土壤/推土板界面粘附系统的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合分析土壤/固体界面粘附系统的影响因素和性能指标,明确提出将软测量技术应用于界面粘附系统动态过程的数值模拟,选择法向压力和含水量为辅助变量,估算难以直接测量的法向粘附力、切向粘附力、摩擦力。在试验研究土壤/金属界面法向粘附特性的同时,分析不同试验条件下平面板表面法向压力的分布规律,比较平面板与曲面板表面受力状况的不同,利用软测量技术和平面板表面法向压力回归方程,对模型铲刀推土过程的阻力进行数值计算,并以此为样本构建BP 神经网络,对模型铲刀土壤动态粘附系统进行数值模拟并对模拟试验结果进行试验验证。结果表明,将软测量技术应用于土壤/推土板界面粘附系统动态过程的研究,以模拟试验部分代替真实试验的方法可行。研究结果为土壤/推土板界面粘附系统动态过程的研究提供了有力手段。
Adhesive interface system exists between soil and the surfaces of soil-engaging components on a variety of terrain machines including tillage and sowing machines. This phenomenon of soil adhesion not only increases the working resistance and energy consumption of these machines, but also decreases the quality of work. Adhesive interface system is an important object in the study of Soil Adhesion Mechanics, and the simulation of dynamic process on the adhesion interface system between soil and solid is a new method in the study of Machine Soil Dynamics.
    Base on the result of Soil Adhesion Mechanics and Machine Soil Dynamics, a structural model is confirmed by analyzing the inflection factor and performance target of the adhesion interface system. Method to obtain the performance equation of the adhesion interface system between soil and solid, functional relation between the inflection factor and performance target is discussed.
    Soft-sensing technique is a hotspot in the process control and measurement, parameter and variable, which are difficulty to measure directly, can be estimated by those parameters and variables, which can be measured directly. Application of soft-sensing technique in the study dynamic process on the adhesion interface system between soil and solid is bring forward in the paper. Normal pressure and
    moisture content being selected as secondary variable to estimate or calculate those performance targets of the adhesion interface system, such as normal adhesion force, tangential adhesion force and friction. Soft-sensing technique offer a new method in the quantitative study of adhesive interface system.
    A test schedule for the soil dynamic adhesion property has been established for the loading speed, unloading speed, and wave range of normal loads. Test results show that normal adhesion force increases with the enlarging of loading speed, unloading speed and the amplitude of load under the test condition. The faster the contact speed between the soil surface and the steel sample, the greater of normal adhesion force because of the larger impact and more overshoot. The faster the unloading speed between the soil surface and the steel sample, the greater of normal adhesion force because of the instantaneous vacuum absorbability in the interface. The greater the amplitude of load, the soil sinkage shows the same wave range of the wave range of normal loads, but there exist a lag of time.
    Research of working process of soil-engaging components can be simplified as the study of the interaction between soil and bulldozing plate, and bulldozing plate include plane blade and curve blade. Results by analyzing the influence of cutting angle and forward speed to the draft resistance and normal pressure distribution of plane blade show that, the maximum of the normal pressure is on the middle of cutting edge of plane plate, along with remoteness of cutting edge, value of the normal pressure decreases. Value of the normal pressure on the surface of plane blade increases along with the increasing of cutting angle and forward speed.
    The normal pressure distribution influences the force of each part on the surface of plane blade. Plane blade is considered as a combination of many little plane blades, value of the normal pressure is considered as unchanged if size of plane blade is very little, horizontal and vertical components of draft resistance and sliding
    resistance are function of the normal pressure, the total force of plane blade is composed by the force of each little plane blade. The performance equation of the adhesion interface system between soil and plane blade is established, and it provides a mathematical model, which is useful in obtaining of the performance equation of the adhesion interface system between soil and curve blade.
    The surfaces of soil-engaging components is the combination of curve blade and plane blade commonly, study of interaction between soil and curve blade has more signification than that of plane blade. When considering the different parameters and conditions involved in the soil-tool interaction system, it becomes a difficult work to study the interaction between soil and curve blade variously, and it is essential to use numerical simulation instead of physical test to solve this problem. In the same way, curve blade is considered as a combination of many little plane blades with different cutting angle, and the total force of curve blade is the combination of the force of each little plane blade. The research results of plane blade are applied in the numerical simulation of the draft resistance and frictional resistance of curve blade.
