仿生硅化与自组装固定化酶用于二氧化碳转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然合成了大量结构复杂性能优越的有机、无机或有机/无机杂化材料,这些材料与常规材料相比有着特殊的性质,从而实现了生物体各种优异的功能。仿生矿化可实现温和条件下(常温、中性pH)无机氧化物的形成,并可通过生物模板或合成模板的自组装来调控无机氧化物的形貌,为酶固定化提供了新的思路。层层自组装过程可在常温水溶液中进行,条件温和,能维持酶分子的天然构象和生物活性,为固定化酶提供适宜的微环境。本论文以仿生硅化和自组装为主要方法,根据单酶及多酶体系对载体材料的要求进行固定化酶载体设计与制备,主要内容总结如下:
     首先,将仿生硅化与LbL层层自组装相结合,制备出鱼精蛋白/氧化硅杂化微囊用于醇脱氢酶(YADH)的单酶固定化。以CaCO3微粒为模板,在其表面交替组装有机的精蛋白层和无机的氧化硅层,然后用EDTA溶液去除模板得到鱼精蛋白/氧化硅杂化微囊,并阐明了微囊的形成过程和机理。将微囊用于固定化醇脱氢酶YADH的研究,发现微囊可为酶提供适宜的微环境,使酶保持较高的pH和热稳定性,以及较高的储存和重复使用稳定性。
     在上述工作的基础上,模仿细胞的结构,提出多酶微工厂的概念,将制备的鱼精蛋白/氧化硅杂化微囊包埋于海藻酸钙-鱼精蛋白-氧化硅(Alg-Pro-Si)微囊中,制备出具有Capsules-in-Capsule结构的多酶固定化载体。将鱼精蛋白/氧化硅杂化微囊包埋到Alg-Pro-Si微囊中,以Alg-Pro-Si微囊作为厂房, LbL微囊作为工作车间,含不同酶种的LbL微囊组成“酶催化装配线”,对输入的底物分子进行高效“加工”。Capsules-in-Capsule微工厂避免了不同种类酶分子间相互作用对酶活的影响;实现了多酶体系内部的功能分割,便于单独调节每种酶的催化特性。此外,LbL微囊包埋于较大Alg-Pro-Si微囊中,模仿细胞器间的分工协作,从大概念上又实现了多酶的共固定化,既缩短底物的传质路径,又有利于固定化酶与产物的分离制备的Capsules-in-Capsule微工厂在二氧化碳的酶法转化中表现了较高的甲醇产量,具有较高的储存和循环使用稳定性。
The astonishing ability of living organisms to produce biocomposites with superior characteristics attracts the growing attention of numerous research groups. Biomimetic mineralization, which utilizes biological molecules or synthetic analogues to template and catalyzes the formation of inorganic oxides under mild conditions, provides a versatile new technology for enzyme immobilization with several inherent advantages. The morphology of the inorganic materials can be controlled by the template self-assembly. The process of LbL self-assembly is conducted in aqueous solution under mild conditions, which can well preserve the enzymes native structures and activities. Both of the biomimetic mineralization and self-assembly process can create benign microenvironment for the immobilized enzyme. This study discusses biomimetic and self-assembly approach for the formation of silica-based materials and their potential application in the preparation of enzyme carriers.
     The details in this study were summarized as follows:
     Firstly, mimicking the nacre layer in mollusk shell, a novel approach combining biomimetic mineralization with layer-by-layer (LbL) self-assembly was proposed to prepare protamine–silica hybrid microcapsules. More specifically, these microcapsules were fabricated by alternative deposition of positively charged protamine layers and negatively charged silica layers on the surface of CaCO3 microparticles, followed by dissolution of the CaCO3 microparticles using EDTA. Moreover, these protamine-silica hybrid microcapsules were employed as the carrier for the immobilization of YADH. The encapsulated YADH displayed enhanced recycling and storage stability.
