金龟子形态分析及深松耕作部件仿生设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深松作为保护性耕作的重要措施之一,耕作阻力大,能耗高是其主要特征。本论文从工程仿生学角度出发,通过对深松部件进行仿生设计和参数化分析,以降低深松部件的耕作阻力作为研究的重点。
    首先对金龟子科动物体形特征参数进行分析,比较各科属体形参数的变化规律。并分析了以蜣螂为代表的金龟子科动物前足胫节各齿形态特征:基齿、中齿及端齿角度;前足胫节各齿顶端轮廓线及其外缘轮廓线的形状,属于二次抛物线形状,拟合精度较高,这种抛物线形状有利于动物挖掘土壤和减小阻力,为深松部件的仿生设计提供了依据。其次,对金龟子前足楔形爪趾与土壤相互作用进行受力分析,以二面楔和三面楔的工作原理为理论基础,将其应用到深松铲的受力分析,建立了深松铲牵引阻力的数学模型。并利用动态三轴仪对耕作土壤进行了三轴测试试验,得出了试验土壤的机械特性参数,以Drucker-prager 弹塑性本构关系为土壤材料模型,进行了深松部件与土壤相互作用的有限元分析。最后,基于金龟子前足胫节齿顶轮廓线与外缘轮廓线的抛物线形状,采用VC 程序设计语言并结合ANSYS 程序,建立了深松铲形状参数化程序,得出各种参数下的深松铲牵引阻力,以此对深松铲形状参数进行优化。
    在上述研究的基础上对仿生深松部件进行田间测试,分析了影响深松牵引阻力的主次因素,并对实测值与参数化程序的计算值进行比较,结果表明,用参数化设计的方法来优化深松部件的仿生设计是可行的,而且采用UHMWPE 基复合材料对深松铲面进行处理能有效地减小深松铲的牵引阻力。
    上述研究工作及其所取得的成果突破了传统深松部件形状设计研究思路,提出了参数化程序设计和优化的方法,为深松部件的设计提供了一定基础。
The morphology features of scarabaeoidea and tibiae teeth of its fore leg , their bionic applications in subsoiling components and the optimization of shape parameters of subsoiling components is the main emphasis of research in this dissertation, which is projects supported by Nationl science Fund for Distinguished Young Scholars(Grant No.50025516) and by National science Foundation of China(Grant No.50275037). The figures parameters of dung beetle was analyzed, which is the results of the lasting evolution and adaptation for environments.
    The teeth angles of fore-leg tibiae of the dung beetle was measured, which is radix tooth 69.3°, the first middle tooth 44.3°, the second tooth 32.1°and the apical tooth 27.5°and has a descending trend. The wedge shape of teeth top of scarabaeoidea is suited for anti-adhesion against soil thereby reducing adhesion and resistance.The contour lines of teeth and its top are measured, which can be fitted by parabolic. The parabolic shapes of teeth contour have the characteristics of digging process and reducing the cutting resistance, which offers the base on the bionics design of subsoiling components. The force of the wedge teeth of fore-leg of scarabaeoidea and soil interaction was analysed by the work theory of two-surfaces and three-surfaces wedges and apply to the forces analysis of subsoiling components cutting the soil. The results have showed the draft force is composed of three parts: the first R1 is brought by shovel edges and handle edges cutting soil, the second R2 is brought by the soil smashed and the third is the friction force between the subsoiler and soil. The
    draft force of subsoiler is the sum of three parts force along to the advance directions. The mathematic model of subsoiler draft force was concluded by the analysis and applied the theory of subsoiler force and the parameterized design of the bend surface of subsoiler. The subsoiler components —soil interaction is researched by the Finite Element Methods based on the Drucker –Prager elastic—plastic soil construction relationship model. The shape parameters of subsoiler component was established by the parabolic shape of the teeth contour lines of scarabaeoidea fore-leg tibiae. The inter-contour lines of the subsoiler components is the parabolic shape and selects the three sections (A-A,B-B and C-C) to determine the subsoiler shapes. The subsoiler surface was optimised by the parameters L1,L2,L5 and L6. The parabolic shapes was adopted in the subsoiler tip and the digging angleαwas determined by the angle A1, A2. The parameterized program of subsoiler components was established by the Vc programmer combining the ANSYS finite element program and realized the parameterized analysis of subsoiler. The draft force of subsoiler component can be calculated by inputting the soil parameters (elastic module, poission’s ratio, soil cohesion and angle of internal friction in soil et. al ), subsoiler materials parameters and the friction coefficients between the subsoiler and soil. The stress status of the soil and subsoiler can also be showed by the ANSYS program. The design method of bionic subsoiler is summarized based on the above research wherein subsoiler of different digging angles shapes are designed. The draft force of subsoilers was tested by orthogonally experimental design in field. The results shows that the best digging angles is 27.50 consistent with the apical tooth angle of fore-leg tibiae of scarabaeiodea. The comparative results between the actual test draft force and the calculated force value of parameterized program shows the test value is comparable to the calculated value and has only 0.9% error. It shows the parameterized program can be calculated the draft force of subsoiler and also optimize the shapes parameters of subsoiler components.
