineering technology, most of the bionic undulating propellers (BUPs) are designed and implemented with rigid transmission chain. Such a rigid chain is consisted of rotational motors and motion-changing frameworks, which make the general propulsion performance far away from that expected, say nothing of comparing to the swimming ability of nature fish. Obviously, research on BUP with flexible structure and propelling character is of significance in near future practical applications.
     This work is supported by the Basic Science Foundation of National Defense. After a detailed consult on the conventional BUPs. and considering about the special structure and unique acting rules of hydraulic transmission, a newly-designed BUP driven by Valve-Pump controlled hydraulic system (HBUP) is presented with a novel structure and flexible power driven-chain in this dissertation. Then some research has been carried out on the mechanism and structure design, kinematics and dynamics, together with hydrodynamic characters. The main work can be summarized as follows:
     1. A novel scheme of BUP's hydraulic driven structure and driven-chain is proposed in this dissertation, and the hydraulic driven system in HBUP is designed, including the structures of the rotational direction valve, hydraulic swinging unit, and the HBUP's comprehensive structure. The peculiarity of fluid transmission makes each hydraulic swinging unit swings independently, so that rigid transmission shafts are no longer necessary. The HBUP's structure could fit underwater robots" shape and produce bionic undulation with a changeable amplitude on the structure during starting and stopping processes. Meanwhile, the HBUP system could carry complex fluid load passively and keep the whole structure with a best load capacity. While the hydraulic system doesn't work, the bionic undulating fin will recover to the original balance state automatically, so as to reduce the fluid resistance during cruising.
     2. The uniform flux equation of the rotational direction valve's ports and transfer function of the hydraulic swinging unit are presented and developed. Within these equations, the acting rules and characters of the hydraulic system in HUBT are studied. Referring to the analyzing method of common hydraulic direction valve, this uniform equation of the rotational direction valve's ports is built up to analyze the flux between different ports Then effects of hydrodynamic force and torque caused by the shaft rotation is also considered. The hydraulic swinging unit system performance, in terms of stability, balance and position holding ability, are respectively studied with the established transfer function, according to the analyzing means of valve-controlled symmetrical cylinder. Simulations of the hydraulic system model show that it could drive the HBUP consisted of several hydraulic swinging units to produce a bionic motion from a flat shape to an undulating shape and vice versa.
     3. The ruled-surface kinematics model of the HUBP is brought forward, so is the multi-rigid-body dynamic model. Then the extensibility of the niled-surface, and effects of structure parameters to bionic undulating fins are theoretically analyzed. The Lagrange equation is introduced to build multi-rigid-body dynamic model of swinging poles in HBUP. and then a prototype model of the multi-rigid-body system in HBUP is developed as well. With these models, effects of different spring rigidities, different damp coefficients and different hydraulic forces on the multi-rigid-body system are explored, one by one. The results reveal that the restoration springs are of importance since the balance position of the HBUP is ensured stable, and the swinging poles could be driven into undulation effectively and rapidly. The bionic undulation in starting and stopping processes exhibits flexibility and auto-stability characters.
     4. The computational hydrodynamic model of the HBUP is proposed and developed. In detail, the ruled-surface kinematics equation is used to design the changing mle of the dynamic mesh in computational fluid dynamics (CFD) method, which is used to compute the hydrodynamic force and torque, as well as the fluid pressure distributing characters. The results show that the hydrodynamic force and torque change periodically in evidence, and some of them present doubled-frequency character. The doubled-frequency character can be summarized as follows: the changing frequencies of the propelling force, lifting force and pitching torque are twice of the bionic undulation frequency respecitvely. the values of yawing force, rolling torque and yawing torque are nearly zero in average. At last, the load adaptability of the HBUP is proposed, and hereafter, the reasons and effects are studied as well.