     Secondly,inspired by the structure of cell, a microfactory with capsules-in- capsule structure was prepared for multienzymes immobilization. The Alg-Pro-Si capsules were loaded with LbL self-assembly microcapsules where the Alg-Pro-Si capsules worked as structural shell and the LbL microcapsules worked as“workshop”. By encapsulating different enzyme-containing LbL microcapsules within Alg-Pro-Si capsules, an enzymatic‘assembly line’could be created to alter the incoming molecules or‘manufacture’the product. The reaction probabilities and efficiencies would be considerably enhanced owing to spatial confinement of the biochemical machinery. The enzymes encapsulated by Capsules-in-capsule micro reactor displayed higher methanol yield and stability than free enzymes system.
引文
[1] Sheldon R A. Enzyme immobilization: The quest for optimum performance, Adv. Synth. Catal., 2007, 349(8-9): 1289~1307
    [2] Mateo C, Palomo J M, Fernandez-Lorente G, Guisan J M, Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme Microb. Tech., 2007, 40(6): 1451~1463
    [3] Subramanian A, Kennel S J, Oden P I, Jacobson K B, Woodward J, Doktycz M J. Comparison of techniques for enzyme immobilization on silicon supports, Enzyme Microb. Tech., 1999, 24(1-2): 26~34
    [4] Smith K, Silvernail N J, Rodgers K R, Elgren T E, Castro M, Parker R M. Sol-gel encapsulated horseradish peroxidase: a catalytic material for peroxidation, J. Am. Chem. Soc., 2002, 124(16): 4247~4252
    [5] Vandenberg T, Brown R S, Krull U J, in: I.E. Veliky (Ed.), Immobilized biosystems in theory and practical applications, Elsevier, Holland, 1983, 120~135.
    [6] Weetall H H. Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports, Appl. Biochem. Biotechnol., 1993, 41(3): 157~188
    [7] Betigeri S S, Neau S H. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads, Biomaterials, 2002, 23(17): 3627~3636
    [8]李伟,孙建中,周其云,适用于酶包埋的高分子载体材料研究进展,功能高分子学报, 2001, 14: 365~369
    [9] Cao L Q. Immobilised enzymes: science or art?, Curr. Opin. Chem. Biol., 2005, 9(2): 217~226
    [10]刘蕾,李杰,王亚娥,生物固定化技术中的包埋材料,净水技术, 2005, 24(1): 40~42
    [11]张羽飞,仿生固定化酶制备及其催化特性研究: [博士学位论文],天津,天津大学, 2008
    [12]刘健,杨启华,张磊等,有机-无机杂化氧化硅基介孔材料,化学进展,2005,17(5):809~818
    [13] Coradin T, Allouche J, Boissière M, Livage J. Sol-gel biopolymer/silica nanocomposites in biotechnology, Curr. Nanosci., 2006, 2(3): 219~230
    [14] Miller J M, Valentine J S, Zink J I. Synthesis conditions for encapsulating cytochrome C and catalase in SiO2 materials, J. Non-Cryt. Solids, 1996, 202(3): 279~289
    [15] I1er R K. Multilayers of colloidal particles, J. Colloid Interface Sci., 1966, 21: 569~572
    [16]仝维鋆,高长有,层层组装微胶囊的制备及其职能响应与物质包埋性能,高等学校化学学报,2008,29(7):1285~1298
    [17] Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites, Science, 1997, 277: 1232~1237
    [18] Ariga K, Hill J P, Ji Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application, Phys. Chem. Chem. Phys., 2007, 9: 2319~2340
    [19]姜艳军,基于仿生钛化和自组装的酶固定化载体设计与制备: [博士学位论文],天津;天津大学, 2009
    [20] Caruso F, Yang W J, Trau D, Renneberg R. Microencapsulation of uncharged low molecular weight organic materials by polyelectrolyte multilayer self-assembly, Langmuir, 2000, 16: 8932~8936
    [21] Wang Y J, Caruso F. Nanoporous protein particles through templating mesoporous silica spheres, Adv. Mater., 2006, 18: 795~800
    [22]赵庆贺,层状结构生物相容微胶囊的制备及其药物传输性能,[博士学位论文],杭州,浙江大学,2006