引文
1. Tong Jin, Ren Luquan, Chen Bingcong et al. Characteristics of adhesion between soil and solid surfaces. Journal of Terramechanics. 1994,31(2):93~105
    2. 任露泉,佟金,李建桥,陈秉聪. 松软地面机械仿生理论与技术. 农业机械学报,2000,31(1):5~9
    3. 陈秉聪.车辆行走机构形态学及仿生减粘脱土理论.北京:机械工业出版社,2001
    4. Rajaram, G. and Erbach, D. C. Soil failure by shear versus soil modification by tillage: A review. J. of Terramechanics.1996,33(6):265~272
    5. Hendrick, J. G. and Buchele, W. E. Tillage energy of a vibrating tillage tool. Trans. of the ASAE, 1963, 6(3): 213~216
    6. Mackson, C. J. The effect of electro-osmosis on soil to steel sliding friction as influenced by speed, voltage and soil moisture. ASAE Paper,1962, No.62-650. St. Joseph, Mich.:ASAE
    7. 乔维高, 蒋崇贤. 滑板电渗减阻机理及试验研究[J]. 农业机械学报, 1994, 25 (4): 71~75.
    8. Larson, D. L. and Clyma, H. E. Electro-osmosis effectiveness in reducing tillage draft force and energy requirements. Trans. of the ASAE, 1995,38(5):1281-1288
    9. Larson, L. W. The future of vibratory tillage, Trans. of the ASAE, 1967, 10(1): 78~79,83
    10. Smith, J. L. ; Dais, J. L. ; Flikke, A. M. Theoretical analysis of vibratory tillage, Trans. of the ASAE, 1972, 15(5): 831~833
    11. Sakai, K.; Hata, S. I.; Takai, M. and Nambu, S. Design parameters of four-shank vibrating subsoiler. Trans. of the ASAE, 1993,36(1): 23~26
    12. 邱立春,李宝筏.自激振动深松机减阻试验研究.农业工程学报,2000,16(6):72~75
    13. Gunn, J. T. and Tramontini, V. N. Oscillations of tillage implements, Agricultural Engineering,1995, 36(11): 725~729
    14. Bandalan, E. P.; Salokhe, V. M.; Gupta, C. P. and Niyamapa, T. Performance of an oscillating subsoiler in breaking a hardpan. Journal of Terramechanics, 1999,36(1): 117~125
    15. Araya, K. Optimization of the design of subsoiling and pressurized fluid injection equipment. J. Agric. Engng Res. 1994, 57(1): 39~52
    16. Araya, K. Soil failure caused by subsoilers with pressurized water injector. J. Agric. Engng Res. 1994, 58(2): 279~28
    17. 韩国政.磁性犁耕阻力试验研究. 农业机械学报,1991,22(3):45~48
    18. Foley, A. G.; Lawton, P. J.; Barker,A. W.; and Mclees, V. A. The use of Alumina Ceramic to reduce wear of soil-engaging components. J. agric. Engng Res. 1984,30(1): 37~46
    19. 朱恒福, 谈黎虹, 吴士澌. “彗星式通孔”减阻犁的试验研究[J]. 农业机械学报, 1992, 23 (4): 20~24.
