磷酸胆碱化壳聚糖衍生物的合成、表征及生物学评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从细胞膜仿生的角度出发,设计合成一种新的壳聚糖磷酰化衍生物,以磷酰胺键的方式将细胞膜结构单元磷酸胆碱基团偶联到壳聚糖骨架上,研究其合成方法、生物学性能及其纳米化方法。
     为了合成磷酸胆碱化壳聚糖衍生物,我们研究比较了三种壳聚糖的均相磷酸胆碱化方法:(A)采用新型高极性六氟异丙醇作反应介质,基于Antherton-Todd反应实现壳聚糖的直接磷酰化;(B)利用N-邻苯二甲酰化壳聚糖为中间体,以二氯磷酰胆碱为磷酰化试剂;(C)利用6-O-三苯基甲醚化壳聚糖为中间体,基于Antherton-Todd反应实现磷酰化。研究表明合成路线(C)适合用来均相合成磷酸胆碱化壳聚糖衍生物。
     应用合成路线(C),通过改变投料比,基于Antherton-Todd反应合成了三种不同取代度的水溶性磷酸胆碱化壳聚糖衍生物。NMR和FTIR谱图上对应-N+(CH3)3基团吸收峰的出现表明磷酸胆碱基团成功偶联到壳聚糖骨架的氨基上,根据1H NMR谱图的峰强度比计算出三种壳聚糖衍生物的取代度分别为16%、27%和42%。GPC数据显示,与壳聚糖相比,磷酸胆碱化壳聚糖衍生物的分子量有所降低,分子量分布有所拓宽;XRD、TGA、DSC和水溶性实验表明,磷酸胆碱化壳聚糖衍生物的结晶性能和热稳定性均有不同程度地下降,但是其在水中的溶解性能得到了很大地提升,三种取代度的衍生物均可溶于pH=1-12的水溶液中。
     细胞毒性实验表明,3T3细胞与磷酸胆碱化壳聚糖衍生物共培养的相对增殖率在80%-110%之间,细胞毒性为0级或1级,属于无细胞毒性范畴;血液相容性实验表明,引入磷酸胆碱基团可以延缓衍生物的凝血时间,而且可以有效抑制血小板在其上的黏附与激活;与牛血清白蛋白(BSA)的相互作用表明,磷酸胆碱基团的引入可以有效抑制壳聚糖衍生物与BSA之间的相互作用,减小蛋白质的构象改变,这对避免激活因蛋白质构象改变而导致的不良生物反应具有重要意义。
     磷酸胆碱化壳聚糖衍生物可自组装形成纳米粒子。研究表明,磷酸胆碱化壳聚糖衍生物仍可与三聚磷酸钠进行离子交联形成纳米粒子,这些纳米粒子呈现规则的球形结构,粒径在60-120nm之间,Zeta电位介于18-28mV;同时,磷酸胆碱化壳聚糖衍生物具有两亲性,可在中性水溶液中自组装成具有疏水核亲水壳的纳米胶束,由低到高,三种取代度衍生物的临界胶束浓度分别为0.129mg/mL,0.201mg/mL,0.256mg/mL。所形成的纳米胶束粒径范围在70-110nm之间,Zeta电位接近于0,介于0-4mV之间。这两类纳米粒子有望应用于药物/基因载体。
Through constructing a cell outer membrane mimetic structure, a novel phosphorylatedchitosan derivatives were designed to couple phosphorylcholine(PC) with bioactivity ontochitosan with a phosphamide binding, which can be used in biomedical materials.
     Three phosphorylated methods of chitosan were investigated, including (A)1,1,1,3,3,3-Hexafluoro-2-propanol used as reaction medium to synthesize phosphorylatedchitosan directly based on Antherton-Todd reaction,(B) using Cs-NPTh as the intermediate andphosphorylcholine dichloride as phosphorylated agent,(C) Cs-Tr as the intermediate tosynthesize phosphorylated chitosan based on Antherton-Todd reaction. It was found thatphosphorylated chitosan can be synthesized using method (C).