    [23] Dai Z F, Mohwald H. Highly stable and biocompatible nafion-based capsules with controlled permeability for low-molecular-weight species, Chem. Eur. J., 2002, 8: 4751~4755
    [24] Berth G, Voigt A, Dautzenberg H, Donath E, Mohwald H. Polyelectrolyte complexes and layer-by-layer capsules from chitosan/chitosan Sulfate, Biomacromolecules, 2002, 3: 579~590
    [25] Radtkenko I L, Sukhorukov G B, Leporati S. Assembly of alternated multivalent ion/polyelectrolyte layers on colloidal particles. Stability of the multilayers and encapsulation of macromolecules into polyelectrolyte capsules, J. Colloid Interface Sci., 2000, 230: 272~280
    [26] Aruso F. Nanoengineering of particle surfaces, Adv. Mater., 2001, 13: 11~22
    [27]仝维鋆,新结构聚电解质微胶囊的制备与性能研究,[博士学位论文],杭州,浙江大学,2007
    [28] Caruso F, Caruso R A, Mohwald H. Production of hollow microspheres from nanostructured composite particles, Chem. Mater., 1999, 11: 3309~3314
    [29] Caruso F, Trau D, Mohwald H, Renneberg R. Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules, Langmuir, 2000, 16: 1485~1488
    [30] Balabushevitch N G, Sukhorukov G B, Moroz N A, Volodkin D V, Larionova N I, Donath E, Mohwald H. Encapsulation of proteins by layer-by-layer adsorption of polyelectrolytes onto protein aggregates: Factors regulating the protein release, Biotechnol.Bioeng., 2001, 76: 207~213
    [31] Bobreshova M E, Sukhorukov G B, Saburova E A, Elfimova L I, Shabarchina L I, Sukhorukov B I. Lactate dehydrogenase in interpolyelectrolyte complex. Function and stability, Bioflzika, 1999, 44: 813~820
    [32] Tiourina O P, Antipov A A, Sukhorukov G B, Larionova N L, Lvov Y, M?hwald H. Entrapment of alpha-chymotrypsin into hollow polyelectrolyte microcapsules, Macromol. Biosci., 2001, 1: 209~214
    [33] Yu A M, Wang Y J, Barlow E, Caruso F. Mesoporous silica particles as templates for preparing enzyme-loaded biocompatible microcapsules, Adv. Mater., 2005, 17: 1737~1741
    [34] Volodkin D V, Larionova N I, Sukhorukov G B. Protein encapsulation via porous CaCO3 microcapsules templating, Biomacromolecules, 2004, 5: 1962~1972
    [35] Jiang Y, Yang D, Zhang L. Biomimetic synthesis of protamine-titania microcapsule using layer-by-layer assembly, Advanced Functional Materials, 2009, 19: 150~156
    [36] Wang Y, Angelatos A S. and Caruso F. Template synthesis of nanostructured materials via Layer-by-Layer assembly, Chem. Mater., 2008, 20 (3): 848–858
    [37]崔福斋,郑传林,仿生材料,北京:化学工业出版社, 2004: 6~7
    [38]崔福斋,生物矿化,北京:清华大学出版社, 2007: 2~3
    [39] Sun Q, Vrieling E G, Van Santen R A, Sommerdijk N A J M. Bioinspired synthesis of mesoporous silicas, Curr. Opin. Solid. St. M., 2004, 8(2): 111~120
    [40] Hildebrand M, Doktycz M J, Allison D P. Application of AFM in understanding biomineral formation in diatoms, Pflugers Arch– Eur. J. Physiol., 2008, 456:127~137
    [41] Coradin T, Mercey E, Lisnard L, Livage J. Design of silica-coated microcapsules for bioencapsulation, Chem. Commun., 2001, 2496~2497
    [42] Allouche J, Boissière M, Hélary C, Livage J, Coradin T. Biomimetic core-shellgelatine/silica nanoparticles: A new example of biopolymer-based nanocomposites, J. Mater. Chem., 2006, 16(30): 3120~3125
    [43] Boissière M, Meadows P J, Brayner R, Hélary C, Livage J, Coradin T. Turning biopolymer particles into hybrid capsules: the example of silica/alginate nanocomposites, J. Mater. Chem., 2006, 16: 1178~1182