    20. 任露泉,丛茜,陈秉聪等.几何非光滑典型生物体表防粘特性的研究.农业机械学报,1992,23(2):29~35
    21. 贾贤,任露泉,陈秉聪,佟金,丛茜. 土壤动物体表非光滑对体表润湿性的影响.农业工程学报,1995,11(4):1~4
    22. 任露泉,王云鹏,李建桥,孙世元. 典型生物柔性非光滑体表的防粘研究.农业工程学报,1996,12(4):31~36
    23. 丛茜,任露泉,吴连奎,陈秉聪.几何非光滑生物体表形态的分类学研究.农业工程学报,1992,8(2):7~12
    24. Tong Jin, Ren Luquan, Chen Bingcong. Geometrical morphology, chemical constitution and wettability of body surfaces of soil animals. International Agricultural Engineering Journal,1994,3(1﹠2):58~65
    25. 李建桥,任露泉,陈秉聪等.减粘降阻仿生犁壁的研究.农业机械学报,1996,27(2):1~4
    26. Watanabe K., Kitano M., Fugishima A.. Handling and stability performance of four-track steering vehicles. Journal of Terramechanics, 1995, 32 (6): 285-302
    27. 陈秉聪.步行车辆理论及脚踝设计.北京:机械工业出版社,1991
    28. 陈秉聪.步行车辆的研究.长春:吉林工业大学.1994
    29. 杨文志,罗哲,宁素俭. 步行轮式气垫车设计与研制.农业工程学报,1997,13(2):105~109
    30. Vincent J.F.V.. Borrowing the best from nature. Encyclopaedia Britannica, Yearbook of science and the future,1995,168~187
    31. Autumn K., Liang Y. A., Hsieh S. T., Zesch W., Chan W. P., Kenny T. W., Fearing R. and Full R.J.. Adhesive force of a single gecko foot-hair. Nature,2000,405(8):681~684
    32. Dacke M., Nilsson D., Scholtz C. H., Byrne M., Warrant E. J.. Insect orientation to polarized moonlight. Nature, 2003,424:33
    33. Zbikowski R.. On aerodynamic modeling of an insect-like flapping wing in hover for micro air vehicles. Philosophical Transactions of the Royal Society, 2002,360:273~290
    34. Lu Yongxiang. Significance and Progress of Bionics. Journal of Bionics Engineering, 2004, 1(1): 1~3
    35. 刘广瑞,章有为,王瑞. 中国北方常见金龟子彩色图鉴. 北京: 中国林业出版社,1997
    36. 彩万志, 庞雄飞,花保祯,梁广文,宋敦伦.普通昆虫学.北京:中国农业大学出版社,2001
    37. 罗益镇,崔景岳.土壤昆虫学.北京:中国农业出版社,1995
    38. 尹文英等,中国土壤动物.北京:科学出版社,2000
    39. 程红,陈茂生,孙久荣. 臭蜣螂体壁的组织结构. 昆虫学报,2003,46(4):429~433
    40. Nelson D. R., Adams T. S., Fatland C. C.. Hydrocarbons in the surface wax of eggs and adults of the Colorado potato beetle, Leptinotarsa decemlineata. Comparative Biochemistry and Physiology Part B, 2003,134:447~466
    41. Vincen J. F.V.. Rathropod cuticle: a natural composite shell system. Composites: Part A,2002,33:1311~1315
    42. Tong Jin, Ma Yunhai, Li Jianqiao, Ren Luquan.Tribological characteristics of pangolin scales in dry sliding. Journal of Materials Science Letters,2000,19(5):529~532
    43. Ren Luquan, Tong Jin, Li,Jianqiao Chen Bingcong. Soil adhesion and biomimetics of soil-engaging components: a review. Journal of aagricultural Engineering Research, 2001,249(3):239~263
