激光仿生非光滑表面热作模具的磨料磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高热作模具寿命是国内外众多企业急需解决的重大问题。生物经过亿万年的进化形成了特殊的具有优异功能的体表形状。通过对典型生物体表非光滑形状的分析,发现生物体表的非光滑特征是其表面耐磨的主要原因。因此本文利用激光模仿生物体表的非光滑形状,在模具钢表面加工出非光滑单元体,由它们和材料表面共同组成仿生非光滑表面,研究仿生非光滑表面模具的耐磨损性能。
     首先研究了模具钢表面上激光处理区的组织和结构,把因激光加热而组织发生变化的区域定义为激光处理的仿生非光滑单元体。讨论了激光参数、母材成分、母体组织及非光滑单元体成分等对非光滑单元体特征及非光滑表面试样磨损性能的影响,并在此基础上提出了仿生非光滑表面试样的磨料磨损机理。
     研究结果表明利用激光可以在模具钢表面制备出具有不同特征的类似生物体表的非光滑表面形状,使模具钢的磨损性能明显得到改善。非光滑表面试样磨损过程中,非光滑单元体起到阻碍磨损进行的作用。而决定非光滑表面试样磨损性能提高幅度的因素包括激光加工参数、非光滑单元体的形状、分布间隔、非光滑单元体成分、母材成分、母体组织等等。非光滑表面试样磨损时,磨料相当于在断续的平面上进行磨损,当磨料运动到非光滑单元体前沿时受到阻碍,犁、削深度变浅。当非光滑单元体较硬或磨料尖角被磨钝时,磨料在非光滑单元体上滚动,反之磨料则在非光滑单元体上滑动,且犁、削深度较浅,由此减轻磨损程度。如果非光滑单元体分布间隔适合,磨料可能越过相邻两非光滑单元体的中间基体材料部位而直接对下一非光滑单元体进行磨损,从而大大减小了材料的磨损几率,使非光滑表面试样的磨损性能明显提高。
     另外首次将生物体表的非光滑形状应用于压铸模具型腔和冲头表面,使生产汽车发动机罩盖的压铸模具使用性能明显提高,服役周期延长,冲头的在线工作时间延长至少两倍以上,经济效果显著,为制备具有高耐磨性的非光滑表面热作模具开辟了一条新途径。
Grinding abrasion is a main die failure mechanism. Wear results in about 50 to 60% failure of hot die steel, which brings tremendous expense for commercial run. So prolonging the life-span of hot die is an important problem attracting many corporations, and a main target is to improve the wear-resistance of hot die to prolong life-span of die.
     Many researchers have made great effort in improving the wear-resistance of hot die and obtained greater advancement. However the earlier researches in enhancing wear-resistance of die were all focused in several ways including developing and explodering new wearable materials, designing the configuration aright and surface mortification technology. Cost arises because of explosering new wearable material and there is little effect. The means of improving configuration of is restricted by die. The whole surface is treated through traditional surface mortification technique, and there is only thinner hardening layer which is worn easily, so the protect action losses and the validity with various condition decreases. Thus it is necessary to creating new technique to preparation wearable hot die and seeks after wearing mechanisms of die for prolonging the life-span of die.
     According to the traditional idea, the smoother surface of object results the smaller fictional resistance during moving process. Thus improving the smoothness of wearable parts is seen as nessceray means to improve the wear-resistance of parts, and the working surfaces of the parts or the products that are needed to reduce the resistance of friction of material are all designed to be smooth. However the manufacturing cost arises and there is only little effect through the processing technique. Tribology and related research into bionics show that this kind of non-smooth biont surface can lower resistance of friction and wearing. The characteristic of biont that adapts to the survival environment has emerged gradually through hundreds of millions of years of evolution and optimizing. Practices indicate that not the surface is smoother to more excellent wear-resistance, but wear-resistance function of material with non-smooth shape excels on the contrary.
     The non-smooth shape was designed on several die steels through imitating the easy non-smooth shape of biont body based on the theory in the article. Some specimens with non-smooth surface in different characteristic are prepared by laser. The effects of laser parameter, the compositions of matrix, and the microstructure of matrix, the shape and distributing distance of non-smooth unit on the characteristic of non-smooth unit and on the wear-resistance of die steel with bionic non-smooth surface are discussed. The factors effecting properties of die steel with non-smooth surface are studied also. And bionic non-smooth units with enhancing particle are obtained by laser cladding. The effect of composition of non-smooth unit on die steel with non-smooth surface and the wear mechanism of material with non-smooth surface are discussed. And the non-smooth shape is applied on the surface of hot die for the first time. The wear-resistance of this kind of die is markedly improved, and the life-span of die is prolonged. So the economic effect is obvious.