    The BP neural network is used to “learn”results of the numerical simulation to the draft resistance and frictional resistance of curve blade, establishing the performance equation of the adhesion interface system between soil and curve blade, then to simulate the test results of interaction between soil and curve blade.
    The BP neural network has a structure of 3×10×4, input facts of the BP neural networks are cutting angle, front reversal angle and forward speed, output facts are horizontal and vertical components of draft resistance and sliding resistance. The correctness of the output facts is more than 94%; it means the performance equation of the adhesion interface system has a high forecasting accuracy and favorable generalization ability.
引文
1. 钱定华. 传统犁壁材料-白口铁对重粘土粘附特性的研究. 农业机械学报, 1965, 8 (2):145-150
    2. W.R.吉尔,G.E.范德伯奇..耕作和牵引土壤动力学. 北京:中国农业机械出版社,1983
    3. 陈秉聪. 土壤-车辆系统力学. 北京:中国农业机械出版社,1981.
    4. 孙一源,高行方,余登苑. 农业土壤力学. 北京:农业出版社,1985.
    5. 钱定华,张际先.土壤对金属材料粘附和摩擦研究状况概述. 农业机械学报, 1984, 27 (1): 69-78
    6. 张际先. 土壤对固体材料粘附和摩擦的研究:[博士学位论文]. 镇江:江苏工学院,1985
    7. 张际先,桑正中,高良润. 土壤对固体材料粘附和摩擦性能的研究. 农业机械学报, 1986, 29 (1): 32-40
    8. 任露泉,陈德兴,陈秉聪. 土壤粘附研究概述. 农业工程学报,1990, 6 (1): 1-7
    9. 任露泉,佟金,李建桥,丛茜,陈秉聪. 地面机械脱附减阻仿生研究现状与展望. 第九届全国地面机器系统学会学术年会论文集,1-8
    10.任露泉,佟金,李建桥,陈秉聪. 松软地面机械仿生理论与技术. 农业机械学报, 2000, 31(1):5-9
    11.B. K.鲁德耶夫. 关于挖掘机铲斗粘土现象及其减少方法. 国外工程机械,1981,No. 3
    12.B. C.卡平宁. 单斗装载机铲斗的粘附积土现象. 国外工程机械,1982,No. 2
    13.W.Iwan. Off-Road machines and the environment important aspects for ISTVS. Proceedings of The 13th International Conference of ISTVS, 1999,9, Munich, Christopher Lecture, pp 1
    14.L.D.贝佛尔等,周传槐译.土壤物理学.北京:中国农业出版社,1983
    15.E.R.Fountaine. Investigation into the mechanism of soil adhesion. Journal of Soil Science, 1954,5 (2)
    16.秋山丰,横井肇. 土壤粘着性的研究(第2 报). 日本土壤肥料学杂志,1972, 43 (8):271-277
    17.秋山丰,横井肇. 土壤粘着性的研究(第3 报). 日本土壤肥料学杂志,1972, 43 (9): 315-320
    18.沈震亚. 土壤和金属表面粘附微观机理探索和利用. 地面机器系统第一届年会论文 集,1983,8
    19.丛茜. 非光滑减粘降阻机理及触土部件仿生改形研究:[博士学位论文]. 长春:吉林大学,1992.
    20.丛茜,任露泉,陈秉聪. 土壤粘附机理的化学吸附分析. 农业工程学报,1996, 12 (2): 40-44
    21.丛茜,任露泉,陈秉聪. 土壤粘附规律的化学吸附分析. 农业工程学报,1996, 12 (3): 16-20
    22.佟金. 地面机械触土部件减粘降阻的仿生改性研究:[博士学位论文]. 长春:吉林大学,1992.
    23.佟金,任露泉,陈秉聪,吴连奎. 粘附界面土壤表层形态的研究. 农业工程学报,1990,6(3):1-7
    24.李建桥. 减粘降阻仿生犁壁的研究:[博士学位论文]. 长春:吉林大学,1993.