     Using Antherton-Todd reaction, phosphorylated chitosan derivatives with different DSwere synthesized. The new peaks in NMR and FTIR spectra indicated that the PC moiety hadbeen conjugated to the amino group of the chitosan. The DS of PC moiety was calculated by theamount ratio of H of-N+(CH3)3(from PC) to H1(from glucosamine units of GlcN andGlcN-PC) based on the1H NMR spectra. The DS values ranged from16to42mol%. The GPCanalysis found that PCCs appeared lower Mw values but higher Mw/Mn values compared withthe starting chitosan. All these PCCs with decreased crystallization showed excellent solubilityin the aqueous solutions within a wide pH range (1-12). TGA and DSC results revealed that thethermal stability of PCCs decresed with the increase of DS value.
     The in vitro cycotoxicity of PCCs copolymers was evaluated using a MTT assayperformed with NIH/3T3cells. The cells showed almost100%viability in the presence ofPCCs with different DS value, which suggests that all the PCCs with low toxicity are safety forbiomedical application. The blood compatibility were evaluated by means of blood-clotting andplatelet adhesion assay. The blood-clotting assay indicated that PCCs could prolong theblood-clotting process. Platelet adhesion assay showed that PCCs could effectively inhibit theplatelet adhesion and activation. Using bovine serum albumin (BSA) as a model protein, UVadsorption spectra and fluorescence spectra revealed that the non-specific interactions betweenPCCs and BSA were effectively suppressed and the conformation of BSA was almostunchanged with the addition of PCCs.
     Further, PCCs nanoparticles could be still formed in a spherical shape similar to chitosannanoparticles with zeta potential between18-28mV by ionically crosslinking withtripolyphosphate (TPP), the sizes were in the ranges of60-120nm. In addition, the amphiphilicPCCs copolymers could self-assemble to form spherical nano-aggregates. The CMC values ofPCCs were in the range of0.129-0.256mg/mL. The sizes of PCCs self-aggregates with zetapotential between0-4mV were in the ranges of30-60nm. These PCCs nanoparticles could beused as promising delivery systems for drug or gene delivery applications.
引文
[1]蒋挺大.壳聚糖.北京:化学工业出版社,2006,4-6.
    [2] M.N.V. Ravi Kumar. A review of chitin and chitosan applications. Reactive and FunctionalPolymers,2000,46:1-27.
    [3] M. Rinaudo. Chitin and chitosan: Properties and applications. Progress in Polymer Science,2006,31(7):603-632.
    [4] G. Ledderhose. Ueber salzsaures glycosamin. European Journal of Inorganic Chemistry,1876,9(2):1200-1201.
    [5]吴清基,刘世英,张敏.甲壳素缝合线的制备和研究.中国纺织大学学报,1998,24(5):18-22.
    [6]王康建,曾睿,但卫华,米贞健,贾淑平,龚彦铭,胡帅,朱剑.基于天然高分子材料的组织工程化皮肤支架材料.生物医学工程与临床,2009,13(2):161-166.
    [7]罗毅,卓仁禧.高分子抗肿瘤药物的研究.药学进展,1995,(3):135-139.
    [8]魏毅东.壳聚糖在生物医学领域中的应用.中国循证心血管医学杂志,2010,2(4):241-242.
    [9]刘婷,赵永富.低聚壳聚糖对小麦幼苗抗干旱胁迫的影响.江苏农业科学,2009,(1):88-89.
    [10] M. Izume. Coating of seeds with chitosan oligosaccharides[P]. Jpn Kokai Tokkyo, JP63297305.
    [11] S. Yano. Chitosan-containing seed coating for yield enhancement[P]. Jpn Kokai Tokkyo,JP63139102.
