纯钛表面基于微弧氧化技术的仿生陶瓷膜的制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬骨替代产品的研发是组织工程领域的一个重要分支,钛作为综合性能良好的医用金属材料,是硬骨替代材料开发的一个重要产品。然而,医用钛无生物活性,在体内与组织形成的只是不牢固的机械嵌合。微弧氧化是一项可以在医用钛表面造孔、成膜的电化学技术,可增加其生物活性,使钛表面与组织形成牢固的化学结合,因而在医用钛表面改性方面具有良好的应用前景。
     本文在乙酸钙-磷酸二氢钙电解液体系中,分别采用微弧氧化-水热处理和微弧氧化-煅烧处理的工艺,在纯钛表面制备含有羟基磷灰石(Hydroxyapatite, HA)仿生陶瓷膜。利用SEM、EDX、XRD、厚度测量仪、划痕试验仪、恒电位测量仪、细胞接种等手段研究了膜层的形貌及元素组成、膜层物相组成、厚度、结合强度、耐蚀性和细胞相容性。比较了两种工艺条件下制备的仿生膜层的综合性能,并探讨了羟基磷灰石的形成机理,取得了如下结果。
     在乙酸钙-磷酸二氢钙电解液体系中,纯钛表面经过微弧氧化后形成了以TiO2为主的粗糙多孔的氧化物膜层。使用含有氨水的介质对该膜层进行水热处理后,膜层中出现了鳞状、层片状以及针棒状的HA,膜层厚度增加,且变得更为致密,膜层中Ca/P为1.68。HA的形成机制是微弧氧化膜为HA的形核提供了活性位点,而高压釜中的水热环境为HA的形核、生长提供了有利的环境。
     在乙酸钙-磷酸二氢钙电解液体系中添加硝酸镧后,微弧氧化膜层粗糙多孔,但出现了少量的细小裂纹。膜层主要由锐钛矿和金红石组成,并含有非晶相,经煅烧处理后证实为羟基磷灰石和磷酸钙陶瓷。煅烧处理后膜层厚度增加,裂纹加深,膜层中的Ca/P大于天然HA的Ca/P。在电解液中添加La,通过引起电荷的不平衡而促使碱性的TiO_2水凝胶层的形成,进而促进HA的形成。
     膜层结合力的测试结果表明:经过水热处理后,膜层结合强度优于水热处理前膜层的结合强度;在含镧电解液中得到的膜层结合强度优于不含镧电解液中得到的膜层,但煅烧处理使膜层的结合强度降低。膜层耐蚀性的试验结果表明,经过微弧氧化及后续处理所得的膜层表面耐蚀性均优于纯钛。微弧氧化膜层经水热处理后,其耐腐蚀性能有所降低,而煅烧处理后膜层的耐蚀性能有所提高。
     以细胞接种方式比较四种膜层和纯钛的细胞相容性,结果表明,经过微弧氧化及后续处理所得的膜层表面的细胞相容性均优于纯钛表面。水热处理可以提高膜层的细胞相容性,而煅烧处理则一定程度地降低了膜层表面的细胞相容性。
The development of hard bone tissue is one major focus of tissue engineering. Medical titanium and its alloys are useful products in this field due to their excellent performance. However, the combination of titanium and the bone tissue is just a pure mechanical way within human body, which is rather unstable. Micro-arc oxidation (MAO) is a kind of electrochemical technique that can make the surface of titanium have a kind of porous coating and can improve the bio-activity of titanium. This technique has a bright future in the application of surface processing on titanium and its alloys because it can make a chemical connection between the surface of titanium and the bone tissues.
     In this paper, by using of Ca(CH3COO)2·H2O-Ca(H2PO4)2·H2O electrolyte, the bio-ceramic coatings with hydroxyapatite(HA) were prepared on pure titanium from two different technical routines: one is MAO and hydrothermal treatment routine and the other is MAO and calcination treatment routine. The surface/cross-sectional morphology, elemental composition, phase composition, thickness, adhesion, corrosion resistance and cyto-compatibility were investigated by using SEM, EDX, XRD, film thickness meter, film adhesion meter, CS300 constant potential rectifier, and cell culture method, respectively. Meanwhile, the comprehensive performance of the coatings formed by the two technical routines was compared, and HA forming mechanism was discussed, as well. The results are as following:
     Within the Ca(CH_3COO)_2·H_2O-Ca(H_2PO_4)2·H_2O electrolyte system, a kind of coarse and porous coating mainly with titania phase was gained on the surface of pure titanium after the MAO treatment. After hydrothermal treatment, it appeared scale, flaky or needle structures within the coating, which was thicker and denser than before. The ratio of Ca/P of this coating then is 1.68. The autoclave environment on the one hand provides nucleation sites for HA and on the other hand provides a promising environment for HA to nucleate.