    25.李建桥,任露泉,陈秉聪,顾伟. 35 钢粘附特性研究. 农业工程学报,1993,9,(2): 19-25
    26.李建桥,任露泉,陈秉聪,顾伟. 钢的显微组织对其土壤粘附特性影响的研究. 农业工程学报, 1993,9,(3): 14-21
    27.张立. 土壤粘附机理及土壤动物体表几何形貌的量化研究:[博士学位论文]. 长春:吉林大学,2002
    28.陈秉聪,李建桥,任露泉. 传统犁壁材料脱土性分析研究. 农业机械学报, 1995, 26(4): 46-49
    29.王兴南,刘佃忠. 关于铸造疙瘩犁壁的研究. 农牧与食品机械, 1987(5): 5-9
    30.吉林工业大学汽车拖拉机系.土壤粘附仪的研制鉴定(机电部)报告.1989
    31.任露泉,张书军.土壤粘附仪组合测盘测力原理的实验研究.实验技术与实验机,1990(1):18-22
    32.任露泉,李月潭等.土壤粘附仪测盘测力分析及单因素实验研究.实验技术与实验机,1990(2):33-36
    33.卢韶芳.多功能土壤实验台的研制:[硕士学位论文].长春:吉林工业大学,1996
    34.王昕. 粘附界面水膜及其粘附规律的测试与研究:[硕士学位论文]. 长春:吉林大学,1997
    35.王柏生.土壤粘附特性测试系统的研究:[硕士学位论文].长春:吉林大学,2003
    36.任露泉,佟金,李建桥,陈秉聪. 生物脱附与机械仿生—多学科交叉新技术领域. 中国机械工程, 1999, 10(9): 984-986
    37.任露泉,陈德兴,胡建国. 土壤动物减粘脱土规律初步分析. 农业工程学报,1990, 6(1): 15-20
    38.任露泉,王云鹏,李建桥等. 土壤动物柔性非光滑体表及其防粘降阻特性. 科学通报, 1997, 42(17): 1887-1889
    39.任露泉,李建桥,陈秉聪. 非光滑表面的仿生降阻研究. 科学通报, 1995, 40(19): 1812-1814
    40.Ren Luquan, Tong Jin, Zhang Shujan, Chen Bingcong. Reducing sliding resistance of soil against bulldozing plates by unsmoothed bionics surfaces. Journal of Terramechanics, 1995, 32(6): 303-309
    41.李建桥,任露泉,刘朝宗等. 减粘降阻仿生犁壁的研究. 农业机械学报,1996,27(2): 1-4
    42.曾德超.机械土壤动力学.北京:北京科学技术出版社, 1995
    43.余群. 地面机器系统的研究现状及展望. 农业机械学报,2000,31(2): 1-4
    44.E.T.Selig, R.D. Nelson. Observations of soil cutting with blades. Journal of Terramechanics, 1964,1(3): 777-782
    45.G.T.Owen. Subsoiling forces and tool speed in compact soils. Canadian Agricultural Engineering, 1989,31(1): 15-20
    46.李自光译. 土壤切削中正面阻力的试验研究. 工程施工机械,1987,3: 17-21
    47.T.Niyamapa,V.M.Salokhe. Force and pressure distribution under vibratory tillage tool. Journal of Terramechanics, 2000,(37): 139-150
    48.P.C.J.Payne. The relationship between the mechanical properties of soil and the performance of simple cultivation implements. Journal of Agricultural Engineering Research, 1956,1(1): 23-50
    49.A.P.Onwualu, K.C.Watts. Draught and vertical forces obtained from dynamic soil cutting by plane tillage tools. Soil and Tillage Research, 1998,48(4): 239-253
    50.E.McKyes, O.S.Ali. The cutting of soil by narrow blades. Journal of Terramechanics, 1977,14(2): 43-58
    51.J.V.Perumpral, R. D. Grisso, C. S. A Desai. Soil tool model based on limit equilibrium analysis. Transactions of the ASAE, 1983, 26(4) : 991-995
    52.H.P.W.Jayasuriya, V.M. Salokhe. A Method for obtaining Three-dimensional soil failure Profiles used in modeling Soil-Tool Interaction. Biosystems Engineering, 2003,86(3): 365-373
    53.D.R.P.Hettiaratchi, B.D.Witney, A.R.Reece. The calculation of passive pressure in two-dimensional soil failure. Journal of Agricultural
    Engineering Research, 1966,11(2): 89-107
    54.W.C.Swick, J.V.Perumpral. A model for predicting dynamic soil tool interaction. Journal of Terramechanics, 1988, 25(1): 43-56