     5. The testbed of HBUP is constructed, and some function-verifying experiments are carried out as well as propelling tests. With the testbed, the flux-distributing function of the rotational direction valve is verifid, and the swinging character of hydraulic swinging unit is also tested and compared, with spring and no spring structure, under different hydraulic system parameters. Then the flexible starting character and load adaptability are verified. The propelling tests of the HUBT are also brought out under different hydraulic system parameters. The results show that bionic fin of HBUP could form a valid undulation shape to produce propelling force, so as to make the prototype moving, its propelling force and direction could be easily controlled by adjusting the rotation velocity and direction of the shaft in the rotational direction valve. The experiments have verified the conclusions and meet the expected objectives.
引文
[1]成巍,苏玉民,秦再白.一种仿生水下机器人的研究进展[J].船舶工程.2004,26(1):5-8.
    [2]迟冬祥,颜国正.仿生机器人的研究状况及其未来发展[J].机器人.2001,23(5):476-480.
    [3]王光明,沈林成.水下仿鱼推进器的分析[J].兵工自动化.2006,25(5):7-9.
    [4] Domenici P.. Blake R. W. The Kinematics and Performance of Fish Fast-Start Swimming[J]. Journal of Experimental Biology. 1997, 200:1165-1178.
    [5] Maciver M. A.. Fontaine E.. Burdick J. W. Designing Future Underwater Vehicles: Principles and Mechanisms of the Weakly Electric Fish[J]. IEEE Journal of Oceanic Engineering. 2004, 39(3): 651-659.
    [6] Punning M. A. A Biologically Inspired Ray-like Underwater Robot with Electroactive Polymer Pectoral Fins[C]. IEEE Mechatronics and Robotics. Aachen. 2004:241-245.
    [7] Dickinson M. H.. Farley C. T.. Full R. J.. et al. How Animals Move: An Integrative View[J]. Science. 2000? 288: 100-106.
    [8] Liu J.. Hu H. Biologically inspired behaviour design for autonomous robotic fish[J]. International Journal of Automation and Computing. 2006, 3(4): 336-347.
    [9] Triantafyllou M. S.. Triantafyllou G. S., Yue K. P. Hydrodynamics of fishlike swimming[J]. .Annual Review on Fluid Mechanics. 2000, 32: 33-35.
    [10] Gray J. Animal's Locomotion[M]. Weidenfeld and Nicolson, 1968.
    [11] Taylor G. I. Analysis of Swimming of Long Narrow Animals[J]. Proc. R. Soc. Lond.A. 1952,214: 158-183.
    [12]王硕,谭民.机器鱼[M].北京:北京邮电大学出版社,2006.
    [13] Bandyopadhyay P. R. Trends in Biorobotic Autonomous Undersea Vehicles Promode[J]. IEEE Journal of Oceanic Engineering. 2005, 30(1): 109-139.
    [14] Bandyopadhyay P. R. Biology-inspired Science and Technology for Autonomous Underwater Vehicles[J]. IEEE Journal of Oceanic Engineering. 2004. 29(3): 542-546.
    [15] Bandyopadhay P. R.. Castano J. M., Rice J. Q., et al. Low speed maneuvering hydrodynamics offish and small underwater vehicles[J]. Journal of Fluids Engineering. 1997, 119: 136-144.
    [16] Webb P. W. Maneuverability-General Issues[J]. IEEE Journal of Oceanic Engineering. 2004? 29(3): 547-555.
    [17] Webb P. W., Weihs D. Fish Biomechanics[M]. NewYork: Praeger Publishers. 1983.
    [18] Blake R. W. Undulatory Median Fin Propulsion of Two Teleosts with Different Modes of Life[J]. Canadian Journal of Zoology. 1980, 58: 2116-2119.
    [19] Blake R. W. Fish Functional Design and Swimming Performance[J]. Journal of Fish Biology. 2004, 65(5): 1193-1222.
    [20] Blake R. W. Swimming in the electric ells and knifefishes[J]. Canadian Journal ofZoology. 1983, 61: 1432-1441.