     The wear resistances of non-smooth specimens with different laser parameters are all markedly better than that of the smooth specimen. The area ratio and volume of non-smooth unit increase, and the wear-resistances of non-smooth specimens improve, with the increasing of the laser power and pulse duration. The reason of the non-smooth material processed, respectively; with power 89.4 W and duration 20ms with better wear-resistance is that the results of the combination of area ratio, volume, and hardness of non-smooth unit.
     The shape and distributing distance of non-smooth unit influence the area ratio and volume of non-smooth unit, so effect the resistance of non-smooth unit on abrasive particle. The wear resistance of reticulate non-smooth specimen is the best, and then that of the striate non-smooth specimen takes second place and the cave pit is the worst, among studied several non-smooth shape specimens. The mumber, area ratio and volume of non-smooth unit increase, with the increasing of the distributing distance of non-smooth unit, the wear resistance of non-smooth specimen increases. However the wear resistance of smooth specimen wholly processed by laser is superior to that of non-smooth specimens whose distributing distance of non-smooth unit more than 2mm and inferior than that with less than 2mm.
     The different carbon content and alloy element of die steel results in different size, width, depth, area ratio and volume of non-smooth unit on die steel with non-smooth surface. The varying trend of the wear-resistance of the non-smooth the wear-resistance of three matrixes with non-smooth surfaces is the same whether the shape and distributing distance change or not. Namely, the wear-resistance of the non-smooth HD material is best, then that of the 3Cr2W8V and the H13 steel the worst.
     There is difference in the improving extent of wear resistance of non-smooth specimens with different microstructure than that of smooth specimen. The wear resistance of non-smooth specimen with tempered microstructure at 550℃, and then that of with quenched microstructure at 1100℃and at 650℃, and that of with annealed microstructure is the worst.
     The non-smooth unit processed by laser cladding makes up of laser cladding layer, melting zone and heat affect zone. The non-smooth unit includes a cladding layer than that of the non-smooth unit processed by laser remelting. The changing trend of wear-resistance is that of the cladding with WC best, than that of the cladding with Al2O3, laser remelting and that of the cladding with Ni60 worst among various means. The property of surface layer of material plays important role at the beginning of wear process, but the dept of non-smooth unit is major factor influencing the wear-resistance of non-smooth material at the behind of wear process.
     The characteristic of non-smooth unit influences the improving extent of wear-resistance of non-smooth material. The factors include laser parameter, the shape, distributing distance and composition of non-smooth unit, the composition and microstructure of matrix, which effect on the size, microstructure and hardness of non-smooth unit. The larger size, bigger volume and the higher hardness of non-smooth units result in the better wear-resistance of material with non-smooth surface.
     It is found that the wear-resistance of non-smooth specimens processed by laser imitating the shape of biont body is better than that of smooth specimen without processing by laser. The wear-resistance of some non-smooth specimens is ever better than that of specimens with smooth surface whole processed by laser remelting at different degree. The non-smooth unit plays a role in preventing wearing during wear process. Grinding abrasion of non-smooth specimen is equal to wearing on discontinuous plane. The ploughed dept of matrix changes shallowly when the abrasive particles move approaching the non-smooth unit because the baffling effect. There are two moving means of abrasive particle when it moves on the non-smooth unit. The abrasive particle turns to roll over from sliding when its hardness is higher or it is smooth and blunt, per contra, it slides on the non-smooth unit and the ploughing dept is shallow, so the wear extent decreases. The abrasive particle penetrates in shallowly and ploughing matrix continuously after it moves non-smooth unit, when the distributing distance of non-smooth unit is bigger, because of the baffling effect of non-smooth unit, and the next wear process begins. The abrasive particle maybe gets over the matrix part between two adjacent non-smooth units and wears the next non-smooth unit directly. Thus the wearing probability decreases and the wear-resistance of non-smooth specimen improves markedly
     It is found that the wear resistance of die processed to non-smooth surface by laser is markedly improved. This research is significant to improve the life-span of die. The means preparing bionic non-smooth surface material has characteristic of easy to operate, lowering cost and better wear-resistance, which exploits the researching extent about bionic research to metal material, and it develops a new technique for improving the wear-resistance of die.