    [44] Luckarift H R, Spain J C, Naik R R, Stone M O. Enzyme immobilization in a biomimetic silica support, Nat. Biotechnol., 2004, 22(2): 211~213
    [45] Naik R R, Tomczak M M, Luckarift H R, Spain J C, Stone M O. Entrapment of enzymes and nanoparticles using biomimetically synthesized silica, Chem. Comm., 2004, 1684~1685
    [46] Luckarift H R, Johnson G R, Spain J C. Silica-immobilized enzyme reactors: application to cholinesterase-inhibition studies, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 843: 310~316
    [47] Ivnitski D, Artyushkova K, Rincon R A, Atanassov P, Luckarift H R, Johnson G R. Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: Glucose oxidase-catalyzed direct electron transfer, Small, 2008, 4: 357~364
    [48] Luckarift H R, Ku B S, Dordick J S, Spain J C. Silica-immobilized enzymes for multi-step synthesis in microfluidic devices, Biotechnol. Bioeng., 2007, 98: 701~705
    [49] Luckarift H R, Nadeau L J, Spain J C. Continuous synthesis of aminophenols from nitroaromatic compounds by combination of metal and biocatalyst, Chem. Comm., 2005, 383~384
    [50] Betancor L, Berne C, Luckarift H R, Spain J C. Coimmobilization of a redox enzyme and a cofactor regeneration system, Chem. Comm., 2006, 3640~3642
    [51] Miller S A, Hong E D, Wright D. Rapid and efficient enzyme encapsulation in a dendrimer silica nanocomposite, Macromol. Biosci., 2006, 6: 839~845
    [52] Roth K M, Zhou Y, Yang W, Morse D E. Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH, J. Am. Chem. Soc., 2005, 127: 325~330
    [53] Betancor L, Luckarift H R. Bioinspired enzyme encapsulation for biocatalysis, Trends in Biotechnology, 2008, 26: 566~572
    [54] Luckarift H R, Dickerson M B, Sandhage K H, Spain J C. Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania, Small, 2006, 2: 640~643
    [55] Cole K E, Ortiz A N, Schoonen M A, Valentine A M. Peptide and long-chainpolyamine-induced synthesis of micro- and nanostructured titanium phosphate and protein encapsulation, Chem. Mater., 2006, 18: 4592~4599
    [56] Regan M R, Banerjee I A. Immobilization of invertase in germania matrix and a study of its enzymatic activity, J. Sol-Gel Sci. Technol., 2007, 43: 27~33
    [57]谢雪原,周华,高震等,多酶偶联反应体系的研究和应用,化工进展,2004,23(8):864~868
    [58] Naik R R, Tomczak M M, Luckarift H R. Entrapment of enzymes and nanoparticles using biomimetically synthesized silica, Chem. Commun., 2004: 1684~1685
    [59] Leduc P R, Wong M S, Ferreira P M. Towards an in vivo biologically inspired nanofactory, Nat. Nanotechnol. 2007, 2: 3~7
    [60] El-Zahab B, Donnelly D, Wang P. Particle-tethered NADH for Production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol. Bioeng. 2008, 99: 508~514
    [61] Obert R, Dave B C. Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices, J. Am. Chem. Soc., 1999, 121: 12192~12193
    [62] Sun Q, Jiang Y, Jiang Z, Zhang L. Green and efficient conversion of CO2 to methanol by biomimetic co-immobilization of three dehydrogenases in protamine-templated titania. Ind. Eng. Chem. Res., 2009, 48, 4210-4215
    [63] Chang T M S. Semipermeable microcapsules, Science, 1964, 146(3643): 524~525
    [64] Xu S W, Lu Y, Li J, et al. Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate?silica(ALG?SiO2) hybrid gel, Ind. Eng. Chem. Res., 2006, 45 (13): 4567~4573
