仿生非光滑耐磨复合涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨料磨损是矿山、工程和农业机械等地面机械触土部件磨损件失效的主要原因。提高地面机械部件的耐磨性能方法除研究开发新型抗磨损材料、添加润滑材料和从结构上进行合理的设计外,表面硬化(表面改性)则是提高地面机械部件质量、延长使用寿命、改善使用性能的重要方法。目前,常用的表面硬化技术有化学、物理、激光、电子束热处理、喷涂、沉积、镀层等。这些方法绝大多数是对整个表面进行处理,且硬化层厚度较薄,往往在服役中很快被磨损掉,失去对机械部件本身的保护作用,降低了机械部件在各种工况条件下使用的有效性。因此,探索新的抗磨材料和机理,以便能更有效地提高地面机械触土部件的使用寿命。
    传统的观念都是将追求提高磨损部件的表面光滑度作为提高其耐磨性能的必要手段,而依据仿生研究结果,非光滑表面具有减粘、降阻、耐磨作用。在此设计思想指导下,本文模仿蜣螂头部体表非光滑特征,对钎焊耐磨复合涂层进行了仿生设计,首次以快速高效的钎焊方法制备了以铜基钎料合金为基体的仿生非光滑耐磨复合涂层;系统研究了仿生非光滑钎焊耐磨复合涂层制备工艺、孔隙度、力学性能、耐磨性能、组织结构与抗磨机理;并研制了适合仿生非光滑复合涂层制备的高性能多元铜基钎料,确定了复合涂层的较佳组分配比。所研制的仿生非光滑复合涂层具有优良的力学性能和高的耐磨料磨损性能。研究工作拓展了仿生材料研究领域,为提高地面机械触土部件等易磨损件的抗磨性开辟了一条新途径。
    以典型土壤动物—蜣螂头部体表非光滑单元体的统计分析为基础,建立典型土壤动物—蜣螂体表非光滑单元体的数学描述式,确定数学描述式中参数的取值区间,利用演化计算中的遗传算法和演化策略,建立起典型土壤动物非光滑体表的数学模型。根据工程仿生学原理,借鉴功能复合材料的设计思想,依据典型土壤动物—蜣螂头部非光滑体表的数学描述式,对钎焊耐磨复合涂层进行了仿生设计,确定了适合仿生非光滑钎焊耐磨复合涂层的非光滑表面参数—凸包顶点间距与凸包高度的比例,给出了制备仿生非光滑WC/Cu复合涂层的增
    
    
    强硬质颗粒相WC的含量范围(44~84wt%)。
    通过对复合涂层钎焊成形质量的研究确定了合适的工艺参数,在此基础上系统研究了仿生非光滑耐磨复合涂层的密度、孔隙度、耐磨性,研究结果表明:钎焊方法、钎料、钎剂、硬质点颗粒大小与含量等对非光滑耐磨复合层的成形、孔隙度与密度、耐磨性能有重要影响。用高频钎焊方法制备的仿生非光滑耐磨复合涂层耐磨性能明显优于炉中钎焊方法制备的复合涂层;硬质点颗粒WC含量和粒度是决定复合涂层表面非光滑尺寸参数的主要因素,WC含量过低或过高均不能发挥出复合涂层的耐磨性优势,随WC含量增加,复合涂层磨损量减少,相对耐磨性提高,当WC含量ΦW增为50~60wt%时相对耐磨性最高,增强硬质相WC颗粒在涂层中分布均匀,涂层表面非光滑节点—凸包顶点间距与凸包高度的比例c/h计算值为2.37~2.57,实际值为2.48~2.68;选用BCu60Zn钎料、60/80目(平均尺寸210μm)或40/60目(平均尺寸300μm)WC颗粒、含量为50~60wt%、钎剂含量为1~3wt%,通过高频钎焊工艺在碳钢表面制备的非光滑耐磨复合涂层密度高、孔隙度低、耐磨性高。60/80目WC、ΦW为50wt%的复合涂层,实际c/h为2.68,接近由蜣螂体表非光滑结构数学模型确定的c/h值,在两体静载磨料磨损工况下,其耐磨性是45钢(淬火态)的11.9倍,是高铬铸铁的4.7倍。
    研究了工况条件对仿生非光滑复合涂层耐磨性能的影响规律,结果表明:当载荷小于0.354MPa时, 随载荷增加复合涂层磨损量显著增加,载荷超过0.354MPa后,磨损量增加趋势变缓,且基本上为直线关系,此时复合涂层相对(高铬铸铁)耐磨性基本不变,近似为一常数5.08;随磨粒尺寸增大(目数降低)复合涂层磨损量增加,相对(高铬铸铁)耐磨性降低。磨粒粒度在80目附近有一临界尺寸,试验条件下该临界尺寸约为175μm,超过临界磨粒尺寸,磨粒尺寸增加复合材料磨损量急据增大。
    研究了复合涂层自身强度及其与被强化基体(碳钢)结合强度与WC颗粒粒度和含量的关系,结果表明:在含量为30~60wt%时,WC颗粒粒度对复合涂层自身强度有明显影响,随颗粒尺寸减小复合涂层强度明显提高,而在WC含量过低或过高时,粒度对复合涂层自身强度的影响无明显规律。80/200目(平均尺寸120μm)、60/80目WC颗粒增强涂层强度明显比40/60目WC颗粒增强涂层强度高;随WC含量增加,三种不同粒度WC颗粒增强复合涂层自身强度逐渐降低,在WC含量为30 wt%时达到一个低谷,继续增加WC含量复合涂层强
    
    
    度则升高,当WC含量为40~50wt%时复合涂层强度达到一个局部峰值,80/200目、60/80目、40/60目WC颗粒增强复合涂层强度分别为112MPa、100 MPa、60 MPa;复合涂层与碳钢基体结合强度均高于涂层自身强度,在WC含量为50wt%时结合强度达到局部峰值,此时WC粒度对其无明显影响;80/200目、60/80目、40/60目WC复合涂层与碳钢基体结合强度分别为152MPa、160 MPa、156 Mpa。
    研究揭示,提高铜锌钎料对WC和钢的润湿性能,将提高非光滑耐磨复合层的耐磨性能。为进一步提高铜锌钎料对WC和钢的润湿性能和填