    [12] M.A. Teixeira, W.T. Patterson, E.J. Dunn, Q.L. Li, B.K. Hunter, M.F.A. Goosen.Assessment of chitosan gels for the controlledrelease. Industrial&Engineering ChemistryResearch,1990,29(7):1205-1209.
    [13]何海斌,王海斌,陈祥旭,方长旬,甘邱锋,吴文祥.壳聚糖包膜缓释钾肥的初步研究.亚热带农业研究,2006,2(3):194-197.
    [14]牛瑞生,樊建英,付雅丽,赵璇,王虎.壳聚糖的生化特性及其在蔬菜生产上的应用.河北农业科学,2007,(4):33-36.
    [15]黄玉丽.壳聚糖整理对棉织物性能的影响.印染,1997,23(3):22-26.
    [16]刘斌,孙向英,徐金瑞.改性壳聚糖絮凝螯合及释放Cu2+的性能研究.华侨大学学报自然科学版,2003,24(4):364-368.
    [17] L. Pranee. Chitosan as a dry strength agent for paper. Appita journal,2002,55(3):101-105.
    [18]王爱勤,肖玉方.壳聚糖的改性和应用研究.中国生化药物杂志,1997,18(1):16-18.
    [19] A. Tolaimate, J. Desbrieres, M. Rhazi, A. Alagui, M. Vincendon, P. Vottero. On theinfluence of deacetylation process on the physicochemical characteristics of chitosan fromsquid chitin. Polymer,2000,41(7):2463-2469.
    [20] N. Kubota, N. Tatsumoto, T. Sano, K. Toya. A simple preparation of half N-acetylatedchitosan highly soluble in water and aqueous organic solvents. Cabohydrate Research,2000,324(4):268-274.
    [21] C.L. Tien, M. Lacroix, P. Ispas-Szabo, M. Mateescu. N-acylated chitosan: hydrophobicmatrices for controlled drug release. Journal of Controlled Release,2003,93(1):1-13
    [22]韩怀芬,单海峰.壳聚糖的化学改性.化学世界,2000,(5):240-244.
    [23]王周玉,蒋珍菊,李富生,段明,胡星琪.水溶性N-(2-羧基苯甲酰基)化壳聚糖的合成.化学研究与应用,2004,16(1):8-10.
    [24]梁升,纪欢欢,李露,于世涛,刘福胜,解从霞.离子液体中均相合成N-乙酰化壳聚糖及其性能研究.青岛科技大学学报:自然科学版,2010,(2):129-132.
    [25] Z. Zong, Y. Kimura, M. Takahashi, H. Yamane. Characterization of chemical and solidstate structures of acylated chitoan. Polymer,2000,41(3):899-906.
    [26] N. Artphop, R. Ratana, S.Pitt. Electrospinning of hexanoyl chitosan. CarbohydratePolymers,2006,66(3):298-305.
    [27] Y. Tong, S. Wang, J. Xu, B. Chua, C. He. Synthesis of O-dipalmitoyl chitosan and itsamphiphilic properties and capability of cholesterol absorption. Carbohydrate Polymers,2005,60(2):229-233.
    [28]白欣,慕卿,李树宝,张梅,何金生,方月娥,汪春兰,赵宇.新型基因载体巯基烷基化壳聚糖的制备及体外性质的初步研究.安徽医科大学学报,2009,(2):162-167.
    [29]李方,刘文广,薛涛.烷基化壳聚糖的制备及载药膜的释放行为研究.化学工业与工程,2002,(4):281-285.
    [30]强涛涛,王学川,任龙芳.壳聚糖化学改性的研究进展.皮革化工,2005,(5):14-17.
    [31] H. Baumann, V. Fanst. Concepts for improved regioseleetive placement of O-sulfo,N-sulfo, N-acetyl, and N-carboxyhmehyl groups in chitosan derivatives. CarbohydrateResearch,2001,331(1):43-57.