引文
[1]李正邦等.中国高速钢和模具钢的发展建议[J].中国钨业,1999;14(5-6):35-37
    [2]杜光华.模具钢的发展现状[J].特殊钢,1995,16(1):9-14
    [3]刘家浚.材料的磨料磨损[M].北京:机械工业出版社,1990
    [4]沈俊峰,沈利群.提高模具材料疲劳抗力的途径[J].上海金属,1998;10(1):35-37
    [5]卢吉连.我国模具钢应用技术现状与发展[J].模具技术,2000;8(6):90-92
    [6]仝建民.耐磨钢研究进展[J].水利电力机械,2003,25(2):29-32
    [7]周平安.磨损失效分析及耐磨材料的现状和展望[J].铸造,2000,49 (1):23-25
    [8]周平安.耐磨材料新技术应用[J].中国建材装备(增刊),1997:21-26
    [9]赵宇光,任露泉,闫久林等.WC/Cu-Zn-Mn 强化中碳钢耐磨复合材料[J].吉林工业大学学报,1998,Vol.128
    [10]Adamson A.W. Physical Chemistry of Surface [M]. London: Wiley, 1990
    [11]李景德,沈韩.神妙材料[M].北京:北京科学出版社,2000:1-3
    [12]Bechert D W and Hoppe G..On the drag reduction of the shark skin. AIAA Shear Flow Control Conference [J], AIAA-85-0546, 1985:1-18
    [13]Webb P W. Form and Function in Fish Swimming [M]. Scientific American, 1984, 6:72-82
    [14]Budker P. The Life of Sharks [M]. London: Weidenfeld & Nicholson, 1971
    [15]Zhou B L. Some progress in the biomimetic study of composite materials [J]. Mater. Chem. Phys, 1996, 45: 114-119
    [16]Yakou T, Sakamoto S. Abrasive properties of bamboo [J]. Jpn.J. Tribology, 1993, 38: 491-497
    [17]Tong J, Ren L Q, Li J Q et al. Abrasive wear behaviour of bamboo [J]. Tribology Int, 1995, 28:323-328
    [18]Tong J, Arnell R D, Ren L Q. Dry sliding wear behaviour of bamboo [J]. Wear, 1998, 221:37-46
    [19]任露泉,王再宙.激光处理非光滑凹坑表面耐磨试验的均匀设计研究[J].材料科学与工程,2002,20(2): 549-552
    [20]Wang Y H, Tan Y F. Theory and practice of“spontaneous protective layer” insoil cutting [J]. Terramechanics, 1995, 32 (2): 99-104
    [21]韩志武,任露泉,刘祖斌.激光织构仿生非光滑表面抗磨性能研究[J],摩擦学学报,2004,7,289-293
    [22]任露泉,陈德兴,胡建国,土壤动物减粘脱土规律初步分析[J].农业工程学报,1990,6(1):15-20
    [23]Ren Luquan, Tong Jin, Zhang Shujun. Reducing sliding resistance of soil against bulldozing plates by unsmoothed bionic surface [J]. Journal of Terramechanics, 1995, 32 (6): 303-309
    [24]RenLuquan, LiJianqiao, ChenBingcong. Unsmoothed surface on reducing resistance by bionics [J], Chinese Science Bulletin, 1995, 40 (13): 1077-1088
    [25]邵荷生,曲敬信,许小棣等.摩擦与磨损[M].北京:煤炭工业出版社,1992,4-6
    [26]马红岩.堆焊层非平整表面状态对其耐磨性能的影响[D].沈阳工业大学硕士学位论文,2001,3
    [27]任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究[J].农业机械学报,2003,34(2)
    [28]D. A. Miller, R. H. Priest. Material response to thermal-mechanical strain cycling High Temperature Fatigue Properties and Prediction [M], Applied Science Publishers, 1983: 113-176
    [29]天津拖拉机厂.陶瓷型精密铸造模具小结.陶瓷型精密铸造汇编[M].一机部情报所
    [30]武汉机械局研究所.陶瓷型精密铸造新工艺.陶瓷型精密铸造汇编[M].一机部情报所
    [31]万毅.陶瓷型精铸热作模具钢组织与性能的研究[J].江西冶金,1996,16(6):1-4
    [32]方健儒,姜启川,赵宇光等.铸造热锻模具钢的研究与应用[J].铸造,2002,51(1):7-10
    [33]Beeley P. R., Blackmore A., Production and evaluation of cast-to-form forging dies in a special cast steel [J]. Metals Technology, 1981, 18 ( 1): 268-273