    44. Byrne M., Dacke M., Nordstrom P., Scholtz C., Warrant E.. Visual cues used by ball-rolling dung beetles for orientation. J. comp. Physiol
    A,2003,189:411~418
    45. Emlen D. J., Nijhout H. F.. Hormonal control of male horn length dimorphism in the dung beetle Onthophagus Taurus (Coleoptera: scarabaeidae). J. Insect Physilolgy, 1999 ,45:45~53
    46. Parker A. R., Lawrence C. R.. Water capture by a desert beetle. Nature,2001,414,33~34
    47. 李安琪,任露泉,陈秉聪,崔相旭.蚯蚓体表液的组成及其减粘脱土机理分析. 农业工程学报,1990,6(3):8~14
    48. 贾贤,任露泉,陈秉聪.土壤动物体表及仿生复合涂层的润湿性.材料研究学报,1996,10(5):556~560
    49. 崔相旭,张宁,王煜明,任露泉,陈秉聪,穿山甲鳞片成分与结构及其减粘脱土分析.农业工程学报,1990,6(3):15~21
    50. 徐晓波,任露泉,陈秉聪.典型土壤动物体表化学成分的初步研究.农业机械学报,1990,21(3):79~83
    51. 马云海,佟金,孙国恩.硅灰石填充UHMWPE基复合材料的干滑动磨损.电子显微学报,2001,20(4):366-367
    52. 刘朝宗,任露泉,佟金.玻璃微珠填充UHMWPE 基复合材料的润湿及土壤粘附特性.复合材料学报,1999,16(2):29~33
    53. 任露泉,陈德兴,胡建国.土壤动物减粘脱土规律初步分析.农业工程学报,1990,6(1):15~20
    54. 王国林,任露泉,陈秉聪.蜣螂体表几何非光滑结构单元分布的分开特性. 农业机械学报,1997,28(4):5~9
    55. Ren Luquan, Tong Jin, Zhang Shujun, Chen Bingcong.Reduing sliding Resistance of soil against bulldozing plates by unsmoothed bionics surfaces. Journal of Terramechanics, 1995,32:303~309
    56. 任露泉,丛茜,吴连奎,陈秉聪.仿生非滑推土板减粘降阻的试验研究.农业机械学报,1997,28(2):1~5
    57. 李建桥,任露泉,刘朝宗,陈秉聪.减粘降阻仿生犁壁的研究.农业机械学报,1996,27(2):1~4
    58. Qaisrani A. R., Chen Bingcong, Ren Luquan. Modified and unsmoothed plow surfaces : a means to reduce plowing resistance. Agricultural Engineering of
    Journal, 1992,1(3):115~124
    59. Liu Chaozong, Ren Luquan, Arnell R. D. et al . Abrasive wear behaviour of particle reinforced ultrahigh molecular weight polyethylene composites. Wear,1999, 225~229(2):199~204
    60. 孙久荣,孙博宁,韦建恒等.蚯蚓体表电位的测量及运动的关系.吉林工业大学学报,1991,21(4):18~24
    61. Ren Luquan, Yan Beizhan, Cong Qian.Experimental study on bionic non-smooth surface soil electro-osmosis . International Agricultural Engineering Journal,1999,8(3):185~196
    62. 丛茜,吴连奎,任露泉,陈秉聪.非光滑表面电渗减粘脱土原理的试验研究.农业工程学报,1995,11(3):19~23
    63. 任露泉,丛茜,吴连奎,陈德兴.非光滑表面电渗减粘降阻的应用研究.农业工程学报,1995,11(3):24~28
    64. 任露泉,王云鹏,李建桥,孙世元.典型生物体柔性非光滑体表的防粘研究.农业工程学报,1996,12(4):31~36
    65. 王云鹏, 任露泉,杨晓东,李建桥.仿生柔性非光滑表面减粘降阻的试验研究.1999,30(4):1~4
    66. Ren Luquan, Wang Yunpeng, Li Jianqiao et al.Flexible unsmoothed cuticles of soil animals and their characteristics of reducing adhesion and resistance.Chinese Science bulletin, 1998,43(2):166~169
    67. 任露泉,张建伟,陈秉聪,齐宝山.仿生挠性铲斗减粘脱土的研究.农业机械学报,1990,21(4):33~39
    68. 孙世元,任露泉,佟金等.仿生钢布兜式铲斗的研究.农业机械学报,1993,24(4):18~22
