基于CFD的鳐鱼水动力学数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着探索海洋、利用海洋资源的呼声越来越高,水动力学性能更加优秀的水下推进器的研究热潮也随之而来。仿鱼机器人因为其仿生对象所具有的优越性能,更是成为当前研究的热点。然而,目前国内外学者对于仿鱼机器人机动性方面的研究较少,导致其难以适用于较复杂空间和工况的水下作业。针对这个问题,本文以具有良好机动性的鳐鱼为仿生原型,对仿鳐鱼水下推进器自主游动时的水动力学性能进行了仿真研究。
     根据鳐鱼的生物学特征,本文建立了仿鳐鱼水下推进器的物理模型,再结合国内外已有研究成果提出了它的运动学模型,并通过MATLAB软件仿真胸鳍的运动,证明了运动学模型的正确性。接下来本文以刚体动力学理论为基础,提出了仿鳐鱼水下推进器的动力学方程,并针对该方程中的相关参数提出了相应的算法,获得了完整的动力学模型。在此基础上,本文利用FLUENT软件编程仿真实现了推进器在流场中的稳定自主游动,初步分析了其在时间域中的水动力学性能,并与已有研究成果对比,证明了模型的正确性和仿真的可靠性。
     以此为基础,本文对鳐鱼的三种基本运动参数——胸鳍波动频率、波数、振幅进行了分析,并结合本文提出的振幅控制因子的概念,利用控制变量法分别对它们进行了研究,分析了不同参数条件下鳐鱼的水动力学性能,初步获得了仿鳐鱼水下推进器的运动参数选择规律。同时,通过对鳐鱼稳定自主游动时鱼体表面和附近流场的压力分布的研究,初步分析了鳐鱼的运动机理。在此基础上,本文对鳐鱼的胸鳍波动频率进行了深入研究。根据本文给出的控制算法,在一个波动周期内,为鳐鱼胸鳍赋予了两种不同的波动频率,分析了两种频率复合对鳐鱼游动性能的影响。
     通过上述的一系列理论和仿真研究,本文对仿鳐鱼水下推进器进行了初步的水动力学分析和运动参数规划,揭示了三种基本运动参数对其水动力学性能的影响规律,并初步对其运动学模型进行了较成功的改进,为接下来的进一步仿真分析、模型改进和样机研制奠定了基础。
As calls of exploring ocean and utilizing Marine resources growing, the boom of researching underwater-propellers with more excellent hydrodynamic performance is also coming. Because of the superior performance of the bio-inspired mode, the bionic robot-fish has become a hotspot of current researches. However, the lack of study on bionic robot-fish’s mobility causes the bionic robot-fish hard to apply to a complex space and modes of the underwater operations. According to this problem, in this paper, we use rays as the bio-inspired mode, which have good mobility, to study the steady-state swimming performance when the bionic robot-ray achieves steady swimming mode.
     According to the biological characters of rays, we establish a physical model of the bionic robot-ray. Then, combined with the existing research results we put forward its kinematics model. Through the simulation of MATLAB, the correctness of the kinematics model is proved. Then based on the rigid body dynamics theory, we put forward the dynamic equation of the biological characters of rays. According to the related parameters in the equation we put forward corresponding algorithm and finally gain the complete dynamic model. On this basis, we have realized steady self-propulsion swimming of the bionic robot-ray in the flow using FLUENT software, and preliminary analyzed its hydrodynamic performance in time domain. The comparison with the existing results proves the validity of the model and simulation reliability. Based on the content, we have analyzed the three basic motion parameters of rays– the frequency, wave number and amplitude of pectoral fins. Using the control variable method, we have analyzed them and their hydrodynamic performance with the concept of amplitude control factor, and got the rule of how to choose the parameters for the bionic robot-ray. At the same time, we have analyzed the movement mechanism of rays preliminarily through the research of pressure distribution when the bionic robot-ray reaches stability self-propulsion swimming.
     Then, we start to study the frequency of pectoral fins deeply. According to the control algorithm presented in this paper, we give pectoral fins in two different wave frequencies in a cycle, and analysis the influence which the size of the two frequencies caused.