Abrasive wear is one of main reasons that brings about the soil-engaging components of terrain machines such as mining, engineering, agricultural machines and so on to lose efficacy. In addition to developing new type wear-resistant materials, adding lubricant materials and designing rationally for the structures, surface hardening technologies for the soil-engaging components of terrain machines are the significant methods that can improve quality and wear resistance of the components and prolong their service life. Up till now, the surface hardening technologies in common use are a variety of treatment technologies including chemistry, physics, laser and electron beam and bead welding, spraying, depositing, plating and so on. The whole surfaces are treated using technologies usually and the costs are higher, but the thickness of hardening coating is thinner and worn quickly on an extended term of service that loses their protective coating and reduces effectiveness of the machine components in using. Moreover, raising surface hardness of engineering materials is limited. Consequently, developing new-type wear-resistant materials and mechanisms would improve service life of the soil-engaging components of terrain machines effectively.
    Traditional concepts seek surface lubricity as necessary conditions that improve wear resistance of the machine components.Bionic Research results show that non-smooth surface can reduce adhesion and resistance of materials and improve wear-resistant performance that give birth to designing idea of the wear-resistant composite coating with bionic non-smooth surface. Based statistical analysis on geometrical morphologies of most soil animal body surface, a
    
    
    mathematic description formula is set up for the non-smooth surface of typical soil animal body. Limits of numerical value of mathematic description formula are ascertained and the mathematic model is set up using arithmetic operation and genetic algorithm. Aim of this work offer theoretical bases to study composite coating with bionic non-smooth surface. Brazing reinforced particles to steel surface using filler metals, a composite coating with bionic non-smooth surface in thickness from tens microns to tens millimeter is formed. The brazing technology is used to manufacture composite coating with bionic non-smooth surface that possesses the characteristics of simple technics, convenient operation, lower cost and credible performance.