    [32] S. Nishimura, H. Kai, K. Shinada, T. Yoshida, S. Tokura, K. Kurita, H. Nakashima, N.Yamamoto, T. Uryu. Regioselective syntheses of sulfated polysaccharides: specific anti-HIV-1activity of novel chitin sulfates. Carbohydrate Research,1998,306(3):427-433.
    [33] T. Sakaguchi, T. Horikushi, A. Nakajima. Adsorption of uranium by chitin phosphate andchitosan phosphate. Agricultural and Biological Chemistry,1981,45(10):2191-2195.
    [34] N. Nishi, A. Ebina, S. Nishimura, A. Tsutsumi. Highly phosphorylated derivatives of chitin,partially deacetylated chitin and chitosan as new functional polymers: preparation andcharacterization. International Journal of Biological Macromolecules,1986,8(5):311-317.
    [35]董炎明,吴玉松,王勉.取代基个数及长度对羟乙基壳聚糖液晶性的综合影响.高分子学报,2001,(2):172-176.
    [36]郭立民,张谋真,刘勇.羧甲基壳聚糖的制备及应用.化学工程师,2002,89(2):50-51.
    [37]陈建勇,刘冠峰.壳聚糖改性及用其整理纺织品抗菌性能的研究.功能高分子学报,2002,15(2):194-198.
    [38]完莉莉,汪玉庭.新型冠醚交联壳聚糖的合成.化学试剂,2001,23(1):6-7.
    [39] J.H. Yu, C.W. Feng, Y.G. Tang. Studies on chemical modification and application of chitinand chitosan. Guangxi Chemical Industry,1997,26(3):28-32.
    [40]许晨,卢灿辉,丁马太.壳聚糖季铵盐的合成及结构表征.功能高分子学报,1997,10(1):51-55.
    [41] S.H. Lim, S.M. Hudson. Synthesis and antimicrobial activity of a water-soluble chitosanderivative with a fiber-reactive group. Carbohydrate Research,2004,339(2):313-319.
    [42] J. Holappa, T. Nevalainen, R. Safin, P. Soininen, T. Asplund, T. Luttikhedde, M. Masson, T.Jarvinen. Novel water-soluble quaternary piperazine deribatives of chitosan: synthesis andcharacterization. Macromolecule Bioscience,2006,6(2):139-144.
    [43] Y. Xie, X. Liu, Q. Chen. Synthesis and characterization of water-soluble chitosan derivateand its antibacterial activity. Carbohydrate Polymers,2007,69(1):142-147.
    [44] J.K. Sahni, S. Chopra, F.J. Ahmad, R.K. Khar. Potential prospects of chitosan derivativetrimethyl chitosan chloride(TMC) as a polymeric absorption enhancer: synthesis,characterization and applications. Journal of Pharmacy Pharmacology,2008,60(9):1111-1119.
    [45] D.W. Jenkins, S.M. Hudson. Review of vinyl graft copolymerization featuring recentadvances toward conctrolled radical-based reactions and illustrated with chitin/chitosan trunkpolymers, Chemical Reviews,2001,101:3245-3273.
    [46] R. Nakamura, K. Aoi, M. Okada. Interactions of enzymes and a lectin with a chitin-basedgraft copolymer having polysarcosine side chains, Macromolecular bioscience,2004,4(6):610-615.
    [47] G.S. Kumbar, K.S. Soppimath, T.M. Aminabhavi. Synthesis and characterization ofpolyacrylamide-grafted chitosan hydrogel microspheres for the controlled release ofindomethacin. Journal of Applied Polymer Science,2003,87(9):1525-1536.
    [48]李东旭,耿燕丽.壳聚糖的改性及作为生物材料的应用研究.材料科学与工程学报,2006,(2):301-305.
    [49]吴根,罗人明,赵耘挚.丙烯酰胺改性壳聚糖的制备.化学世界,2001,(2):90-92.
