仿生推进器的水动力性能理论预报与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鱼类和海洋哺乳动物已越来越引起人们的关注,因为,它们具有良好的推进和操纵性能,它们能够远距离高速行进,在狭窄的空间灵活运动,迅速地加速和灵活地减速等。仿生工作首先是寻求发现一些机理,正是这些机理使某些生物拥有惊人的游动技能。经过学者多年的努力已经清楚地知道了海洋鱼类,特别是大型高速游动鱼类的高效推进的机理。利用月牙尾的动态过失速特性产生高升力,获得高推力;利用尾涡控制使尾迹呈现反卡门涡街,获得最佳推进效率。
     模仿金枪鱼的摆尾推进方式,制作了单尾仿生机器鱼,实验测量了机器鱼的航行速度、阻力和系泊状态时尾鳍摆动产生的推力,同时,进一步认识了鱼类高速高效推进的机理,也为建立尾鳍运动的数学模型和理论预报仿鱼尾鳍的水动力性能奠定了试验基础。
     用边界元法计算尾柄与尾鳍以不同相位角摆动时尾鳍的平均推力和平均推进效率,计算尾柄与尾鳍同相位摆动时尾鳍摆动频率与推力的关系。计算得到的结果为研究开发新型仿生推进器的提供了理论依据。结合单尾鳍摆动推进存在的机器鱼的摇艏问题,设计出仿生双尾推进器,并将其应用于小水线面双体船,制作了仿生双尾推进的实验平台,在水池中进行了试验研究。结果表明,双尾推进作为一种新型的仿生推进器,不仅解决了单尾机器鱼游动时的鱼体晃动问题,而且还具有优良的推进和操纵性能。同时,采用计算流体力学软件FLUENT计算摆动尾鳍非定常流动的流场特性,结合单尾鳍和双尾鳍的不同流场特性定性分析了双尾鳍在摆动过程中的相互干扰问题。
In recent years, fish and ocean mammal have drawn people's attention for their nicer propulsion and maneuvering performance. They have abilities of navigating in high speed with long distance, agilely maneuvering in limited space, and accelerating or decelerating rapidly. The work is to find some mechanics which make some creatures have excellent swimming skill. From the hard work we have known the mechanics of high speed of some fish. The fish can use their characteristics of tails to get the high thrust force. Also they can control their wake to produce the anti-Karman vortex street which is the reason of optimal propulsion.
     Simulating the tail swing manner of Tunny, a robotic fish model is made. Speed, resistance and thrust at mooring condition of the robotic fish are tested by experiment. the mechanics of highly active propulsion is also known which gives the theoretical basis of fin and its mathematical model.
     Numerical model of robotic fish propulsion's tail-fin locomotion is established, and tail-fin's mean thrust performance curve and mean efficiency curve is calculated with boundary method when the tail-fin and tail-handle swing with different phase angle, and the correlative curve between swing frequency and amplitude of and tail-fin thrust when the tail-fin and tail-handle swing with the same phase angle. The results of calculation are used as the basis of research of new propulsion. To avoid the swing of fore body of robotic fish with single tail-fin, a kind of robotic fish with double tail-fin is designed and is used in SWATH. The experimental platform of double tail-fin propulsion is produced and the experimental research of the double tail-fin propulsion is made in a pond. As a result, the double tail-fin propulsion as a new type propulsion not only can solve the shakable problem of the single tail-fin robotic fish when it's swimming, but also has excellent propulsive efficiency and maneuverability. The CFD software FLUENT was used to calculate the unsteady flow characteristic of the swinging tail-fin. According to the different flow characteristic between the single tail-fin and the double tail-fin, the writer analyzes the mutual interferential problem during the swing process of the double tail-fin and the calculated result is coincident with the experimental research.