    Results show that the brazing methods, flux, wettability of filler metal to reinforced particles and to steel surface, size and weight percent of reinforced particles have significant influences on the molding, porosity, density and wear resistance of the composite coating with bionic non-smooth surface. The wear resistance of the composite coating with bionic non-smooth surface using high frequency induce brazing exceed that of furnace brazing. Porosity and density represents the close-grained measurement, compactness and wear resistance of the composite coating directly. The Cu-Zn filler metal (BCu60Zn) has lower price and melting point, good anti-erosion and wettability and filling up vacancy to reinforced particles and steel surface. BCu60Zn filler metal is processed to powder in granularity of 175~246μm and mixed with carbide tungsten and flux in weight percent of 50 and 1-3, respectively. A composite coating with bionic non-smooth surface is formed using high frequency induce brazing on the steel surface. The structures of composite coating are compact, its porosity is lower and density is high. Under the condition of two bodies abrasive-wear, the wear resistance of composite coating with bionic non-smooth surface is 11.9 and 4.7 times as much as that of 45# steel (quench-hardening) and high chrome cast iron respectively.
    The influences of service conditions on the wear resistance of the composite coating with bionic non-smooth surface are studied. The results show, with
    
    
    increasing the loading, the wearing capacity of the composite coating is greatly enhanced when load
引文
[德]K.--H.哈比希.材料的磨损与硬度.北京:机械工业出版社,1984
    磨损失效分析案例编委会.磨损失效分析案例汇集.北京:机械工业出版社,1985
    刘家浚.材料的磨料磨损.北京:机械工业出版社,1990
    徐滨士,朱绍华等.表面工程的理论与技术.北京:国防工业出版社,1998
    葛长路主编.矿山机械与抗磨技术.中国矿业大学出版社,1995
    刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社,1997
    刘英杰,成客强.磨损失效分析(基础5).北京:机械工业出版社, 1991
    赵宇光,任露泉,闫久林,邱小明,佟金等.WC/Cu-Zn-Mn强化中碳钢耐磨复合材料.吉林工业大学学报,Vol.128.1998
    周平安.耐磨材料新技术应用.中国建材装备(1997)增刊,21-26
    李景德,沈韩.神妙材料. 北京:北京科学出版社,2000,第一版:1-3
    Adamson A.W.Physical Chemistry of Surface.London:Wiley1990
    Bechert D W and Hoppe G.On the drag reduction of the shark skin.AIAA Shear Flow Control Conference,AIAA-85-0546,1985:1-18
    Webb P W.Form and Function in Fish Swimming.Scientific American,1984,6:72-82
    Budker P.The Life of Sharks.London:Weidenfeld&Nicholson,1971
    Zhou B L.Some progress in the biomimetic study of composite materials.Mater. Chem. Phys.,1996,45: 114-119
    Yakou T,Sakamoto S. Abrasive properties of bamboo. Jpn.J.Tribology,1993,38: 491-497
    Tong J,Ren L Q,Li J Q,Chen Bingcong.Abrasive wear behaviour of bamboo. Tribology Int.,1995,28:323-328
    Tong J,Arnell R D,Ren L Q.Dry sliding wear behaviour of bamboo.Wear,1998, 221: 37-46
    任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究.农业机械学报,2003,34(2)
    任露泉,徐德生,邱小明.仿生非光滑耐磨复合涂层及其制备方法.专利:No 01133458.4,日 01,11,14申请,日:03,03,26公开
    任露泉,王再宙.激光处理非光滑凹坑表面耐磨试验的均匀设计研究.材料科学与工程,2002,20(2)549-552