    [34]王福谆,刘可如.精铸模具的研究应用概况[J],特种铸造及有色合金,1996,(3):24-26
    [35]刘尚超.精密铸造锻模的成功应用[J].汽车工艺与材料,1995,(3):3-5
    [36]A.B.OPTOB.铸造锻模的制造与应用[J].铸造,1988(5):15-16
    [37]蒋留全,张培林.无醇溶液陶瓷型工艺浇铸 H13 钢模具[J].特种铸造及有色合金,1993,(5):33-34
    [38]方健儒,姜启川,赵宇光等.多元低合金化铸造热锻模具钢(JCD 钢)组织与性能的研究[J].铸造,1998,51(1):7-10
    [39]兰杰,贺俊杰,丁文江.RE 对铸造 H13 钢凝固组织及冲击韧性的影响[J].钢铁,2000,35(10):48-50
    [40]张昆鹏,宋延沛,谢敬佩等.复合变质处理对铸造热锻模具钢力学性能的影响[J].热加工工艺,2003,(5):22-23
    [41]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1997
    [42]葛长路主编.矿山机械与抗磨技术[M].北京:中国矿业大学出版社,1995
    [43]闫洪.金属表面处理新技术[M].北京:机械工业出版社,1996
    [44]T.S.SUDARSHAN 著,范玉殿等译.表面改性技术工程师指南[M].清华大学出版社,1992:436
    [45]林丽华.金属表面渗层与覆盖层金相组织图谱[M].机械工业出版社,1998:1-3
    [46]董刚,刘奕,赵乃勤.颗粒/铜基复合镀层的摩擦学性能研究[J].功能材料,2000,31(1):98-99
    [47]徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,1998
    [48]宋仁国,陈光南,张坤.激光和电子束表面强化技术的发展及其应用[J].物理,2000,7:411-415
    [49]H.J.Kim. Assessment of wear performance of flame sprayed and fused Ni-based coatings [J]. Surface and Coating Technology,172(2003):262-269
    [50]Peng-Zhu Wang, Jing-Xin Qiu, He-Sheng Shao. Cemented carbide reinforced nickel-based alloy coating by laser cladding and the wearcharacteristics[J].Materials&Design,1996,17(5):289-296
    [51]P.Wu. Microstructural characterization and wear behavior of laser cladded nickel-based and tungsten carbide composite coatings[J].Surface and Coatings Technology, 2003, 166:84-88
    [52]J. Przybylowicz, J. Kusinski. Structure of laser cladded tungsten carbide composite coatings [J]. Journal of Materials Processing Technology, 2001, 109:154-160
    [53]许斌,冯承明,杨胶溪.碳化钨-高铬铸铁表面复合材料耐磨粒磨损性能的研究[J].摩擦学学报,1998,18(4):322-326
    [54]R.Zhou. The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites [J].Wear, 2003, 255:134-138
    [55]S. W. Wang. The effects of various ceramic-metal on wear performance of clad layer [J]. Journal of Materials Processing Technology, 2003, 140: 682-687
    [56]李力军,杨瑞林.新型铸造 WC 颗粒复合耐磨材料的研究[J].硬质合金;1998,15(4):208-212
    [57]D.Lou. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites [J]. Materials Science and Engineering A, 340(2003):155-162
    [58]周振丰.焊接冶金及金属焊接性[M].北京:机械工业出版社,1988
    [59]戚文军,何艳兵,刘斌等.激光堆焊镍基碳化钨梯度焊层及耐磨机理分析[J].焊接学报,2002,23(1):57-60
    [60]陈文威.金属表面涂层技术及应用[M].北京:人民交通出版社,1996
    [61]陈学定,韩文政.表面涂层技术[M],北京:机械工业出版社,994
    [62]陆善平,郭义.WC-17Co 含量对(WC-17Co/NiCrBSi)复合钎焊涂层结合性能及耐磨性的影响[J].材料导报,2001,15(1)65-67
    [63]潘蕾,陶杰.45 钢表面钎焊 WC/Cu-Mn-Ni 涂层的研究[J].复合材料学报,2002,19(4):114-117
    [64]Shan-Ping Lu, Oh-Yang Kwon. Microstructure and bonding strength of WC reinforced Ni-base alloy brazed composite coating [J]. Surface and Coatings Technology, 2002, 15(3):40-48