    55.J.V.Perumpral, R.D.Grisso, C.S.A.Desai. Soil tool model based on limit equilibrium analysis. Transactions of the ASAE, 1983,26(4): 991-995
    56.Ji.Zhang, R.L.Kushwaha. A modified Model to predict soil cutting resistance. Soil & Tillage Research, 1995, (34): 157-168
    57.C.A.Reaves,R.L.Schafer,R.J.Garrity,C.P.Kolthoff. Similitude of bulldozer blades.Transactions of the ASAE,1969,12(5):577-579,583
    58.J.C.Siemens, J.A.Weber, T. H.Thornburn. Mechanics of soil as influenced by model tillage tools. Transactions of the ASAE, 1965,8(1): 1-7
    59.V.M.Salokhe, Hong Jian Peng, Zhang Jianxia. Dynamic of soil-tine interactions under different speeds aspect ratios and soil moisture contents in clay soil.Proceedings of 13th international conference of the ISTVS,September 14-17,1999,Munich,Germany,249-256
    60.Yang Qinsen , Sun Shuren. A soil-tool interaction model for blade of bulldozers.Proceeding of the 3rd Asian-Pacific Conference of ISTVS,August 10-13,1992,Changchun,China,278-282
    61.G.Girma. Dynamic effects of speed depth and soil strength upon forces on plough components.Journal of Agricultural Engineering Research,1992,51(1): 47-66
    62.V.M.Salokhe,B.K.Pathak. Effect of aspect ratio on soil reaction on flat tines in dry sand.Journal of Agricultural Engineering Research,1993,56(3): 179-188
    63.R.D.Grisso,J.V.Perumpral. Review of model for prediction of narrow tillage tool.Transactions of the ASAE,1985, 28(4): 1062-1067
    64.廉胜宇. 对推土机作业阻力计算方法的探讨.建筑机械,1991,(4):39-43
    65.张淑敏,赵奕旸. 推土板板面粘附摩擦力引起的工作阻力.工程机械,1997,28(4): 12-14
    66.宋昌洛,邓亚东,何力生,覃章美. 切土平板刃口切土阻力的实验研究.农业机械学报,1987,18(3):27-35
    67.O.B.Aluko, D.A.Seig. An experimental investigation of the characteristics of and condition for brittle fracture in two-dimensional soil cutting. Soil
    & Tillage Research,2000, (57): 143-157
    68.R.L.Kushwaha,J.Shen. Finite element analysis of the interaction between soil and tillage Tool. Transactions of the ASAE, 1995,37(4): 1315-1319
    69.L.Chi, R.L.Kushwaha. A non-linear 3-dimensional finite element analysis of soil failure with tillage tools. Journal of Terramechanics, 1990, 27(4): 243-266
    70.A.M.Zein-Eldin,K.C.Watts, A.P.Onwualu. Experimental evaluation of a two dimensional finite element soil-tool interaction model.ASAE Paper, 1990, 1545
    71.Liu Yan,Hou Zhimin. Three-dimensional non-linear finite element analysis of soil cutting by narrow blades. Proceedings of International conference on Soil Dynamics. Auburn, AL, 1985,Vol.2: 338-347
    72.后之明,刘燕:摩擦单元分析三维土壤切削问题.农业机械学报,1986,17(2):31-39
    73.刘燕,后之明. 窄刀板切削过程的三维双非线性有限元分析.农业机械学报,1987,18(2):18-25
    74.Rui Zhang,Jianqiao Li. Simulation on mechanical behavior of cohesive soil by distinct element method. Proceedings of The 7th Asia-Pacific Conference of ISTVS,Changchun China, September 14-16, 2004, 154-161