     Within the Ca(CH_3COO)2·H2O-Ca(H_2PO_4)2·H_2O-La(NO_3)3·6H_2O electrolyte system, amorphous phases were gained within the coarse and porous coating after the MAO treatment. And it appeared some heat cracks within such coating. After the calcination treatment, the amorphous phases were tested to be HA and calcium phosphate ceramics. Calcination treatment has made the coating thicker and made the heat cracks deeper and wider. The ratio of Ca/P of this coating then is bigger than that same ratio of natural HA. Although the element of La did not form any new phase within the film, it played an important role in facilitating the formation of HA: it caused unbalanced electron charge, which led the TiO2 water gel to form and later prompted the formation of HA.
     According to the results of adhesion test, the adhesion of coatings performs better after the hydrothermal treatment; the adhesion of coatings gained from electrolyte with La performs better than that from electrolyte without La, but the calcination treatment makes the adhesion poorer. According to the results of corrosion resistance, all the coatings gained from MAO treatment with or without later treatment have better corrosion resistance performance than pure titanium. After the hydrothermal treatment, the MAO coating performs poorer corrosion resistance; while the calcination treatment, the coating gained from electrolyte with La exhibits better corrosion resistance.
     Cell-culture is used to compare the cyto-compatibility of four kinds of coatings prepared in this paper as well as pure titanium. The results show that all the coatings have better cyto-compatibility than pure titanium. Hydrothermal treatment can improve the cyto-compatibility performance of coatings, while calcination treatment to some degree lower the cyto-compatibility performance of coatings.
引文
[1]杨志明.组织工程.北京:化学工业出版社现代生物技术与医药科技出版中心, 2002.
    [2] Langer R, Vacanti J P. Tissue Engineering. Science, 1993, 260 (5110): 920-926.
    [3] Griffith L G. Polymeric biomaterials. Acta Materialia, 2000, 48, 263-277.
    [4] Liu C, Xia Z, Czernuszka J T. Design and development of three-dimensional scaffolds for tissue engineering. Science, 2007, 85 (A7): 1051-1064.
    [5]张辉跃.微弧氧化技术用于纯钛表面改性的研究: [硕士学位论文].四川:四川大学图书馆, 2005.
    [6]田俊玲.钛合金种植体表面生物活性陶瓷膜层研究: [博士学位论文].北京:北京工业大学图书馆, 2006.
    [7]浦素云.金属植入材料及腐蚀.北京:航空航天大学出版社, 1990.
    [8]钱九红.外科植入物用纯钛及其合金.稀有金属, 2001, 25 (4): 303-307.
    [9]寇斌达.微弧氧化制备钛表面磷钙生物活性膜层: [硕士学位论文].北京:北京工业大学图书馆, 2003.
    [10]杨正文.纳米羟基磷灰石的制备及陶瓷力学性能的研究: [硕士学位论文].吉林:吉林大学图书馆, 2005.
    [11] Cannillo V, Colmenares A J, Lusvarghil, et al. In vitro characterisation of plasma-sprayed apatite/wollastonite glass–ceramic biocoatings on titanium alloys. European Ceramic Society, 2009, 29 (9): 1665-1677.
    [12] Metikos H M, Tkalcec E, Kwokala, et al. An in vitro study of Ti and Ti-alloys coated with sol-gel derived hydroxyapatite coatings. Surface and Coatings Technology, 2003, 165 (1): 40-50.
    [13] Hu R, Lin C J, Shi H Y. A novel ordered nano hydroxyapatite coating electrochemically deposited on titanium substrate. Journal of Biomedical Materials Research Part A, 2006, 80 A (3): 687-692.
    [14] Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering. Surface and Coatings Technology, 1999, 122 (2-3): 73-93.
    [15] http://www.rsd.cam.ac.uk/documents/local/events/downloads/mh/1.3_Clyne.pdf
    [16] Nie X, Leyland A, Matthews A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surface and Coatings Technology, 2000, (125): 407-414.
    [17] Li L H, Kim H W, Lee S H, et al. Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating. J Biomed Mater Res A, 2005, 73 (1): 48-54.
    [18] Wei D Q, Zhou Y, Wang Y M, et al. Characteristic of microarc oxidized coatings on titanium alloy formed in electrolytes containing chelate complex and nano-HA. Applied Surface Science, 2007 (253): 5045-5050.
    [19] Wei D Q, Zhou Y, Wang Y M, et al. Chemical etching of micro-plasma of micro-plasma oxidized titania film on titanium alloy and apatite deposited on the surface of modified titania film in vitro. Thin Solid Films, 2008 (516): 1818-1825.
    [20] Nan K H, Wu T, Chen J H, et al. Stromtium doped hydroxyapatite film formed by micro-arc oxidation. Materials Science and Engineering C, 2009 (29): 1554-1558.
    [21]黄勇,王迎军,宁成云,等.微弧氧化法制备含La羟基磷灰石生物活性涂层.稀有金属材料与工程, 2008, 7 (37): 1277-1280.
    [22]黄勇,王迎军,宁成云,等.微弧氧化法制备含铈羟基磷灰石生物活性膜层.材料科学与工程学报, 2008, 11 (26): 80-82.
    [23]金晖,张伟国,刘瑷如.不同处理程序的镧、铈、氟对人牙根面防龋作用研究.中华口腔医学杂志, 1997, 32 (3): 143-145.