    [50]胡宗智,张卫红,李晓燕.壳聚糖与甲基丙烯酸接枝共聚.广州化工,2003,31(1):21-24.
    [51] M. Yazdani-pedrain, J. Retuert. Synthesis and swelling behavior of hydrogels based ongrafted chitosan. Materials Research Society Symposium-proceedings,1999,550:29-34.
    [52] D.K. Singh, A.R. Ray. Controlled release of glucose through modified chitosan membranes.Journal of Membrane Science,1999,155(1):107-112.
    [53] Y. Hu, H. Jiang, C. Xu, Y. Wang, K. Zhu. Preparation and characterization of poly(ethyleneglycol)-g-chitosan with water-and organosolubility. Carbohydrate Polymers,2005,61(4):472-479.
    [54]常德富,王江涛.壳聚糖的化学改性及其应用.日用化学工业,2006,(4):243-246.
    [55] K.C. Gupta, F.H. Jabrail. Glutaraldehyde and glyoxal crosslinked chitosan microspheresfor controlled delivery of centchroman. Carbohydrate Research,2006,341(6):744-756.
    [56] C.H. Ni, Y.W. Xu. Studies on syntheses and properties of chelating resins based onchitosan. Journal of Applied Polymer Science,1996,59(3):499-504.
    [57] P. F. Devaux. Static and dynamic lipid asymmetry in cell membranes. Biochemistry,1991,30(5):1163-1173.
    [58] W. Harnett, M. M. Harnett. Phosphorylcholine: friend or foe of the immune system.Immunology Today,1999,20(3):125-129.
    [59] K. Ishihara, H. Oshida, Y. Endo, T. Ueda, A. Watanabe, N.J. Nakabayashi.Hemocompatibility of human whole blood on polymers with a phospholipid polar group and itsmechanism. Journal of Biomedical Materials Research,1992,26(12):1543-1552.
    [60] J. Hayward, D. Chapman. Phospholipid polymers-a new biomaterial. Biomaterials,1984,5,135-142.
    [61]张秀彩,钟伟,孟晟,程为庄,杜强国.磷脂聚合物的研究进展.高分子通报,2004,(1):65-72.
    [62] T. Nakaya, Y.J. Li. Phospholipid polymers. Progress in Polymer Science,1999,24(1):143-181.
    [63] G.H. Hsiue, S.D. Lee, P.C.T. Chang, C.Y. Kao. Surface characterization and biologicalproperties study of silicone rubber membrane grafted with phospholid as biomaterial via plasmainduced graft copolymerization. Journal of biomedical materials research,1998,42(1):134-137.
    [64] K. Ishihara, K. Fukumoto, Y. Iwasaki, N. Nakabayashi. Modification of polysulfone withphospholipid polymer for improvement of the blood compatibility. Biomaterials,1999,20(17):1545-1551.
    [65] Y. Iwasaki, Y. Aiba, N. Morimoto, N. Nakabayashi, K. Ishihara. Semi-interpenetratingpolymer metworks composed of biocompatible phospholipid polymer and segmentedpolyurethane. Journal of biomedical materials research,2000,52(4):701-708.
    [66] Y. Iwasaki, N. Nakabayashi, K. Ishihara. Synthesis of novel phospholipid polymers bypolycondensation. Macromolecular Rapid Communications,2000,21(6):287-290.
    [67] A.P. Zhu, S.Q. Wang, Y.L. Yuan, J. Shen. Cell adhesion behavior of chitosan surfacemodified by bonding2-methacryloyloxy-ethyl phosphorylcholine. Journal of biomaterialsscience-polymer edition,2002,13(5):501-510.
    [68] A.P. Zhu, B. Shan, Y.L. Yuan, J. Shen. Preparation and blood compatibility ofphosphorylcholine-bonded O-butyrylchitosan. Polymer international,2003,52(1):81-85.