     In this paper, we have analyzed the hydrodynamic performance and the motion planning of the bionic robot-ray through a series of theory and simulation research above, revealed the rule that the three kinds of motion parameters influence on the hydrodynamic performance, and improved the kinematics model successfully and preliminarily. All the results in this paper laid the foundation for the further study of the simulation analysis, the model improving and prototype manufacturing.
引文
1蒋新松.未来机器人技术发展方向的探讨.机器人. 1996,18(5):285-291.
    2林龙信.波动仿生推进器柔性长鳍的波动控制技术研究.国防科学技术大学研究生院. 2005, 11:1-2.
    3王冉冉.仿鱼机器人稳态游动的水动力性能研究.哈尔滨工业大学机电工程学院. 2010:1-2.
    4章永华.柔性仿生波动鳍推进理论与实验研究.中国科学技术大学博士学位论文. 2008:1-10.
    5 Bandyopadhyay R. Trends in Biorobotic Autonomous Undersea Vehicles Promode. IEEE Journal of Oceanic Engineering. 2005, 30(1): 109-139.
    6童秉纲,陆夕云.关于飞行和游动的生物力学研究.力学进展. 2004, 2(34):1-8.
    7曹庆明.鱼类游动的水动力学研究综述.第二十一届全国水动力学研讨会. 704-712.
    8 Breder C.M.. The locomotion of fishes. Zoologica. 1926, 4: 159-297.
    9 Webb P.W.. Form and function in fish swimming. Scientific American. 1984(251):72.
    10熊建新,陈立军,吴子忠.鱼鳍特化的功能.河北渔业. 2001, 2: 22-23.
    11湖南水产编辑部.鱼的基本知识讲座.湖南水产. 1984, 1: 43-45.
    12 Lindsey C C. Form, function and locomotorv habits in fish. Fish Physiolo- gy,1978: 1-100.
    13 Sfakiotakis M.D., Lane M., Davies J.B.C.. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering. 1999 , 4(24): 237-252.
    14 M. J. Lighthill. Note on the Swimming of Slender Fish. Journal of Fluid Mechanics. 1960, 9: 305~317.
    15 T. Y. Wu. Swimming of a Waving Plate. Journal of Fluid Mechanics. 1961, 10: 321~344.
    16 A. Azuma, The Bio-Kinetics of Flying and Swimming. Springer-Verlag, NewYork, 1992.
    17 G. V. Lauder and E. G. Drucker, "Morphology and Experimental Hydrody- namics of Fish fin control Surfaces",IEEE Jl. of Oceanic Engg. 2004: 556 -584.
    18 P. R. Bandyopadhyay, S. N. Singh and F. Chockalingam, "Biologically- Inspired Bodies Under Surface-Part 2: Theoretical control of maneuvering ", ASME Journal of Fluids Engineering.1999,6:479-487.
    19 P. R. Bandyopadhyay, "Manuevering Hydrodynamics of Fish and Small Under-water Vehicles",Integ. And Comp. Biol.2002:102-117.
    20 M. G. Chopra, "Hydrodynamics of Lunate Tail Swimming Propulsion",Jl. of Fluid Mechanics,2002,(1):46-49.
    21 K. C. Hall and S. R. Hall,―Minimum Induced Power Requirements for Flapping Flight",Jl. of Fluid Mechanics, 1996:285-315.
    22 R. Gopalkrishnan, M. S. Triantafyllou, G.S. Triantafyllou and D. Barren Active Vorticity Control in a Shear flow Unmanned Underwater Vehicle",Jl. of Fluid Mechanics, 1994:1-21.
    23 R. Mittal, "Computational Modeling in Bio-Hydrodynamics: Trends, Challenges and Recent Advances",13th International Symposium on Unmanned Untethered Submersible Technology (UUST) New England Center, Durham New Hampshire, USA,2003,8.
    24 I. Yamamoto, Y. Terada, T. Nagamatu and Y. Imaizumi, "Propulsion System with Flexible/Rigid Oscillating Fin",IEEE Jl. Oceanic Engg. 1995, 4(20):23-30.
    25 N. Kato, "Perfomance in the Horizontal Plane of a Fish Robot with Mechanical Pectoral Fins",IEEE Jl. Oceanic Engg. 2000,4:121-129.
    26 H. S. Udaykumar, R. Mittal, P. Rampunggoon and A. Khanna,―A Sharp Interface Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries",J. Comput. Phys. 2001:345-380.