引文
[1] 黄胜.船舶推进节能技术与特种推进器.哈尔滨工程大学出版社[M],1998
    [2] 梁建宏,王田苗,魏洪兴.仿生机器鱼技术研究进展及关键问题探讨[J].机器人技术与应用.2003,24(3):14-19页
    [3] J.Gray. Studies in animal locomotion[J]. Ⅵ The propulsive powers the dolphin. J. Exp. Biol. 1936,13:192-199P
    [4] 童秉纲,陈夕云.关于飞行和游动的生物力学研究[J].力学进展.2004,34(1):1-8页
    [5] 水下仿生学译文集[M].哈尔滨工程大学,2000
    [6] 黄胜.关于仿鱼游动水中推进器的研究的现状与展望[R].大阪府立大学共同研究报告.2001
    [7] 童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用[J].自然杂志.1998,20(1):1-7页
    [8] G. Taylor. Analysis of the swimming of long narrow animals[J]. Proc. R. Soc. Lond. A. 1952,214:158-183P
    [9] J. Lighthill. Note on the swimming of slender fish[J]. Fluid Mech. 1960, 9:305-317P
    [10] T. Y. Wu. Swimming of a waving plate[J]. Fluid Mech. 1961, 10:321-344P
    [11] J. Ligh}hill. Hydromechanics of aquatic animal propulsion[J]. Ann.Rev. Fluid Mech. 1969, 1:413-446P
    [12] J. Lhighthill. Aquatis animal propuls of figh hydromechanical efficiency[J]. Fluid Mech. 1970, 44: 265-301P
    [13] J. Lhighthill. Large-amplitude elongated-body theory of fish locomotion[J]. Proc. Roy. Soc. Lond. B. 1971, 179: 125-138P
    [14] J.Lighthill, R.Blake. Biofluiddynamics of balistiform and gymnotiform locomotion parks 1-4[J]. Fluid Mech. 1990, 212: 183-207P; 213: 1-28P
    [15] M. G. Chopra. Hydromechanics of lunate-tail swimming propulsion[J]. Fluid Mech. 1974, 64:375-391P
    [16] M. G. Chopra. Large-amplitude lungte-tail theory of fish locomotion[J]. Fluid Mech. 1976, 74:161-182P
    [17] M. G. Chopra, T. Kambe. Hydromechanics of lunate-tail swimming propulsion. Part 2[J]. Fluid Mech. 1977, 79:49-69P
    [18] Pengfei Liu. A Time-domain panel method for oscillating propulsors with both chordwise and spanwise flexibility[J]. PhD Thesis. Memorial University of Newfoundland, Canada. 1997
    [19] RLiu, N.Bose. Hydrodynamic characteristics of a lunate shape oscillating propulsor[J]. Ocean Eng. 1999, 26:519-529P
    [20] RLiu, N.Bose. Propulsive performance of three naturally occurring oscillating propeller planforms[J]. Ocean Eng. 20(1): 57-75P
    [21] W. C. Sandberg, R.Ramamurti.Unsteady flow computations for oscillating fins: a status report[J]. Papers of 11th International symposium on UUS technology. Autonomous Undersea Systems Institute 1999:182-194P
    [22] 童秉纲,庄礼贤,程健宇.鱼类波状摆动推进的流体力学研究[J].力学与实践.1991,19(3):17-26页
    [23] 程健宇,庄礼贤,童秉纲.三维变幅波板的游动水动力学研究与进展[J].1991增刊,1-11页
    [24] 程健宇,庄礼贤,童秉纲.新月形尾鳍推进的流体力学分析[J].力学学报.1992,24(4):458-465页
    [25] 苏玉民,黄胜,庞永杰,徐玉如,吴强.仿鱼尾潜器推进系统的水动力分 析[J].海洋工程.2002,20(2):54-59页
    [26] 董涛.潜器仿鱼尾推进系统的水动力分析[D].哈尔滨工程大学工学硕士学位论文.2003