    75.Ha H. BUI,Ryoichi Fukagawa. DEM simulation of three-dimensional soil failure with cutting blade. Proceedings of The 7th Asia-Pacific Conference of ISTVS , Changchun China, September 14-16, 2004, 113-121
    76.Abdul Mounem Mouazen , Miklos Nemenyi. Tillage tool design by the finite element method: part 1, finite element modelling of soil plastic behaviour. Journal of Agricultural Engineering Research, 1999, 72: 37-51
    77.张锐,李建桥,李因武. 离散单元法在土壤机械特性动态仿真中的应用进展. 农业工程学报,2003,19(1): 16-19
    78.Mootaz Abo-Elnor,R.Hamilton,J.T.Boyle. 3D Dynamic analysis of soil-tool interaction using the finite element method. Journal of Terramechanics 2003, (40):62-62
    79.R.L.Kushwaha, Z.X.Zhang. Evaluation of factors and current approaches related to computerized design of tillage tools: a review. Journal of Terramechanics 1998,35 (2):69-86
    80.Ren Luquan,Tong Jin,Li Jianqiao,Chen Bingcong. Soil Adhesion and Biomimetics of Soil-engaging Components: a Review. Journal of Agricultural Engineering Research,2001,79 (3):239-263
    81.Masayuki Koike. Numerical estimation of slip-line for the soil cutting by straight wire blades.Proceeding of the 3rd Asian-Pacific Conference of ISTVS,August 10-13,1992,Changchun,China,213-217
    82.王树凤,余群. 车辆虚拟试验系统的实现. 农业机械学报,2002,33 (3): 4-7
    83.M.Momozu,A.Oida,M.Yamazaki,A.J.Koolen. Simulation of soil loosening process by pendulum type blade by means of modified distinct element method.Proceedings of 13th international conference of the ISTVS,September 14-17,1999,Munich,Germany,71-78
    84.T.J. Mcacvoy. Conternplative stance for chemical process control. Automatica 1992,28 (2):441-442
    85.T.Mejdell , S.Skogestad. Output Estimation Using Multiple Secondary Measurements: High-Purity Distillation. Journal of AIChE 1993,39(10): 1641-1653
    86.Greg Martin. Consider Soft Sensor. Chemical engineering progress,1997,93(7):66-70
    87.蒋慰孙,蒋敏伟. 过程控制21 世纪展望. 世界仪表和自动化,1999,3 (4): 10-14
    88.荣冈,金晓明. 先进控制技术及应用:第三讲软测量技术及其应用. 化工自动化及仪表,1999,26(4): 70-73
    89.俞金寿,刘爱伦. 软测量技术及其应用. 世界仪表与自动化,1997,1(2): 18-21
    90.李海青,黄志尧. 软测量技术原理及应用. 北京:化学工业出版社,2000
    91.王旭东,邵惠鹤. 基于神经网络的通用软件测量技术.自动化学报,1998,24(5):702-706
    92.骆晨钟,邵惠鹤,吴俊生. 基于机理分析的方法实现催化裂化反应预测转化率、产品产率的软测量. 化工自动化及仪表,1999,26(2):29-33
    93.郑莹娜,刘强. 固体表面速度软测量系统分析. 仪器仪表学报,2000,21(6):574-577
    94.罗晓,陈耀. 基于统计回归的质量推断方法. 信息与控制,2001,030(005):422-426
    95.李凌,姜长洪. 非线性部分最小二乘方法用于推断估计器设计. 沈阳化工学院学报,2001,015(003):207-210
    96.赵昀,黄志尧. 基于神经网络及机理分析的气力输送粉料质量流量软测量. 仪器仪 表学报,2000,21(4):360-363
    97.周鸣争. 基于神经网络的软测量模型及应用. 仪器仪表学报,1999,20(6):654-656
    98.王旭东,邵惠鹤. 神经元网络建模与软测量技术. 化工自动化及仪表,1996,23(2):28-31
    99.孙亚飞,陈仁文,周勇,龚海燕. 测试仪器发展概述. 仪器仪表学报,2003,24(5):480-484
    100.曹军义,刘曙光. 虚拟仪器技术的发展与展望. 自动化与仪表,2003,(1):1-5.