    [21] Webb P. W. Form and Function in Fish S\vimming[J]. Scientific American. 1984, 251(1): 58-68.
    [22] Kato N. Median and Paired Fin Controllers for Biomimetic Marine Vehicles[J]. Applied Mechanics Reviews. 2005, 58(4): 238-252.
    [23]于凯,黄胜,胡健等.仿鱼推进的实验研究[J].华中科技大学学报(自然科学版).2007.11,35(11):117-120.
    [24]沈林成,王光明.仿鱼长鳍波动推进器研究的进展与分析[J].国防科技大学学报.2005,27(4):96-100.
    [25]王光明,胡天江,李非等.长背鳍波动推进游动研究[J].机械工程学报.2006,42(3):88-92.
    [26]王光明,胡天江,沈林成.弓鳍目鱼柔性波动长鳍运动学特征分析[J].中国机械工程.2007,13(7):1526-1530.
    [27]王光明,沈林成.柔性长鳍波动推进机理分析[C].第24届中国控制会议.2005:1563-1566.
    [28]章永华.柔性仿生波动鳍的理论与实验研究[D].合肥:中国科学技术大学。2008.
    [29]张秀丽,郑浩峻,陈恳等.机器人仿生学研究综述[J].机器人.2002,24(2):188-192.
    [30]成巍.仿生水下机器人仿真与控制技术研[D].哈尔滨:哈尔滨工程大学,2004
    [31] Kobayashi S., Ozaki T., Nakabayashi M., et al. Bioinspired Aquatic Propulsion Mechanisms with Real Time Variable Apparent Stiffness Fins[C]. Proceedings of the 2006 IEEE International Conference on Robotics andBiomimetics. Kunming. 2006:463-467.
    [32] Webb P. W. Maneuverability-General Issues[J]. IEEE Journal of Oceanic Engineering. 2004, 29(3): 547-555.
    [33]梁建宏,王田苗,魏宏兴.仿生机器鱼技术研究进展及关键问题探讨[J].机器人技术与应用.2003,3:15-20.
    [34]彭学伦.水下机器人的研究现状与发展趋势[J].机器人技术与应用.2004,4:43-47.
    [35]喻俊志,陈尔奎,王硕等.仿生机器鱼研究的进展与分析[J].控制理论与应用2003,20(4):485-491
    [36] Bonchis A.. Corke Pi. Variable structure methods in hydraulic servo systems control[J]. Automatic. 2001, 37: 589-595.
    [37] Yao B., Bu F. P., Reedy J., et al. Adaptive Robust Motion Control of Single-Rod Hydraulic Actuators: Theory and Experiments[J]. Transactions on Mechatronics. 2000, 5(1): 79-91.
    [38]关景泰编著.机电液控制技术[M].上海:上海同济大学出版社,2003.
    [39]王益群,张伟.流体传动及控制技术的评述[J].机械工程学报.2003.10,39(10):95-99.
    [40] Barrett D., Grosenbaugh M.. Triantafyllou M. S. Tlie Optimal Control of a Flexible Hull Robotic Undersea Vehicle Propelled by an Oscillating Foil[C]. IEEE AUV Symp. America. 1996.
    [41] Fish F. E.. Lauder G. V. Passive and Active Flow Control by Swimming Fishes and Mammals[J]. Annual Reviews on Fluid Mechanics. 2006, 38: 193-224.
    [42] Barrett D. S.. Triantafyllou M. S., Yue D. K., et al. Drag Reduction in Fish-like Locomotion[J]. Journal of Fluid Mechanics. 1999, 392: 183-212.
    [43] Wu T.Y. Hydromechanics of swimming propulsion. Part 2: Some optimum shape problems[J]. Journal of Fluid Mechanism. 1971. 46(3): 521-544.
    [44]杭观荣,王振龙,李健等.基于柔性鳍单元的尾鳍推进微型机器鱼设计研究[J].机器人.2008.3,30(2):171-176.