    [27] H.Liu, K.Kawachi. A numerical study of undulatory swimming. J. Computational Physics[J]. 1999, 155:223-247P
    [28] 杨亮.粘性流场中摆动尾鳍的水动力分析[D].哈尔滨工程大学工学硕士学位论文.2005
    [29] J. M. Anderson, RA.Kerrebrock. The vorticity control unmanned undersea VehicLe(VCUUV) performance results[J]. Papers of 11th International symposium on UUS technology. Autonomous Undersea Systems Institute. 1999:360-369P
    [30] M.Nakashima, K. Ono. Experimental study of two-joint dolphin robot[J]. Papers of 11th International symposium on UUS technology. Autonomous Undersea Systems Institute. 1999:211-218P
    [31] K.Hirita. Development of experimentytal fish robot, http://www.nmri.go. jp/eng/khirata/list/fish/isme_fish.pdf
    [32] K.Hirata, T.Takimoto, K.Tamura. Study on turning performance of a fish robot[J], http ://www.nmri.go.jp/eng/khirata/list/fish/isamec2000.pdf
    [33] 梁建宏,王田苗,魏洪兴.水下仿生机器鱼的研究进展Ⅰ--鱼类推进机理[J].机器人.2002,24(2):107-111页
    [34] 梁建宏,王田苗,魏洪兴,陶伟.水下仿生机器鱼的研究进展Ⅱ--小型实验机器鱼的研制[J].机器人.2002,24(3):234-238页
    [35] 梁建宏,王田苗,魏洪兴,陶伟.水下仿生机器鱼的研究进展Ⅱ--水动力学实验研究[J].机器人.2002,24(4):304-308页.
    [36] 梁传秋.SPC-Ⅱ推进系统设计及仿鱼推进器研究[D].哈尔滨工程大学工 学硕士学位论文.2004
    [37] 成巍.仿生水下机器人仿真与控制技术研究[D].哈尔滨工程大学工学博士学位论文.2004
    [38] T.Fukuda, A.Kawamoto, F.Arai, H.Matsuura. Steering mechanism of underwater micro mobile robot[J]. Proceedings of the 1995 IEEE International Conference on Robotic and Automation 1995:363-368P
    [39] O.K.Rediniotis, D.C.Lagoudas, L.J.Garner, L.N.Wislson, G.Webb, G.Galls, N.W.Schaeffier. Application of active materials and neural networks to aquatic biomimeties[J]. The 11th International SympoSium on Unmanned Untethered Submersible Technology, 1999:501-514P
    [40] M.Xojarrad, D.G.Wilson. Design of composite artificial muscle(CAM) fin for aquatic vehicle propulsion[J]. The 11th International SympoSium on Unmanned Untethered Submersible Technology, 1999:494-501P
    [41] J.Paquette, K.J.Kim. Ionomeric electro-active polymer artificial muscleoverview[J]. Proceedings of the 13th International SympoSium on Unmanned Untethered Submersible Technology, 2003
    [42] S.Stanford, R.Pelrine, R.Kornbluh, Q.Pei. Electroactive polymer artificial muscle for underwater robotics[J]. Proceedings of the 13th International SympoSium on Unmanned Untethered Submersible Technology, 2003
    [43] C.Willert, M.Gharib. Digital particle image velocimetry[J]. Exp. Fluids. 1991,10:181-193P
    [44] J.M.Anderson. Vorticity control for efficient propulsion[J]. PhD thesis. MIT. 1996
    [45] A.H.Techet, X.Zhang, M.J.Wolfgang, J.M.Kumph, F.S.Hover, D.K.RYue, M.S.Triantafyllou, E.J.Anderson, W.R.McGillis, M.A.Grosenbaugh. Flow control of flexible-hull vehicles[J]. Papers of 11th Itemational symposium on UUS technology. Autonomous Undersea Systems Institute. 1999:162-171P