    Wang Y H,Tan Y F. Theory and practice of“spontaneous protective layer”in soil cutting. Terramechanics,1995,32(2)99-104
    谭业发,王耀华.硬质WC粒子增强镍基合金喷熔层耐磨粒磨损性能的研究.摩擦学学报,1997,16(3)202-207
    马红岩.沈阳工业大学硕士学位论文.堆焊层非平整表面状态对其耐磨性能的影响,2001,3
    
    土壤磨料特性影响课题组.土壤磨料特性对农机材料磨损性能的影响.农业机械学报,1986,17(3):53-62
    土壤磨料特性影响课题组.土壤磨料特性对农机材料磨损性能的影响.农业机械学报,1986,17(4):61-68
    材料耐磨抗蚀及其表面技术丛书编委会.材料的磨料磨损.北京:机械工业出版社,1990
    Payne P C. A field method of measuring soil/metal friction. J. Soil Sci.,1956, 7(2): 235-241
    Tong J,Zhang M ZH, Ren L Q,Chen B C.Abrasion mechanism of an enamel coating. Pro.of the 12th International Conference of the international Society for Terrain vehicle System.Beijin: China Machine Press,1996
    挖掘机铲斗[专].No.541936.74,4,1申请,No2010284,77,2,24公布(苏联)
    润滑介质提供系统,No581198.72,3,18申请,No2114236,71,11,15公布
    铲斗带气体润滑装置的推土机.No592934,76,04,29申请,No2352175,78,3,24申请
    朱恒福,谈黎虹,吴士澌.“彗星通孔”减阻犁的试验研究.农业机械学报,1992,23(4):20-24
    王洪发.金属耐磨材料的现状与展望.铸造 2000,(49)增刊,577
    仝建民.耐磨钢研究进展.水利电力机械,2003,25(2):29-32
    李宏兴.球墨铸铁在耐磨材料领域的应用及发展.铸造设备研究,2001,1:39-41
    王荣国,武卫莉,谷万里.复合材料概论.哈尔滨:哈尔滨工业大学出版社,1999,第一版:1-3
    于春田等.金属基复合材料.北京:机械工业出版社,1995
    朴东学等.铸造金属基复合材料现状及发展动向.铸造 2000,(49)增刊:601
    陈华辉等.现代复合材料.北京:中国物资出版社,1998
    植村益次,牧广.高性能复合材料最新技术.北京:中国建筑工业出版社,1989
    吴人洁.复合材料发展的若干趋势.1998中国材料研讨会
    Sudarshan T S.表面改性技术-工程师指南.范玉殿译.北京:清华大学出版社,1992,388-433
    王磊编译.MM的浪潮-金属基复合材料的制法、特性、行情.沈阳:东北工学院,1991,47
    Ayers J D,Bolster R N.Abrasive wear with fine diamond particles of carbide containing aluminum and titanium alloy surfaces [J].Wear,1984,93(2):193-205
    Kumat KS,whittenberger J D.Discontinuously teinforced intermetallic matrix composites via XD synthesis [J].Mater sci Tech,1992,8(4):317-330
    Sahoo P,Koczak MJ.Analysis of in situ formation of titanium carbide in aluminum alloys [J].Mater Sci Eng,1991,144A:37-44
    Dan T Levcocici.Laser processing of MMC layers on a metal base [J].Materials and Manufacturing Processes,1999,14(4):475-487
    
    Kiyoshi Ichikawa,Masakazu Achikita.Electric conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting [J] Materials Transaction.JIM,1993,34(8)716-724
    周曼娜,魏建锋,劝高峰,宋余九.Al2O3颗粒增强铝基复合材料的研究.复合材料学报,1993,10(3)51-57
    赵明久,吕毓雄,陈礼清,毕敬.碳化硅颗粒增强铝基复合材料(SiCp/2024Al)的扩散焊研究.材料研究学报,2000,14(2)136-139
    王玉林,赵乃勤等.Al2O3颗粒粒径和含量对α—Al2O3//Cu复合镀层性能的影响 复合材料学报.1998,15,(1)2
    游兴河.WC在WC/钢复合材料中的溶解行为.复合材料学报,1994,11(1)29-35
    游兴河,WC-钢复合材料高温塑性复合材料磨损特性的研究.复合材料学报,1993,10(2)99-104
    范广能.Fe-Cu-C-WC烧结合金摩擦磨损性能研究.机械工程材料,1998,22(4)41-43
    森本启之等.氮化硅增强铝基复合材料的成型加工.工业材料(日),1990,38(5):59-62
    佟金等.硬质陶瓷粒子增强铝基复合材料机械性能与磨损特性.兵器材料科学与工程,1990(8):56-61
    Janouski GM,etal.The influence of Interfacial structure on the Mechanical properties of liquid-phase-sintered Aluminum-ceramic Composites.Mater Sic Eng,1990,A/29: 65-76
    Surappa M.K,eta.Wear and Abrasion of cast Al-Alumima particle Composites. Near,1982,77:295-302.
    Sato A,etal.Aluminum Matrix Composites :Fabrication and properties.Matau trans,Sep,1976,78: 443-451.