    [45]李非,王光明,胡天江等.“尼罗河魔鬼”长背鳍波动实验与研究[C].国防科技大学第4届研究生学术活动节.长沙.2004.
    [46]陶祖莱.生物流体力学[M].北京:科学出版社,1984.
    [47]杨焱,童秉纲.鱼类转弯机动的尾部控制机理研究[C].全国第十届分离流、旋涡和流动控制会议.南京.2004:163.168.
    [48]俞经虎,竺长安,程刚等.弹性装置提高机器鱼推进效率的研究[J].机器人.2004,26(5):416-420.
    [49]岳映章,葛文杰,柏龙.仿袋鼠跳跃机器人的刚柔混合建模运动步态分析[J].机械科学与技术.2009.9,27(9):1142-1145.
    [50] Fish F. E. Performance constraints on the maneuverability of flexible and rigid biological systems[C]. Eleventh International Symposium on Unmanned Untethered Submersible Technology. Durham. 1999:394-406.
    [51] Sfakiotakis M., Lane D. M., Davies J. B. C. Review of Fish Swimming Modes for Aquatic Locomotion[J]. IEEE Journal of Oceanic Engineering. 1999, 24(2): 237-252.
    [52] Videler J. J. Fish Swimming[J]. Chapman & Hall. 1993.
    [53] Zhang Y., Jia L.. Zhang S.. et al. Computational Research on ModularUndulating Fin for Biorobotic Underwater Propulsor[J]. Journal of Bionic Engineering. 2007, 4(1): 25-32.
    [54] Zhang Y.H., Song Y., Yang J.. et al. Numerical and experimental research on modular oscillating fin[J]. Journal of Bionic Engineering. 2008, 5(1): 13-23.
    [55] Yu J. Z.. Liu L. Z., Wang L.. et al. Turning control of a multilink biomimetic robotic fish[J]. IEEE Transactions on Robotics. 2008, 24(1): 201-206.
    [56] Sparenberg J. A. Survey of the mathematical theory of fish locomotion[J]. Journal of Engineering Mathematics. 2002, 44: 395-448.
    [57] Blake R. W. Fish locomotion[M]. Cambridge: Cambridge University Press, 1983.
    [58] Triantafyllou M. S.. Triantafyllou G. S. An Efficient Swimming Machine[J]. Scientific American. 1995: 64-70.
    [59] Anderson J. M., Kerrebrock P. A. The Vorticity Control Unmanned Undersea Vehicle(VCUUV)- An Autonomous Vehicle Employing Fish Swimming Propulsion and Maneuvering.[J]. Unmanned Untethered Submersible Technology. 1997: 189-195.
    [60]刘军考.仿鱼水下推进器理论与实验研究[D].哈尔滨:哈尔滨工业大学,2001.
    [61]刘军考,陈维山,陈在礼.水下机器人新型仿鱼鳍推进器[J].机器人.2000,22(5):427-432.
    [62]刘军考,陈维山,陈在礼.仿生机器鱼的运动学参数及试验研究[J].中国机械工程.2002,13(16):1354-1357.
    [63]成巍,李喜斌,孙俊岭等.仿生水下机器人运动控制方法研究[J].机器人技术与应用.2004.4.4:37-42.
    [64] Toda Y., Fukui K., Uto S., et al. Fundamental study on swimming of a fish like body with two undulating side fins[C]. Second International Symposium on Aqua Bio-Mechanism. Japan. 2003.
    [65] Toda Y., Ikedab H.. Sogihara N. The Motion of a Fish-Like Under-Water Vehicle with two Undulating Side Fins[C]. The Third International Symposium on Aero Aqua Bio-mechanisms. Okinawa. 2006.
    [66] Toda Y., Hieda S., Sugiguchi T. Laminar flow computation around a plate with two undulating side fins[J]. Journal of the Kansai Society of Naval .Architects. 2002(237).