    [24]张玉梅,付涛,徐可为,等.含镧羟基磷灰石的细胞毒性研究.牙体牙髓牙周病学杂志, 2000, 10 (3): 152-154.
    [25]于思荣,张新平,何镇明,等. Ce对Ti-Fe-Mo-Nb-Zr合金在人工体液及乳酸中腐蚀性能的影响.稀有金属材料与工程, 2004, 7 (33): 723-727.
    [26]李定骏.纯钛表面微弧氧化—水热处理法制备仿生陶瓷膜层的研究: [硕士学位论文].武汉:华中科技大学图书馆, 2008.
    [27] Bouyer E, Gitzhofer F, Boulos I. Morphological study of hydroxyapatitenanocrystal suspension. J Mater Sci: Mater Med, 2000, 11: 523-531.
    [28] Spurr R A, Myers H. Quantitative analysis of anatase–rutile mixture with an X-ray diffractometer. Analytical Chemistry, 1957, 29 (5): 760-762.
    [29] Gnedenkov S V, Khrisanfova O A, Zavidnaya A G., et al. Composition and adhesion of protective coatings on aluminum. Surface and Coatings Technology, 2001, 145: 146-151.
    [30] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, 27(15): 2907~2915.
    [31]郑遗凡,岳林海,金达赖,等.水热处理氢氧化镁微晶性质研究.无机化学学报, 2003, 19(6): 636-640.
    [32] Liu F, Song Y, Wang F P, et al. Formation Characterization of Hydroxyapatite on Titanium by Microarc Oxidation and Hydrothermal Treatment. Journal of bioscience and bioengineering, 2005, 100 (1): 100-104.
    [33] Li P, Ohtsuki C, Kokubo T, et al. A role of hydrated silica, titania and alu-mina in forming biologically active bone-like apatite on im-plant. J. Biomed. Mater. Res., 1994, 28, 7-15.
    [34] Wei M, Uchida M, Kim H M, et al. Biomaterials, 2002, 23: 167-172.
    [35] Frayssinet P, Tourenne F, Rouquet N, et al. Comparative biological properties of HA plasma-sprayed coatings with different crystallinities. J Mater Sci: Mater Med 1994, 5: 11-17.
    [36] Rho J Y, Kuhn S L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys, 1998, 20: 92-102.
    [37] Cheung H S, Zawadsky J P, Dunn M G.. Effect of calcium phosphate coating resorption and surgical fit on the bone/implant interface. J Biomed Mater Res 1994, 28: 1311-1319.
    [38] Cheung H S, McCarty D J. Mitogenesis induced by calcium containing crystal: role of intracellular dissolution. Exp Cell Res, 1985, 157 (1): 63-70.
    [39]杜作娟.纳米二氧化钛的水热制备及光催化研究: [硕士学位论文].长沙:中南大学, 2003.
    [40] Kim H M, Miyaji F, Kokubo T, et al. Graded surface structure of bioactive titaniumprepared by chemical treatment. J. Biomed. Mater. Res., 1999, 45, 100-107.
    [41] Kim H M, Miyaji F, Kokubo T, et al. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J. Biomed. Mater. Res., 1996, 32, 409-417.
    [42] [5461101]:Rothon R N, Ryder A M. Particulate magnesium hydroxide [P], US, 1995:1-12.
    [43]黄平,徐可为,憨勇.钛合金表面微弧氧化膜的特点及成膜分析.稀有金属材料与工程, 2003, 4 (32): 272-275.
    [44]吕奎龙,周玉,孟祥才,等.工艺因素对纳米羟基磷灰石结晶形态的影响.材料科学与工艺, 2003, 9 (11): 254-257.
    [45]郑遗凡,李国华,田伟,等.纳米锐钛矿相变的原位XRD研究.无机化学学报, 2007, 23 (6): 1121-1125.
    [46]管秀荣,邵忠财,田彦文.掺杂稀土TiO2的制备及其性能研究.中国稀土学报, 2008, 26: 487-490.
    [47] Wei D Q, Zhou Y. Characteristic and biocompatibility of the TiO2-based coatings containing amorphous calcium phosphate before and after heat treatment. Applied Surface Science, 2009, 255: 6232-6239.
    [48] Ovshinsky S R, Adler D. Local structure, bonding, and electronic properties of covalent amorphous semiconductors. Contemporary Physics, 1978, 19 (2):109-126.
    [49] Nishiguchi S, Nakamura T, Kobayashi M, et al. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials, 1999, 20: 491-500.
    [50] Song W H, Jun Y K, Han Y. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials, 2004, 17 (25): 3341-3349.
    [51]张喜燕,赵永庆,白晨光.钛合金及应.北京:化学工业出版社, 2005: 235-238.
    [52]史兴岭,王庆良,葛世荣.钛合金表面微弧氧化/水热处理复合陶瓷层的性能研究.表面技术, 2007, 36(6):15-21.
    [53] Ricardo M S, Maria M L, Rui L R. Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials, 2003, 24(23): 4213-4221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700