    [46] 童秉纲.鱼类波状游动的推进机制[J].力学与实践.2000,3:69-73页
    [47] 许维德.流体力学[M].第二版.国防工业出版社,1989:113.115页
    [48] G.S.Triantafyllou, M.S. Triantafyllou, M.A.Grosenbauch. Optimal thrust development in oscillating foils with application to fish propulsion[J]. Fluids and Structures. 1993, 7: 205-224P
    [49] J.M.Anderson, K.Streitlien, D.S.Barren, M.S.Triantafyllou. Oscillating foils of high propulsiveeficiency[J]. J.Fluid Mech. 1998, 360:41-72P
    [50] 黄胜.浆舵干扰的理论与实验研究[M].哈尔滨工程大学出版社,1999
    [51] 郭春雨.螺旋桨与舵附推力鳍相互干扰水动力性能数值计算[D].哈尔滨工程大学工学博士学位论文.2006
    [52] 于凯,仿鱼推进的理论分析与实验研究[D].哈尔滨工程大学工学硕士学位论文.2001
    [53] 丁正良,胡瑞芝,孙百超,魏舟浩,李风来.水平型循环水槽的水动力性能[J].船工科技.1984,3:1-16页
    [54] J.T.Hess, A.M.Smith. Calculation of Nonlifting Potential Flow about Arbitrary Three Dimentional Bodies[J]. Journal of Ship Research, Vol.8, N0.2, 1964
    [55] 苏玉民,黄胜.船舶螺旋桨理论[M].哈尔滨工程大学出版社,2003
    [56] 刘杰,朱自强,陈泽民,吴宗成.基于欧拉方程的尾迹面法气动力计算[J].航空学报.2005,26(4)
    [57] L.Morino, L.T.Chen, E.O.Suciu. Steady and Oscillatory Subsonic and Supersonic Aerodynamics around Complex Configurations[J]. AIAA Journal, Vol. 13, Mar. 1975
    [58] J.Kerwin, S.Kinnas and et al. A Surface Panel Method for the Hydrodynamic Analysis of Ducted Propellers[J]. Trans. SNAME, Vol.95, 1987
    [59] M.Yanagizawa, K.Kikuchi. Finite element calculations for aerodynamic coefficients of 3-dimensional body in subsonic flew using Green's function method[R]. Technical report of national aerospace laboratory, 1982.
    [60] L.Mforino, L.Chen, E.0.Suciu. Steady and oscillatory subsonic and supersonic aerodynamics around complex configurations[J]. AIAA Journal. 1975,13(3):368-374P
    [61] B. Ahlborn, S. Chapman, R. Stafford, R. W. Blake, and D. G. Harper. Experimental simulation of the thrust phases of fast-start swimming of fish[J]. J Exper Biol., 1997,200:2301-2312P
    [62] 双结点海豚Robot实验研究.水下仿生学译文集[M].2000,6:33-39页
    [63] 邓锐.带首鳍斜支柱型的SWATH的数值研究[D].哈尔滨工程大学工学硕士学位论文.2005
    [64] 井爱国.花鲈、许氏平鲍运动生理学的初步研究[D].中国海洋大学.硕士学位论文.2005
    [65] #12
    [66] CeMeHOB.仿鱼推进双体船.专利号为208 1 770
    [67] 冯大奎.小水线面双体船阻力性能研究及船型优化[D].武汉:华中科技大学
    [68] 吴子牛.计算流体力学基本原理[M].科学出版社,2001
    [69] 郭正,刘君,瞿章华.动网格技术在二维非结构网格中的实现[C].第十届全国计算流体力学会议诊文集.1996.360-364页
    [70] 王军利,白俊强,詹浩.非结构动网格在可动边界问题中的应用研究[J].力学季刊.2006.6:227-232页
    [71] 于凯,黄胜等.仿鱼推进的实验研究[J],黑龙江省造船工程学会2006年学术年会,2006:130-133页
    [72] 覃新川,黄胜,常欣.船舶螺旋桨面元法的改进[J].华中科技大学学报.2007.5:65-68页
    [73] 于凯,黄胜等.仿鱼推进器的水动力性能研究[J].华中科技大学学报:自然科学版,2007,35(5):69-72页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700