    [67]谢海斌,张代兵,沈林成.基于柔性长鳍波动推进的仿生水下机器人设计与实现[J].机器人.2006,28(5):525-529.
    [68] Willy A., Low K. H. Development and Initial Experiment of Modular Undulating Fin for Untethered Biorobotic AUVs[C]. The IEEE International Conference on Robotics and Biomimetics. HongKong. 2005.
    [69] Low K. H.. Willy A. Biomimetic motion planning of an undulating roboticfish fin[J]. Journal of Vibration and Control. 2006, 12(20): 1337-1359.
    [70] Low K. H. Design. Development and Locomotion Control of Bio-fish Robot with Undulating Anal Fins[J]. International Journal of Robotics and Automation. 2007. 22(1): 88-99.
    [71] Low K. H. Willy A. Development and Initial Investigation of NTU Robotic Fish with Modular Flexible Fins[C]. the IEEE International Conference on Mechatronics & Automation. Niagara Falls. 2005.
    [72] Takagi K. Development of a Rajiform Swimming Robot Using Ionic Polymer Artificial Muscles[C]. Proceedings of the 2006 IEEE RSJ International Conference on Intelligent Robots and Systems. Japan. 2006:1861-1866.
    [73] Yamamura M., Takagi K.. Luo Z. W., et al. An Autonomous RayLike Swimming Robot with IPMC Artificial Muscle[C]. The Third Conference on Artificial Muscle. Japan. 2006.
    [74]王龙,喻俊志,胡永辉等.机器海豚的机构设计与运动控制[J].北京大学学报(自然科学版).2006,42(3):294-301.
    [75] Sfakiotakis M.. Lane D. M.. Davies B. C. An experimental undulating-fin device using the Parallel Bellows Actuator[C]. IEEE Internatioal Conference on Robotics and Automation. Seoul. 2001.
    [76] Zhang Z. G., Yamashita N., Gondo M., et al. Electrostatically actuated robotic fish: Design and control for high-mobility open-loop swimming[J]. IEEE Transactions on Robotics. 2008? 24(1): 118-373
    [77]章永华,何建慧,吴月华等.基于功能材料的柔性多关节水下仿鱼形推进器设计及分析[J].机器人.2006,28(4):367-129.
    [77]章永华,何建慧,吴月华等.基于功能材料的柔性多关节水下仿鱼形推进器设计及分析[J].机器人.2006,28(4):367-.373.
    [78]章永华,何建慧,张世武等.NiTi形状记忆合金驱动的仿生鱼鳍研究[J].机器人.2007,29(4):207-213.
    [79]章永华,马记,何建慧.基于人工肌肉的仿生机器鱼关节机构设计及力学分析[J].机器人.2006,28(1):40-44.
    [80]张代兵,谢海斌.新型致动器在仿鱼机器人中的应用[C].仪器仪表学会第八届青年学术会议.2006.
    [81]杜善义,冷劲松,王殿富.智能材料系统与结构[M].北京:科学出版社,2001.
    [82]杭观荣,王振龙,王扬威等.基于肌肉性静水骨骼原理的仿乌贼鳍推进器[J].上海交通大学学报.2008.
    [83]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    [84]王宝和.流体传动与控制[M].长沙:国防科技大学出版社,2006.
    [85]王积伟,章宏甲,黄谊.液压传动(第2版)[M].北京:机械工业出版社,2nn7
    [86]袁子荣,吴张永,王强等.水液压传动实验装置的设计与研究[J].机床与液压.2003,2:223-224.
    [87]吴晓明,高明,孙红梅.一种新型液压缓冲阀的设计与分析[J].机床与液压.2004.7(10):197-198.
    [88]薛红生.筑路机械冷却装置液压驱动系统的总体设计[J].现代商贸工业.2007.2,19(2):2.