    101.应怀樵. 虚拟仪器与计算机采集测试分析仪器的发展和展望. 测控技术,2000,(8):4-6
    102.魏正军,钟顺虎. 模拟分析在试验和设计中的应用. 西安邮电学院学报,2004,7(2):67-69
    103.李力,张锐. 神经网络模拟反复框架柱低周反复加载试验性能初探. 西南交通大学学报,1994,29(4):418-422
    104.党建武.神经网络技术及应用.北京:中国铁道出版社,2000
    105.丁玉庆.汽车振动系统的简化及数学模型的建立.南京理工大学学报,2001,25(4),391-394
    106.王云鹏,李显声,许洪国等.试验场特定路面对汽车振动响应的影响,公路交通科技.1997,14(3):59—62
    107.王培霞,贾育秦,毕友明. 在虚拟仪器平台上构建便携式车辆综合测试系统.太原重型机械学院学报,2001,22(2):113-116
    108.周宏,旺乐宇,陈祥献. 虚拟仪器系统软件结构的设计. 计算机测量与控制,2000,8(1):21-24
    109.李因武.模型铲刀受力及其规律的研究:[硕士学位论文].长春:吉林工业大学,2000
    110.李因武,李建桥,任露泉. 模型铲刀表面法向压力测量方法的试验研究. 2001,3(增刊):350-351
    111.王吉利等:SAS 基础. 北京:国家统计局统计教育中心,2000
    112.高惠璇等:SAS 系统Base SAS 软件使用手册. 北京:中国统计出版社,1997
    113.任露泉.试验优化设计与分析.长春:吉林科学技术出版社,2001
    114.高惠璇:统计计算. 北京:北京大学出版社,1995
    115.唐经世,高国安. 工程机械.北京:中国铁道出版社,1996
    116.徐希民,黄宗益. 铲土运输机械设计.北京:机械工业出版社,1988
    117.李龙城. 推土铲铲壁设计参数的研究.农业机械学报,1979,10(4):85-96
    118.王志浩,裘熙定. 膜片式压力传感器.吉林工业大学学报,1981;(1):79-85
    119.闫久林,韩志武,任露泉等. 推土铲测力传感器设计与试验应用. 农业机械学报,2001,32(3):99-101
    120.韩志武,李建桥,李因武,任露泉:推土机推土工作装置计算机辅助运动分析.第五届全国计算机应用联合学术会议,1999
    121.李因武,李建桥,韩志武,任露泉:履带式推土机杆件及分析系统.第五届全国计算机应用联合学术会议,1999
    122.宋德朝,卞永明:推土机CAD 系统总体设计.工程机械,1994,25(3):15-18
    123.刘则毅等. 科学计算技术与Matlab. 北京:科学出版社,2001
    124.蒲俊,吉家锋. Matlab 工程数学解题指导. 上海:浦东电子出版社,2001
    125.闻新等. MATLAB 神经网络应用设计. 北京:科学出版社,2001
    126.飞思科技产品研发中心. MATLAB6.5 辅助神经网络分析与设计. 北京:电子工业出版社,2003
    127.党建武.神经网络技术及应用.北京:中国铁道出版社,2000
    128.张友邦,封宇行. 隐节点数可变的网络研究与应用.计算机工程与应用,2001,(17),99-101
    129.R.Hecht-Nielsen. Application of back propagation neural networks. Neural Networks, 1988, 1: 131-139
    130.R. P. Lipamann. An Introduction to computing with neural nets. IEEE ASSP Magazine, Nov, 1989, 4-32
    131.T.J. Mcacvoy. Conternplative stance for chemical process control. Automatica 1992,28 (2):441-442
    132.王宁会,刘敏. 神经元网络软测量技术的研究进展. 控制工程,2003,10(1):15-17,61
    133.盛守照,王道波,黄向华,王志胜. 新型前向神经网络设计方法在软测量中的应用. 传感器技术,2004,24(4):73-76 134.孙欣,王金春,何声亮. 基于神经网络的过程软测量. 自动化仪表,1996,17(9):7-10
    135.殷晨波. 土壤—铲刀粘着及减少粘着的措施.建筑机械,1992,(11):18-19
    136.殷晨波. 铲刀参数对土壤流动特性的影响.建筑机械,1994,(4):24-26
    137.H.P.W.Jayasuriya,V.M.Salokhe. A Review of Soil-tine Models for a Range of Soil Conditions. Journal of Agricultural Engineering Research, 2001,79(1): 1-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700