    [65]陆善平,许先忠.Co 含量对(WC-Co/NiCrBSi)复合钎焊涂层耐磨性的影响[J].中国表面工程,1999,12(3):24-27
    [66]陆善平,郭义.钎焊工艺对 WC-Co/NiCrBSi 复合涂层性能的影响[J].材料研究学报,1999,13(2):188-193
    [67]李景镇.激光是光子产业的核心技术[J].激光杂志,2000,21(2):1
    [68]左铁钏等.激光加工技术的优势及在工业生产中的应用[J].激光杂志,1999,26(4)
    [69]Peng-Zhu Wang, Jing-Xin Qiu, He-Sheng Shao. Cemented carbide reinforced nickel-based alloy coating by laser cladding and the wear characteristics [J].Materials&Design,1996,17(5):289-296
    [70]P. Wu. Microstructural characterization and wear behavior of laser cladded nickel-based and tungsten carbide composite coatings [J]. Surface and Coatings Technology,2003,166:84-88
    [71]J. Przybylowicz, J. Kusinski. Structure of laser cladded tungsten carbide composite coatings [J]. Journal of Materials Processing Technology, 2001,109:154-160
    [72]Marsaden K. Commercial potentials for composites [J]. Journal of Metals, 1985, 37 (6):59-629
    [73]Nicoletto G, Tucci A, Esposito L. Camparative dry ewar behavior of hard coatings [J]. Wear, 1993, 162-164(B); 925-929
    [74]蒋平.Ti-6Al-4V 和 SiC 粉激光表面合金化组织与耐磨性[J].应用激光,1999(19)5:229-231
    [75]Marsaden K. Commercial potentials for composites [J]. J of Metals, 1985, 37(6):59-629
    [76]贾俊红,钟敏霖,刘文今等.Ti 对 Fe-C 合金表面激光熔敷复合材料层组织和性能的影响[J].激光杂志,2000,20 (4):145-148
    [77]查莹,周昌炽,唐西南等.改善激光熔敷镍基合金和陶瓷硬质相变合金层性能的研究[J].中国激光,1999,26 (10):82-86
    [78]杨森,黄卫东,刘文今等.激光表面快速熔凝过程中熔区组织重构[J].应用激光,2001,21(4):225-228
    [79]R C Gassmann.Laser cladding with (WC+W2C)/Co-Cr-C and (WC+W2C)/Ni -B-Si composites for enhanced abrasive wear resistance [J]. Materials Science and Technology, 1996, 12: 691-696
    [80]Sahoo P, Koczak MJ. Analysis of in situ formation of titanium carbide in aluminum alloys [J]. Mater Sci Eng, 1 991, 144A: 37-44
    [81]MateosJ, cuetosJM, VijandeR, etal, Tribological behavior of plasma sprayed WC coatings with and without laser remelting [J]. Wear, 2000, 239:274-281
    [82]Ayers J D, Bolster R N.Abrasive wear with fine diamond particles of carbide containing aluminum and titanium alloy surfaces [J]. Wear, 1984, 93 (2): 193-205
    [83]Kiyoshi Ichikawa, Masakazu Achikita.Electric conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting [J]. Materials Transaction JIM, 1993, 34 (8): 716-724
    [84]汤文明,唐红军,郑治祥等.FeAl 金属间化合物基复合材料的研究进展[J].中国有色金属学报,2003,(8):811-826
    [85]Uglov V V, Cherdenda N N, Koeniger A, et al. Structure and composition of low friction carbon coatings deposited on aluminum surface [J]. Surf. Coat. Technol., 1997, 97: 322-325
    [86]曾其蕴,李世红,周本濂.生物复合材料的特征及仿生的探讨[J].复合材料学报,1993,10(1):1-7
    [87]Addadi L, Weiner S. A pavement of pearls [J]. Nature, 1997, 389(6654): 912