    69. 任露泉,徐晓波,陈秉聪,崔相旭等.典型土壤动物爪趾形态的初步分析.农业机械学报,1990,21(2):44~49
    70. Tong Jin, Guo Zhijun, Ren Luquan, Chen Bingcong. Curvature features of three soil-burrowing animal claws and their potential applications in soil-engaging components. Agricultural Engineering Journal,2003,12(3 ﹠4):119~130
    71. 任露泉,陈德兴,胡建国,王连成.仿生推土板减粘降阻机理初探. 农业工程学报,1990,6(2):13~19
    72. 佟金. 地面机械触土部件减粘降阻的仿生改性研究. 吉林工业大学博士学位论文,1992
    73. Gill, W. R.and Vanden Berg, G. E. Soil dynamics in tillage and traction. Agriculture Handbook No.316. United States Department of Agriculture,1967
    74. 李洪文,陈君达,李问盈。保护性耕作条件下深松技术研究. 农业机械学报,2000,31(6):42~45
    75. 丁昆仑. 深松对土壤水分物理特性及夏玉米生长的影响中国农村水利水电,1997,7:13~16
    76. Henderson,H. D.; Almassi, M.; Malik, A. A. and Mojaddadi, Z. Deep tillage in the Beqa’a valley, Lebanon. Trans. Of the ASAE, 1981,23(6):1466~1470
    77. 廖植樨,邓健,谷谒白,刘向阳.全方位深松对土壤物理化学性质的影响.北京农业工程大学学报,1995,15(1):18~24
    78. 邵长发,郑志安,林启瑞.全方位深松在农业可持续发展中的作用研究.农业机械学报,1999,30(5):81~85
    79. 丁昆仑,M. J. Hann. 耕作措施对土壤特性及作物产量的影响. 农业工程学报,2000,16(3):28~31
    80. 罗锡文,邵耀坚,邱国庆,文海波. 土壤深松技术在甘蔗生产中的应用. 农业机械学报,1997,28(1):39~42.
    81. Vepraskas, M. J. and Miner, G. S. Effects of subsoiling and mechanical impedance on tobacco root growth.Soil Sci. Soc. Am. J., 1986, 50(2): 423~427
    82. Al-Adawi, S. S. and Reeder, R. C., Compaction and subsoiling effects corn and soybean yields and soil properties [J]. Trans. of the ASAE, 1996,39(5): 1641~1649
    83. Reeder, R. C.; Wood, R. K. and Finck, C. L. Five subsoiler designs and their effects on soil properties and crop yields. Trans. Of the ASAE, 1993,36(6):1525~1531
    84. Pikul, J. L. and Aase, J. K. Wheat response and residual soil properties following subsoiling of a sandy loam in eastern Montana. Soil & Tillage Res.,1999, 51(1):61~70
    85. Kushwaha, R. L. and Zhang, Z. X. Evaluation of factors and current approaches related to computerized design of tillage tools: a review. Journal of Terra. 1998,35(1):69~86
    86. Yong, R. N. and Hanna, A. W. Finite element analysis of plane soil cutting. Journal of Terramechanics, 1977,14(3):103~125
    87. Chi, L. and Kushwaha, R. L. Three-dimensional, finite element interaction between soil and simple tillage tool. Trans. of the ASAE, 1991, 34(2): 361~366
    88. Kushwaha, R. L. and Shen, J. Finite element analysis of the dynamic interaction between soil and tillage tool. Trans. of the ASAE, 1995, 37(5): 1315~1319
    89. 王国强.实用工程数值模拟技术及其在ANSYS 上的实践.西安:西北工业大学出版社,1999
    90. 朱凤武,佟金. 土壤深松技术及其高效节能仿生研究的发展. 吉林大学学报(工学版), 2003, 33(2): 95-99.