    [89]李运华,史维祥.近代液压伺服系统控制策略的现状与发展[J].液压与气动.1995.1:3-6.
    [90]王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005
    [91] Liao J. C, Beal D. N., Lauder G. V., et al. The K arm an gait:novel body kinematics of rainbow trout swimming in a vortex street[J]. Journal of Experimental Biology. 2003, 206(6): 1059-1073.
    [92]张向明,李玉江.水下柔性鱼形机构原理及单尾鳍板水动力试验研究[J].海洋工程.2002,20(1):84-90.
    [93]谢海斌.基于多波动鳍推进的仿生水下机器人设计、建模与控制[D].长沙:国防科技大学,2006.
    [94] Willy A., Low K. H. Initial Experimental Investigation of Undulating Fin[C]. IEEE International Conference on Intelligent Robots and Systems. Edmonton. 2005.
    [95]王光明.仿鱼柔性长鳍波动推进理论与实验研究[D].长沙:国防科技大学。2008.
    [96]胡天江,李非,沈林成.“尼罗河魔鬼”长背鳍波动包络线的提取算法[J].国防科技大学学报.2005,27(5):67-72.
    [97]张代兵.波动鳍仿生水下推进器及其控制方法研究[D].长沙:国防科技大学。2007.
    [98]胡天江.仿生长鳍波动适应性理论与控制方法研究[D].长沙:国防科技大学。2009.
    [99]李非.背鳍/背臀鳍波动推进机理实验研究与仿真[D].长沙:国防科学技术大学。2005.
    [100]谢海斌.柔性长鳍波动推进流体动力测试平台研究[C].第25届中国控制会议.哈尔滨.2006:1905.1909.
    [101]谢海斌,沈林成,张代兵.柔性长鳍波动推进动力学分析[J].力学与实践.2006,28(4):14-19.
    [102]周晗.仿生波动推进水下机器人水动力计算与实验研究[D].长沙:国防科技大学,2009.
    [103]杨明.仿生机器人运动的建模与控制研究[D].北京:中科院自动化研究所。2003.
    [104]敬军.鱼类c形起动的运动特性及机理研究[D].合肥:中国科学技术大学。2005.
    [105]俞经虎.仿生机器鱼运动分析研究[D].合肥:中国科技大学,2004.
    [106]叶其孝,沈永欢.实用数学手册(第2版)[M].北京:科学出版社,2006.
    [107]于长官.现代控制理论[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [108]杨军宏.三自由度船舶运动模拟平台及其液压伺服驱动系统的研究[D].长沙:国防科技大学,2007.
    [109] Muraki M.. Kinbara E., Konishi T. A laboratory simulation for stick-slip phenomena on the hydraulic cylinder of a construction machine[J]. Tribology International. 2003, 36:129-11 A.
    [110] Shoorehdeli M. A., Shoorehdeli H. A., Teshnehlab M. Velocity Control of an Electro Hydraulic Servosystem[C]. Proceedings of the 2006 IEEE International Conference on Networking, Sensing and Control. 2006: 985-988.
    [111] Huang C. H. Wang V. T. Self-optimization adaptive velocity control of asymmetric hydraulic actuator[J]. Int. J. Adaptive Contr. Signal Processing. 1995, 9(3): 271-283.
    [112]机械设计手册编委会.液压传动与控制(机械设计手册单行本)[M].北京:机械工业出版社,2007.
    [113]李新平,霍族亮,于仁萍等.基于Matlab/Simulink的液压缸建模与仿真[J].2005.
    [114]陈龙安,刘钊,朱武强.液压分流动态性能仿真与研究[J].工程机械.2004.2.9:42-46.
    [115]宋志安.基于MA'TLAB的液压伺服控制系统分析与设计[M].北京:国防工业出版社。2007.
    [116]赵继云,钟廷修.零开口非对称四通阀特性的理论研究[J].机床与液压.1998.2:35-37.