    [69] A.P. Zhu, J. Zhang, J. Shen. Preparation and anticoagulant property ofphosphorylcholine-terminated O-benzoylchitosan derivative. Journal of applied polymerscience,2003,88(2):489-493.
    [70] M.J. Tiera, X.P. Qiu, S. Bechaouch, Q. Shi, J.C. Fernandes, F.M. Winnik. Synthesis andcharacterization of phosphorylcholine-substituted chitosans soluble in physiological pHconditions. Biomacromolecules,2006,7(11):3151-3156.
    [71] S. Meng, Z.J. Liu, W. Zhong, Q.H. Wang, Q. Du, Phosphorylcholine modifiedchitosan:Appetent and safe material for cells. Carbohydrate Polymers,2007,70(1):82-88.
    [72] P.B. Huangfu, M. Gong, C.F. Zhang, S. Yang, J. Zhao, Y.K. Gong. Cell outer membranemimetic modification of a cross-linked chitosan surface to improve its hemocompatibility.Colloids and surfaces B: Biointerfaces,2009,71(2):268-274.
    [73] V.M. Ramos, N.M. Rodriguez, M.F. Diaz, M.S. Rodriguez, A. Heras, E. Agullo.N-methylene phosphonic chitosan. Effect of preparation methods on its properties.Carbohydrate Polymers,2003,52(1):39-46.
    [74] P.P. Win, Y. Shin-ya, K.J. Hong, T. Kajiuchi. Formulation and characterization of pHsensitive drug carrier based on phosphorylated chitosan. Carbohydrate Polymers,2003,53(3):305-310.
    [75] K. Miyatake, Y. Okamoto, Y. Shigemasa, S. Tokura, S. Minami. Anti-inflammatory effectof chemically modified chitin. Carbohydrate Polymers,2003,53(4):417-423.
    [76] X.H. Wang, J.B. Ma, Y.N. Wang, B.L. He. Structural characterization of phosphorylatedchitosan and their applications as effective additives of calcium phosphate cements.Biomaterials,2001,22(16):2247-2255.
    [77] R.C. Capozza. Enzymically decomposable biodegradable pharmaceutical carrier. Ger Pat,2505305,1975.
    [78] G. Laroche, D. Mantovani, P. Chevallier, M. Castonguay, J.F. Pageau. Plasma surface graftprocess for reducing thrombogenicity. WO02/070032,2002.
    [79] S.J. Nishmura, O. Kohgo, K. Kurita. Chemospecific manipulations of a rigidpolysaccharide: syntheses of novel chitosan derivatives with excellent solubility in commonorganic solvents by regioselective chemical modifications. Macromolecules1991,24(17):4745-4748.
    [80] Y.K. Gong, F. Mwale, M.R. Wertheimer, F.M. Winnik. Promotion of U937cell adhesion onpolypropylene surfaces bearing phosphorylcholine functionalities. Journal of BiomaterialsScience, Polymer Edition,2004,15(11):1423-1434.
    [81]史宏灿,徐志飞,赵学维,秦雄,王文祖,孙康,高向阳.人工气管材料体外细胞毒性和生物相容性研究.第二军医大学学报,2002,23(10):1138-1141.
    [82]孙皎,薛淼,励永明,顾国珍,钱云芳,陆华,孟爱英.可吸收超高分子量聚-DL-乳酸材料的生物安全性评价.口腔材料器械杂志,2000,9(4):195-197.
    [83] M.D. Yourtee, P.Y. Tong, L.A. Rose, J.D. Eick, C.C. Chappelow, T.A. Bean. The effect ofspiroorthocarbonate volume modifier co-monomers on the in vitro toxicology of trialnon-shrinking dental epoxy co-polymers. Research communications in molecular pathology andpharmacology,1994,86(3):347-360.
    [84] USP[S].22thed.1990.2069.
    [85]冯新德.生物材料与医用高分子.化学通报,1994,9:8-10.
    [86] K. Ishihara. Novel polymeric materials for obtaining blood-compatible surfaces. Trends inPolymer Science,1997,5(12):401-407.