    [65] Liu W, Wang P. Cofactor regeneration for sustainable enzymatic biosynthesis, Biotechnol. Adv. 2007, 25(4): 369~384
    [66] Ei-Zahab B, Donnelly D, Wang P. Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes, Biotechnol. Bioeng., 2008, 99(3): 508~514
    [67]Aresta M, Dibenedetto A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans., 2007: 2975~3028
    [68] Ion A, Doorslaer C V, Parvulescu V. Green synthesis of carbamates from CO2, amines and alcohols, Green Chem., 2008, 10: 111~116
    [69] DavéB, Carbondale, Dehydrogenase Enzymatic synthesis of methanol, United States, Reexamination Certificate, US 6440711 Bl, 2002-08-27
    [70]李大东,二氧化碳加氢合成甲醇催化剂研究进展,石油与天然气化工,2001,30(4): 169~171
    [71] Sakakura T, Choi J C, Yasuda H. Transformation of Carbon Dioxide, Chem. Rev., 2007, 107: 2365~2387
    [72] Aresta M, Dibenedetto A. Development of environmentally friendly syntheses: use of enzymes and biomimetic systems for the direct carboxylation of organic substrates, Rev. Mol. Biotechnol., 2002, 90: 113~128
    [73] Aresta M, Dibenedetto A, Pastore C. Biotechnology to develop innovative syntheses using CO2. Environ. Chem. Lett., 2005, 3: 113~117
    [74] Liu W, Wang P. Cofactor regeneration for sustainable enzymatic biosynthesis, Biotechnology Advances, 2007, 25: 369~384
    [75]张翀,刑新会,辅酶再生体系的研究进展,生物工程学报,2004,20(6):811~816
    [76] Lorenz J. Bonderer, AndréR. Studart, Ludwig J. Gauckler. Bioinspired Design and Assembly of Platelet Reinforced Polymer Films, Science, 2008, 319: 1069~1073
    [77]谢忠东,丁晓非,黄光烨,贝壳--天然复合材料仿生学研究的发展状况,水产科学, 2006, 25(6): 20~23
    [78] Ortiz C, Boyce M C. Bioinspired structural materials, Science, 2008, 319: 1053~1054
    [79] Pokroy B, Demensky V, Zolotoyabko E. Nacre in molluskShells as a multilayered structure with strain gradient, Adv. Funct. Mater., 2009, 19: 1~6
    [80] Wang T, C?lfen H, Antonieti M. Nonclassical crystallization: Mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive, J. Am. Chem. Soc., 2005, 127: 3246~3247
    [81]封志强,基于新驱动力模板微胶囊的制备及性能研究: [博士学位论文],浙江,浙江大学, 2007
    [82] Vinogradova O I, Lebedeva O V, Kim B. Mechanical behavior and characterization of microcapsules,Annual Review of Materials Research,2006,36: 143~178
    [83] Fery A,Weinkamer R. Mechanical properties of micro- and nanocapsules: Single-capsule measurements, Polymer, 2007, 48: 7221-7235
    [84] Yu A M, Wang Y J, Barlow E, Caruso F. Mesoporous silica particles as templatesfor preparing enzyme-loaded biocompatible microcapsules, Adv. Mater., 2005, 17: 1737~1741
    [85] Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials, Chem. Mater., 2001, 13: 3169~3183
    [86] Frenkel-Mullerad H, Avnir D. Sol-gel materials as efficient enzyme protectors: Preserving the activity of phosphatases under extreme pH conditions, J. Am. Chem. Soc., 2005, 127: 8077~8081
    [87] Eggers D K, Valentine J S. Molecular confinement influences protein structure and enhances thermal protein stability, Protein Sci., 2001, 10: 250~261
    [88] Ravindra R, Zhao S, Gies H, Winter R. Protein encapsulation in mesoporous silicate: The effects of confinement on protein stability, hydration, and volumetric properties, J. Am. Chem. Soc., 2004, 126: 12224~12225
    [89] Gottfried D S, Kagan A, Hoffman B M, Friedman J M. Impeded rotation of a protein in a sol-gel matrix, J. Phys. Chem. B, 1999, 103: 2803~2807

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700