    [117]王洪杰,季天晶,毛新涛等.直驱式液压位置控制系统的建模与仿真分析[J].机床与液压.2005,5.
    [118]苏东海,张宏,李巍.比例流量阀控制非对称液压缸同步的仿真分析[J].机床与液压.2003,4:164-166.
    [119]郜立焕,王佃武,生凯章.液压系统振动与噪声的原因分析[J].液压与气动.2005(12):2.
    [120]刘宁,廖振方,蔡珍红等.电液压脉冲液动力特性分析[J].重庆大学学报.2008.2,31(2):123-125.
    [121]叶先磊,史亚杰编著..ANSYS工程分析软件应用实例[M].北京:清华大学出版社。2004.
    [122]宋俊,于玲.阀控缸建模方法的数字仿真比较[J].机床与液压.2004,3:122-164.
    [123]龚国芳余佑官,胡国良.AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封.2005.3,3:28-31.
    [124]关景泰,王海滨,周俊龙.非对称阀控制非对称缸的动态特性[J].同济大学学报.2001,29(9):1130-1134.
    [125]王栋梁,李洪人,李春萍.非对称阀控制非对称缸系统的静态及动态特性分析[J].机床与液压.2003,1:198-200.
    [126]许贤良,刘利国.关于负载压力和负载流量的讨论[J].机床与液压.1995.4:214.216.
    [127] Gregory G., Kremer. Enhanced robust stability analysis of large hydraulic control systems via a bifurcation-based procedure[J]. Journal of the Franklin Institute. 2001,338:781-809.
    [128] Golubev B., Horowitz I. Plant Rational Transfer Approximation From Input -output Data[J]. International Journal of Control. 1982, 36(4): 711-723.
    [129] Tomizuka M. Zero phase error tracking algorithm for digital control[J]. ASME, Journal of Dynamic Systems, Measurement, and Control. 1987. 109: 65-68.
    [130]郭晓晨,李梅,周玉文.液压系统动态建模中刚性问题的研究[J].液压气动与密封.2006.2.2:5-8.
    [131]许贤良,丁雪峰,杨球来.非对称伺服阀控制非对称液压缸的理论分析[J].液压与气动.2004,3:16-18.
    [132]齐朝晖.多体系统动力学[M].北京:科学出版社,2008.
    [133]王华伟,余跃庆,苏丽颖等.柔顺机构动力学建模新方法[J].机械工程学报.2008.10.44(10):96-103.
    [134]杨义勇,金德闻.机械系统动力学[M].北京:清华大学出版社,2009.
    [135]潘瑛,徐德民.基于MAllLAB的AuV近水面运动模型的建立与仿真[J].船舶工程.2003,25(5):15-18.
    [136]潘瑛,徐德民.自主式水下航行器空间运动矢量建模与仿真[J].系统仿真学报.2003,15(4):538-540.
    [137]严卫生.鱼雷航行力学[M].西安:西北工业大学出版社,2005.
    [138]李殿璞.船舶运动与建模[M].哈尔滨:哈尔滨工程大学出版社,1999.
    [139]董增福.矩阵分析教程[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [140]侯巍,王树新,张海根.小型水下自航行器动力学建模与控制[J].天津大学学报.2004,37(9):769-773.
    [141]李天森.鱼雷操纵性[M].北京:国防工业出版社,1999.
    [142] Pang H.. Shahinpoor M. Inverse dynamics of a parallel manipulator[J]. J. Robot. Syst. 1994. 11(8): 693-702.
    [143]章定国,朱志远.一类刚柔耦合系统的动力刚化分析[J].南京理工大学学报.2006,30(1):21-25.
    [144] Bhaskar D., Prasun C. A general strategy based on the Newton -Euler approach for the dynamic formulation of parallel manipulator]. Mechanism and Machine Theory. 1999, 6: 801-824.
    [145]温熙森,陈循,唐丙阳.机械系统动态分析理论与应用[M].长沙:国防科技大学出版社,1998.