    27 M. H. Bozkurttas, R. Dong, R. Mittal and F. Najjar,―Towards Numerical Simulation of Flapping Foils on Fixed Cartesian Grids". 2005:70-79.
    28 C. B. Martin, F. S. Hover and M. S. Triantafyllou, "Maneuvering Perfoman- ce Of A Rolling and Pitching Wing untethered Submersible Technology",Proceedings of the 12th International Symposium on UAVs, Durham, NH, 2001.
    29李非.背鳍/背臀鳍波动推进机理实验研究及仿真.国防科学技术大学硕士学位论文. 2005, 11:1-15.
    30谢海斌.基于多波动鳍推进的仿生水下机器人设计、建模与控制.国防科学技术大学博士学位论文. 2006, 10:1-17.
    31张代兵.波动鳍仿生水下推进器及其控制方法研究.国防科学技术大学博士学位论文. 2007, 4:1-10.
    32王光明,胡天江,沈林成.仿鱼柔性长鳍波动运动分析与建模.动力学与控制学报. 2006,4:348-352.
    33胡天江,沈林成,李非,土光明,韩小云.仿生波动长鳍运动学建模及算法研究.控制理论与应用. 2009.1:1-7.
    34 Willy, A. and K. H. Low (2005). "Initial experimental investigation of undulating fin." 2005,(1): 2059-2064.
    35章永华.柔性仿生波动鳍推进理伦与实脸研究.国防科学技术大学博士学位论文. 2008,3:1-15.
    36杨少波,韩小云,张代兵,邱静.一种新型的胸鳍摆动模式推进机器鱼设计与实现.机器人. 2008, 11: 508-515.
    37 Tianjiang Hu, Longxin Lin, Daibing Zhang, Danwei Wang, and Lincheng Shen. Effective Motion Control of the Biomimetic Undulating Fin via Iterative Learning. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics. 2009, 12: 627-632.
    38 Yueri Cai, Shusheng Bi, Licheng Zheng. Design and Experiments of a Robotic Fish Imitating Cow-Nosed Ray. Science Direct. 2010, 7: 120-126.
    39湘楚.鳐鱼.美食. 2006, 2: 25-26.
    40曹玉茹.海洋生物系列(八).海洋世界. 2006, 1: 34-35.
    41 Capape, C., Y. Diatta. "New biological data on the brown ray, Raja miralet- us (Chondrichthyes: Rajidae), off the coast of Senegal (eastern tropical Atl- antic)." Ciencias Marinas 2010, 36(3): 301-309.
    42 Consalvo, I., D. I. Sareri. "Diet composition of juveniles of rough ray Raja radula (Chondrichthyes: Rajidae) from the Ionian Sea." Italian Journal of Zoology 2010, 77(4): 438-442.
    43青云.魔鬼鱼.科学大众(小学版). 2003, 1.
    44汤家礼.海洋危险动物TOP10.海洋世界. 2006, 11: 6-21.
    45袁军.鳐科家族.海岸线. 2009: 46-47.
    46于诗群,王世党,郑春波.孔鳐的生物学特性与养殖技术.齐鲁渔业. 2005, 22(8): 24-25.
    47 D. Michelle McComb, Stephen M. Kajiura. Visual fields of four batoid fishes: a comparative study. The Journal of Experimental Biology .2007,12: 482-490.
    48 LISA J. ROSENBERGER. PECTORAL FIN LOCOMOTION IN BATOID FISHES: UNDULATION VERSUS OSCILLATION. The Journal of Experimental Biology 2000, 10: 379-394.
    49杨少波,韩小云,邱静.鳐鱼胸鳍模式的运动学建模与仿真.国防科技大学学报. 2009. 1: 104-108.
    50夏丹.鲔科仿生原型自主游动机理的研究.哈尔滨工业大学博士学位论文. 2010, 7:22-24.
    51王瑞金,张凯,王刚. FLUENT技术基础与应用实例.清华大学出版社, 2007.
    52 HU Wen-rong, TONG Bing-gang, LIU Hao. A NUMERICAL STUDY ON MECHANISM OF S-STARTS OF NORTHERN PIKE. Science Direct. 2007, 9: 135-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700