    R.C.Gassmann.Laser cladding with (WC+W2C)/Co-Cr-C and (WC+W2C)/Ni-B-Si composites for enhanced abrasive wear resistance.Materials Science and Technology,1996,12:691-696
    王玉林,杜希文,万怡灶.Al2O3/6-6-3青铜复合材料的制备及性能.复合材料学报,1998,15(2)31-35
    董树荣,张孝彬.纳米碳管增强铜基复合材料的滑动磨损特性研究.磨擦学学报,1999, 19,(3)1-5
    王艳辉,王明智,关长斌,王爱荣.Ti镀层对金刚石-铜基合金复合材料界面结构和性能的作用.复合材料学报,1993,10(2)
    凤仪,应美芳,王成福,钟宇.碳纤维含量对短碳纤维-铜复合材料性能的影响.复合材料学报,1994,11(1)
    王玉林,赵淑梅,万怡灶,周福刚.电沉积颗粒/Cu-Sn复合材料的摩擦磨损特性研究.兵器材料科学与工程,1999,22(1)
    高桥辉男等.机械合金化在WC/Cu复合材料制备中的应用.粉末冶金技术,1989
    Kiyoshi Ichikawa,Masakazu.Material Transations,1993,34(8):8
    
    陈民芳,赵乃勤,李国俊等.WC对Cu/WCp复合材料组织和性能的影响.兵器科学与工程,1998,21(6)22-26
    陈民芳,赵乃勤,由臣等.WC/Cu复合材料粉末冶金烧结工艺的研究.机械工程材料,1998.22(3):28
    赵乃勤,陈民芳,周复刚,王哲仁,李国俊等.WC/Cu复合材料组织及烧结过程的研究.粉末冶金技术,2000.4
    潘蕾,陶杰.干摩擦条件下WC增强Cu-Mn-Ni复合涂层的磨损性能研究.摩擦学学报,2002,22(1)10-13
    陈彦宾,任振安.激光熔覆Cu/WC复合涂层.焊接学报,2002,23(1)19-22
    任露泉,徐德生,邱小明,赵宇光.仿生非光滑耐磨复合层的研究.农业工程学报,2001,17(3):7-9
    徐德生,任露泉,邱小明.WC/Cu基仿生非光滑耐磨复合涂层的研究.农业机械学报, 2004,31(6) 159-162
    徐德生,任露泉,王萍,邱小明.炉中钎焊WC/Cu非光滑耐磨复合涂层制备工艺及耐磨性研究.中国农业机械学会2003年学术年会论文集,2003,9:146
    徐德生,任露泉,邱小明.高频钎焊WC/Cu仿生非光滑耐磨复合涂层的研究.中国农业机械学会2003年学术年会论文集,2003,9:147
    汤佩钊,复合材料及其应用技术.重庆:重庆大学出版社,1998
    Marsaden K.Commercial potentia/s for composites.J of Metals,1985,37(6):59-629
    陈学定,韩文政等.表面涂层技术,北京:机械工业出版社,1994
    林丽华等.金属表面渗层与覆盖层金相组织图谱.机械工业出版社,1998,第一版:1-3
    周平安,孙希泰.材料耐磨抗蚀及其表面技术概论.机械工业出版社,1986
    赵文轸,金属材料表面新技术.西安:西安交通大学出版社,1992
    宋仁国,陈光南,张坤.激光和电子束表面强化技术的发展及其应用.物理,2000,7:411-415
    T.S.SUDARSHAN著,范玉殿等译,表面改性技术工程师指南.清华大学出版社,1992,第一版:436
    闫洪,金属表面处理新技术,北京:机械工业出版社,1996
    董刚,刘奕,赵乃勤,颗粒/铜基复合镀层的摩擦学性能研究.功能材料,2000,31(1):98-99
    戚文军,何艳兵,刘斌,况敏.激光堆焊镍基碳化钨梯度焊层及耐磨机理分析.焊接学报,2002,23(1):57-60
    Shan-Ping Lu,Oh-Yang Kwon.Microstructure and bonding strength of WC reinforced Ni-base alloy brazed composit coating.Surface and Coatings Technology,2002,15(3) 40-48
    陆善平,许先忠.Co含量对(WC-Co/NiCrBSi)复合钎焊涂层耐磨性的影响.中国表面工程,1999,12(3)24-27
    
    陆善平,郭义.钎焊工艺对WC-Co/NiCrBSi复合涂层性能的影响.材料研究学报, 1999,13(2)188-193
    陆善平,郭义. WC-17Co含量对(WC-17Co/NiCrBSi)复合钎焊涂层结合性能及耐磨性的影响.材料导报,2001,15(1)65-67
    潘蕾,陶杰.45钢表面钎焊WC/Cu-Mn-Ni涂层的研究.复合材料学报,2002,19(4)114-117
    H.J.Kim et al.Assessment of wear performance of flame sprayed and fused Ni-based coatings.Surface and Coating Technology,172(2003) :262-269
    Peng-Zhu Wang,Jing-Xin Qiu,He-Sheng Shao.Cemented carbide reinforced nickel-based alloy coating by laser cladding and the wear characteristics.Materials&Design,1996,17(5):289-296