    91. Daly H. V., Doyen J. T., Purcell A. H.. Introduction to insect biology and diversity. New York: Oxford University Press, 1998
    92. 西涅阿科夫Γ.Η.,潘诺夫И.Μ. 土壤耕作机械的理论和计算.北京:中国农业机械出版社,1981
    93. 李范哲,朴今淑.评价土壤耕作部件工作阻力的数学模型.延边农学院学报,1996,18(3):32-35
    94. 阎备战. 仿生非滑表面电渗脱附机理及应用研究. 吉林工业大学博士学位论文,1999
    95. 忻介六. 土壤动物知识. 北京: 科学出版社,1986
    96. 曾德超. 机械土壤动力学. 北京: 北京科学技术出版社, 1995
    97. 章根德.土的本构模型及其工程应用.北京:科学出版社,1995
    98. 龚晓南.土塑性力学(第二版).浙江大学出版社,1999
    99. 蒋彭年.土的本构关系.北京:科学出版社,1982
    100.ANSYS 公司.ANSYS 非线性分析指南.北京:ANSYS 公司,2000
    101.ANSYS 公司.ANSYS 动力学分析指南.北京:ANSYS 公司,2000
    102.王元汉,李丽娟,李银平.有限元法基础与程序设计.广州:华南理工大学出版社,2001
    103.王勖成.有限单元法.北京:清华大学出版社,2003
    104.朱柏方.有限单元法原理与应用.北京:中国水利水电出版社,1998
    105.孙一源,高行方,余登苑.农业土壤力学.北京:农业出版社,1985
    106.陈仲颐,周景星,王洪瑾.土力学.北京:清华大学出版社,2003
    107.谢晓谜.土壤—工具动力学系统数值分析模拟方法的研究.吉林工业大学博士学位论文,1989
    108.ANSYS 公司.ANSYS 建模与分网手册.北京:ANSYS 公司,2000
    109.ANSYS 公司.ANSYS 基本过程手册.北京:ANSYS 公司,2000
    110.谭浩强. C 程序设计. 北京:清华大学出版社, 1995
    111.张福祥, 张莹等. C++/VC 面向对象程序设计基础. 北京: 高等教育出版社,2002
    112.郝蕴等. Vsiual C++6.0 开发与实例. 北京: 电子工业出版社,1999
    113.徐芝纶. 弹性力学. 北京:高等教育出版社,1985
    114.Tong Jin, Ma Yunhai, Arnell R. D., Ren Luquan. Free abrasive wear behavior of UHMWPE composites filled with wollastonite fibers. Composites Part A, in press
    115.马云海.农机部件仿生耐磨UHMWPE 基复合材料及摩擦学研究.吉林大学博士学位论文,2002
    116.Tong Jin, Zhu Fengwu, Ma Yunhai, Han Zhiwu, Ren Luquan. Wettability and soil friction of the wollastonite fiber filled UHMWPE composites. Journal of Materials Science, 2005, 40: 1823-1825.
    117.徐述财. 面向农机部件性能测试的四套虚拟仪器研究. 吉林大学硕士学位论文. 2004
    118.任露泉.试验优化设计与分析.长春:吉林科学技术出版社,2001
    119.亢银霞,王频,曹鲁波.犁铧刃口磨损规律的试验研究.新疆农业大学学报,2000,23(1):62~64
    120.王频,徐良庆,刘良元,黄运华.单金属犁铧自磨刃形成机理探讨.农业机械学报,1998,29(2):16~20
    121.Kushwaha,R. L. And Zhang, Z. X. Evaluation of factors and current

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700