    [87] S. Hirano, M. Zhang, M. Nakagawa, T. Miyata. Wet spun chitosan-collagen fibers, theirchemical N-midifications, and blood compatibility. Biomaterials,2000,21(10):997-1003.
    [88] C. Mao, J. Yuan, H. Mei, A.P. Zhu, J. Shen, S.C. Lin. Introduction of photocrosslinkablechitosan to polyethylene film by radiation grafting and its blood compatibility. MaterialsScience and Engineering: C,2004,24(4):479-485.
    [89] B. Carreno-Gomez, R. Duncan. Evaluation of the biological properties of soluble chitosanand chitosan microspheres. International Journal of Pharmaceutics,1997,148(2):231-240.
    [90] K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, N. Nakabaysshi. Why dophospholipid polymers reduce protein adsorption. Journal of Biomedical Materials Research,1998,39(2):323-330.
    [91] A.P. Zhu, L.H. Yuan, T. Chen, H. Wu, F. Zhao. Interactions between N-succinyl-chitosanand bovine serum albumin. Carbohydrate Polymers,2007,69(2):363-370.
    [92] Y.K. Chang, S.Y. Chou, J.L. Liu, J.C. Tasi. Characterization of BSA adsorption on mixedmode adsorbent: I. Equilibrium study in a well-agitated contactor. Biochemical EngineeringJournal,2007,35(1):56-65.
    [93]刘慧娟,李鹏,张亚东,郭操,邓畯元,蔡键炜,刘伯里.叶酸与人血清白蛋白结合作用的光谱研究.光谱学与光谱分析,2009,29(7):1915-1919.
    [94] S. Hirano, H. Seino, Y. Akiyama. Biotechnology and Bioactive Polymers. New York:Plenum Press,1994.
    [95] T.J. Aspden, J.D.T. Mason, N.S. Jones, J. Lowe, Q. Skaugrud, L. Illum. Chitosan as a nasaldelivery system: The effect of chitosan solutions on in vitro and in vivo mucociliary transportrates in human turbinates and volunteers. Journal of pharmaceutical science,1997,86(4):509-513.
    [96] R. Muxxarelli. Biochemical aignificance at exogenous chitins and chitosans in animals andpatients. Carbohydrate Polymers,1993,20(1):7-16.
    [97] K.A. Janes, P. Calvo, M.J. Alonso. Polysaccharide colloidal particles as delivery systemsfor macromolecules. Advanced Drug Delivery Reviews,2001,47(1):83-97.
    [98] K.A. Janes, M.J. Alonso. Depolymerized chitosan nanoparticles for protein delivery:preparation and characterization. Journal of Applied Polymer Science,2003,88(12):2769-2776.
    [99] Q.Y. Deng, C.R. Zhou, B.H. Luo. Preparation and characterization of chitosannanoparticles containing lysozyme. Pharmaceutical biology,2006,44(5):336-342.
    [100] Y.H. Lu, Y.Y. Chen, H. Lin, C. Wang, Z.D. Yang. Preparation of chitosan nanoparticlesand their application to antheraea pernyi silk. Journal of Applied Polymer Science,2010,117(6):3362-3369.
    [101] Q. Gan, T. Wang. Chitosan nanoparticle as protein delivery carrier-systematicexamination of fabrication conditons for efficient loading and release. Colloids and Surfaces B:Biointerfaces,2007,59(1):24-34.
    [102] K.Y. Lee, W.H. Jo, I.C. Kwon, Y.H. Kim, S.Y. Jeong. Structural determination andinterior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water.Macromolecules,1998,31(2):378-383.
    [103] N. Wiraharma, Y. Zhang, S. Venkataraman, J.L. Hedrick, Y.Y. Yang. Self-assembledpolymer nanostructures for delivery of anticancer therapeutics. Nanotoday,2009,4(4):302-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700