    P.Wu et al.Microstructural characterization and wear behavior of laser cladded nickel-based and tungsten carbide composite coatings.Surface and Coatings Technology,2003,166:84-88
    J.Przybylowicz,J.Kusinski.Structure of laser cladded tungsten carbide composite coatings.Journal of Materials Processing Technology,2001,109:154-160
    许斌,冯承明,杨胶溪.碳化钨-高铬铸铁表面复合材料耐磨粒磨损性能的研究.摩擦学学报,1998,18(4):322-326
    R.Zhou et al.The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites.Wear,2003,255 :134-138
    100.张兆森.铜基离合片的研制.湖南有色金属,1996,12(1):31-33
    101.R.Zhang et al.Preparation of Cu/SiC FGM by coating method and SPS sintering.Materials Science Forum,2003,423-425:249-252
    102.李力军,杨瑞林,新型铸造WC颗粒复合耐磨材料的研究.硬质合金.1998,15(4):208-212
    103.D.Lou et al.Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites.Materials Science and Engineering A,340(2003):155-162
    104.S.W.Wang,et al..The effects of various ceramic-metal on wear performance of clad layer.Journal of Materials Processing Technology,2003,140:682-687
    105.周振丰等.焊接冶金及金属焊接性.北京:机械工业出版社,1988
    106.陈文威等.金属表面涂层技术及应用.人民交通出版社,1996
    107.鲍崇高等.不同基体材料WC/铁基复合材料的抗冲蚀性能研究,铸造,2000,(49)增刊,604-605
    108.张清.金属磨损和金属耐磨材料手册.冶金工业出版社,1991,第一版:58-69
    109.杜军.Al2O3+Cf/ZL109混杂复合材料的力学及耐磨性能研究.吉大博士学位论文.2003
    
    110.Alpas A T,Zhang J.Effect of microstructure (particle size and volume farcation) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites.Metall Mater Trans,1994,25A:969-983
    111.Wilson S,Alpas A T.Wear mechanisms maps for metal matrix composites.Wear,1997,212:41-49
    112.曾其蕴,李世红,周本濂.生物复合材料的特征及仿生的探讨.复合材料学报,1993,10(1)1-7
    113.王迎军,刘康时.生物医学材料的研究与发展.中国陶瓷,1999,44(24)
    114.Jeronimids G,Atkins A G.Mechanics of biological materials and structures: nature’s lessons for the engineer.Proc.Instn.Mech.Engrs,1995, 209: 221-235
    115.周本濂.材料仿生研究的一些新进展.材料科学进展,1991,5(6)529-531
    116.周本濂.复合材料的仿生研究.物理,1995,24(10):577-582
    117.王立铎,孙文珍,梁彤翔.仿生材料的研究现状.材料工程,1996(2)3-5
    118.陈斌,彭向和,范镜泓.生物自然复合材料的结构特征及仿生复合材料的研究.复合材料学报,2000,17(3):59-62
    119.马云海,农机部件仿生耐磨UHMWPE基复合材料及摩擦学研究.博士学位论文,长春:吉林业大学,2002
    120.张双寅.复合材料设计的原理与实践.应用基础与工程科学学报,1998,6(3): 278-286
    121.Lowenstam H A,Weiner S.On Biomineralization.Oxford: Oxford University Press,1989
    122.Mann S,Webb J,Williams R JP.Biomineralization: Chemical and Biochemical Perspectives.VCH Publishers,Weinheim,,1989
    123.赵宇光.触土部件仿生梯度耐磨铸造金属基复合材料的研究.博士学位论文,长春:吉林业大学,2000