    [146]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [147] Liu H.. Kauachi K. A Numerical Study of Undulatory Swimming[J]. Journal of Computational Physics. 1999, 155: 223-247.
    [148]苏玉民,黄胜,庞永杰.仿鱼尾潜器推进系统的水动力分析[J].海洋工程.2002,20(2):54-59.
    [149]童秉纲,庄礼贤,程健宇.鱼类波状摆动推进的流体力学研究[J].自然杂志.1991,20(1):1-7.
    [150]胡文蓉.鱼类单向机动运动二维流动特征的数值研究[D].合肥:中国科学技术大学,2003.
    [151]夏全新,鲁传敬,吴磊.鱼类波状摆动推进的数值模拟[J].水动力学研究与进展(A辑).2005,20:921-928.
    [152] Newman J. N.. Wu T. Y. A generalized slender-body theory for fish-like forms[J]. Fluid Mechnisms. 1973, 57(4): 673-693.
    [153] Yu J. Z., Liu L. Z., Wang L. Dynamic Modeling of Robotic Fish Using Schiehlen's Method[C]. Proceeding of the IEEE International Conference on Robotic and Biomemitics. Kunming. 2006:457-462.
    [154] Lighthill M. J. Large-amplitude elongated-body theory offish locomotion[C]. Proceedings of Royal Society Long Bulletin. 1971:125-138.
    [155] Lighthill M. J. Large-amplitude elongated-body theory offish locomotion[J]. Proc. R. Soc. Long. B. 1971, 179: 125-138.
    [156]童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用[J].自然杂志.1998,20(1):1-7.
    [157] Cheng J. Y., Zhuang L. X.. Tong B. G. Analysis of swimmingthree-dimensional waving plates[J]. Journal of Fluid Mechanics. 1991. 232: 341-355.
    [158]童秉纲,孙茂,尹协振.飞行和游动生物流体力学研究在国内的若干进展[C].第214次香山科学会议.香山.2003:27-38.
    [159]童秉纲,孙茂,尹协振.飞行和游动生物流体力学的国内研究进展[J].自然杂志.2005,27(4):191-199.
    [160] Cheng J. V.. Blickhan R. Bending moment distribution along swimming fish[J]. Journal of Theory Biology. 1994, 168: 337-348.
    [161] Cheng J. V.. Chahine G. L. Computational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure[J]. Comparative Biochemistry and Physiology Part A. 2001, 131: 51-60.
    [162] Shirgaonkar A. A., Curet O. M., Patankar N. A., et al. The hydrodynamics of ribbon-fin propulsion during impulsive motion[J]. Journal of Experimental Biology. 2008,211(21): 3490-3503.
    [163]胡志强,林扬,谷海涛.水下机器人粘性类水动力数值计算方法研究[J].机器人.2007,29(2):145-150.
    [164]李炜,徐孝平.水力学[M].武汉:武汉大学出版社,2000.
    [165]周光垌,严宗毅,许世雄等.流体力学[M].北京:高等教育出版社,2000.
    [166]杜卡莫[著],田畴等[译].曲线与曲面的微分几何[M].北京:机械工业出版社。2005.
    [167] Zhang Y., He J.. Vang J., et al. A Computational Fluid Dynamics (CFD) Analysis of Undulatory Mechanical Fin Driven by Shape Memory Alloy[J]. International Journal of Automation and Computing. 2006, 3(4): 374-381.
    [168] Yu J. Z., Liu L. Z., Tan M. Three-dimensional dynamic modelling of robotic fish: simulations and experiments[J]. Transactions of the Institute of Measurement and Control. 2008, 30(2-4): 239-258.
    [169]韩占忠,王敬,兰小平.Fluent流体工程仿真计算实力与应用[M].北京:北京理工大学出版社,2004.
    [170]王福军.计算流体动力学分析·CFD软件原理与应用[M].北京:清华大学出版社。2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700