    [88]Jeronimids G, Atkins A G. Mechanics of biological materials and structures: nature’s lessons for the engineer [J]. Proc.Instn. Mech. Engrs, 1995, 209: 221-235
    [89] 李 恒 德 . 贝 壳 珍 珠 层 及 仿 生 制 备 研 究 [J]. 清 华 大 学 学 报 : 自 然版,2001,41(4):41-47
    [90]陈斌,彭向和,范镜泓.生物自然复合材料的结构特征及仿生复合材料的研究[J].复合材料学报,2000,17 (3):59-62
    [91]丛茜,任露泉,吴连奎等.几何非光滑生物体表形状的分类研究[J].农业工程学报,1998, 8(2):7-12
    [92]徐德胜.仿生非光滑耐磨涂层及其制备方法[D],长春::吉林大学,2003
    [93]丛茜.非光滑减粘降阻机理及触土部件仿生改性研究[D],长春:吉林工业大学,1992
    [94]佟金.地面机械触土部件减粘降阻的仿生改性研究[D],长春:吉林工业大学,1992
    [95]任露泉,佟金.仿生学与仿生技术[M].内蒙古:内蒙古出版社,1996
    [96] Robbins D. H, Johnson C. E, and R. L. Schafer. Modeling soil metal sliding resistance [J]. ASAE, 1987, No.8721580
    [97]李建桥,任露泉,陈秉聪,蒋蔓.犁壁材料表面特性与土壤粘附间的关系[J].农业工程学报,1996,12(2):46-48
    [98]任露泉,徐晓波.典型土壤动物体表形状减粘脱土的初步研究[J].1990,6 (2)
    [99]RenLuquan,TongJin,ZhangShujun. Reducing sliding resistance of soil against bull dozing plates by unsmoothed bionic surface[J], Journal of Terra mechanics, 1995, 32 (6): 303-309
    [100]Zhang K. Biomimetic study on helical fiber composites [J]. Mater Sci Technol, 1997, 13: 1-4
    [101]李固.谈仿生,未来是什么[M].北京:北京出版社,2000
    [102]李海峰.仿生原理[M].北京:北京高等教育出版社,1998
    [103]张致福.什么是应用仿生学[M].上海:上海相出版社,1995
    [104]陈近,黄佰强.仿生理论[M].北京:北京出版社,1998
    [105]Kennech Holmberg. A concept for friction mechamisms of coated surface [J]. Surface and Coating Technology, 1992, 56 (1): 1-10
    [106]周本濂.材料仿生研究的一些新进展[J].材料科学进展,1991,5(6):529-531
    [107]王立铎,孙文珍,梁彤翔.仿生材料的研究现状[J].材料工程,1996(2):3-5
    [108]陈斌,彭向和,范镜泓.生物自然复合材料的结构特征及仿生复合材料的研究[J].复合材料学报.2000.17(3):59-62
    [109]王迎军,刘康时.生物医学材料的研究与发展[J].中国陶瓷.1999.44(24)
    [110]Jeronimids G, Atkins A G. Mechanics of biological materials and structures: nature’s lessons for the engineer [J]. Proc. Instn. Mech. Engrs, 1995, 209: 221-235
    [111]佟金,李建桥.生物脱附与机械仿生—多学科交叉新技术领域[J].1999,10 (9)
    [112]Liu Yaohui, Chen Bingcong, Tong Jin. Reducing soil adhesion and sliding resistance by functional surfaces [R]. Agr Eng Rural Dev, Inter Confon Agr Engin. Beijing, China. (1992):168-171
    [113]任露泉,徐晓波.典型土壤动物体表形状减粘脱土的初步研究[J].1990,6 (2)
    [114]任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究[J].农业机械学报,2003,3,34 (2):86-88
    [115]任露泉,徐德生,邱小明等.仿生非光滑耐磨复合层的研究[J].农业工程学报,2001, 17 (3):7-9
    [116]吴昊.应用仿生在各个领域的展望[M].北京:高等教育出版社,1999
    [117]Hong Zhou, Hongyu Shan, Xin Tong, et al, The adhesion of bionic non-smooth characteristics onf sample surfaces against parts [J]. Materials Science and Engineering A, 2006, 417: 190-196
    [118]陆建,倪晓武,贺安之.激光与材料互相作用物理学[M].北京:机械工业出版社,1996
    [119]A.D.萨凯著,邵荷生译[M].北京:煤炭工业出版社,1980
    [120]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992.10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700