    124.Addadi L,Weiner S.A pavement of pearls.Nature,1997,389(6654):912
    125.Curry.Fatigue Fracture of Mother-of-Peal and its Significance for Predatory techniqucs,2001,204,(541)
    126.Shigeyasu Amada,Tamotsu Munekata,Yukito Nagase.The mechanical structures of bamboos in viewpoint of functionally gradient and composite materials.Journal of Composite Maerials,1996,30(7): 800-819
    127.由井浩.高分子複合材料の構造と物性.プラスチックスェ-ジ,1999,45(4):152-158
    128.Zhou Benlian.Biomimetic Resocarch of Composites.Physics,1995,24,(10)
    129.Zhang K.Biomimetic study on helical fiber composites.JMater Sci Technol,1997,13:1-4
    130.由井浩.初歩から学ぶ複合材料-自然と人間の知恵くらべ-.工業調查会,1997
    124.任露泉,佟金,李建桥,陈秉聪.生物脱附与机械仿生——多学科交叉新技术领域.中国机械工程,1999,10(9):984-986
    
    125. Tong J,Ren L,Chen B C.Geometrical morphology, chemical constitution and wettability of body surfaces of soil animals.International Agricultural Engineering Journal,1994,3(1&2): 59-68
    126.丛茜,任露泉,吴连奎等.几何非光滑生物体表形态的分类研究.农业工程学报,1998,8(2):7-12
    127.佟金.地面机械触土部件减粘降阻的仿生改性研究,博士学位论文,长春:吉林业大学,1992
    128.丛茜.非光滑减粘降阻机理及触土部件仿生改形研究.博士学位论文,长春:吉林业大学,1992
    129.Ren Luquan,Li Jianqiao and Chen Bingcong.Unsmoothed surface on reducing resistance by bionics.Chinese sciene bulletin,1995,40(13):1077-1080
    130.李建桥,任露泉,陈秉聪,蒋蔓.犁壁材料表面特性与土壤粘附间的关系.农业工程学报,1996,12(2):45-48
    131.邱小明.仿生非光滑单元体材料的粘附特性及其连接的研究.博士学位论文.长春:吉林大学,1999
    132.刘庆怀.典型土壤动物非光滑体表与仿生推土板表面的数学建模以及非凸优化的整体算法.博士后研究工作报告,长春:吉林大学,2003.3
    133.侯增寿,卢光熙.金属学原理.上海:上海科学技术出版社,1990
    134.崔忠圻.金属学与热处理.北京:机械工业出版社,1996
    135.吕德林,李砚珠.焊接金相分析.北京:机械工业出版社,1986
    136.胡传炘.表面处理技术手册.北京:北京工业大学出版社,1997.5
    137.束德林.金属力学性能.北京:机械工业出版社,1999
    138.邹僖,钎焊,北京:机械工业出版社,1997
    139.潘际銮,郭世康,王其隆等.焊接手册-焊接方法及设备.北京:机械工业出版社,1992
    140.[美] J.舍克里,彭一川等译.冶金中的流动想象.北京:冶金工业出版社,1985,8
    141.葛启录.材料的致密化问题初探.北京:冶金工业出版社,1998
    142.任露泉.试验优化设计与分析.长春:吉林科学技术出版社,2001
    143.陈跃,沈百令,张永振,邢建东.颗粒增强铝基复合材料干摩擦磨损研究进展.兵器材料科学与工程.1999,22(2):61-67
    144.Chung S,Wang B H.Tribol Int,1994,27:307-314
    145.李恒德等.贝壳珍珠层及仿生制备研究.清华大学学报:自然版,2001,41(4):41-47,62
    146.刘勇,康立山,陈毓屏.非数值并行算法—遗传算法.北京:科学出版社,1995
    147.昭荷生等.金属的磨料磨损与耐磨材料.北京:机械工业出版社,1998
    148.任露泉,邱晓明,徐德生等.钎焊低合金白口铸铁用多元铜基钎料.发明专利号:ZL 00 137702.7, 国际专利主分类号:B23K35/30. 授权公告日 2004年2月25日
    149.邱晓明,任露泉,徐德生等.非光滑耐磨复合涂层理论与技术研究.吉科合字第20010562.文件之三—技术报告.2004.3
    150.任露泉,邱小明,徐德生等.BCu50ZnMnNiSi多元铜基钎料的研究,功能材料,2000,31 (3):313-315

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700