鲨鱼皮微沟槽减阻机理与复制技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机的蔓延,减阻技术发展成为世界各国科学技术竞争的重要内容之一目前有多种减阻方法,但这些方法都存在有一定的局限性。生物形体为人类提供了丰富的构形资源。通过流体动力学和湍流研究水平的不断深入,人们发现物体表面如果有一定形状的沟槽,减阻效果将会更好。其中以“鲨鱼皮效应”著称的鲨鱼为人类提供了完美的减阻模板。人们已经通过对鲨鱼鳞盾沟槽模型进行放大和简化制造出了仿生鲨鱼皮。人工仿生鲨鱼皮在航空航天、远洋海运、石油管道运输等方面具有重要的应用前景,但成型出与真实鲨鱼皮微观形貌相近的仿生鲨鱼皮仍是尚未解决的难题。
     首先,本文对鲨鱼皮表面鳞盾沟槽结构的减阻机理进行了研究。采用有限元流体动力学软件Fluent进行数值计算。本文将计算模型简化并将整个计算分为沟槽减阻机理和鳞盾结构减阻机理两部分。计算结果表明:沟槽内部二次涡的对流作用是沟槽减阻的主要原因。鲨鱼皮表面减阻效果较好的另一个原因是鳞盾间的空隙中充满低速安静的流体,在空隙的顶端存在微小“涡旋”,这些“涡旋”可以起到将滑动摩擦变为滚动摩擦,并且阻止鳞片外部的高速流体进入鳞片内部空间的作用。
     然后,本文针对鲨鱼皮表面特有的鳞盾沟槽结构提出了热压电铸法和真空浇注法两种复制方法。热压电铸法是指利用高分子材料在鲨鱼皮样本上通过加热施压的方法复制鲨鱼皮表面特有的鳞盾沟槽结构,然后以此为电铸原型进行电铸最终得到鲨鱼皮金属模具的方法。真空浇注法是指向鲨鱼皮样本表面浇注液态复制材料,然后利用真空设备去除复制材料中的气泡,在固化剂的化学反应作用下,复制材料凝固,然后脱模得到鲨鱼皮复制品的方法。通过对这两种方法进行观察和对比得知,鲨鱼皮金属电铸模具表面鳞盾沟槽结构基本上被复制了下来,微沟槽清晰,鳞盾结构层次分明。真空浇注法得到的鲨鱼皮复制模板表面的鳞盾层次分明,鳞盾表面微沟槽轮廓完整、清晰,与真实鲨鱼皮相似度较高。但是鲨鱼皮金属电铸模具表面圆角现象比较严重,这种现象与电铸原型的复杂形状有关。因此从结果上来看,真空浇注法是一种相对较为理想的鲨鱼皮复制方法。
With the spreading of energy crisis, drag reduction technology has been an important part of science and technology competition between countries. There are several drag reduction methods which have been taken into practice, however all these methods have limitation in application. Natural creatures provide rich knowledge resource to help human beings to solve engineering problems, such as "shark skin effect" which provides human being with a perfect drag reduction template. With the development of hydrodynamics and turbulence researching, it was fount out that a certain shape of groove on surface could help to reduce drag. Shark skin replica had been produced through amplification and simplification. Artificial shark skin replica would be widely applied in aerospace, ocean shipping, oil pipeline. However, the production of replica which has the similar riblet and scale structure with real shark skin is still a problem.
     Firstly, drag reduction mechanism of shark riblet was studied by numerical analysis. Fluent software was applied in numerical simulation. Because of the difficulty of creating a similar 3D shark skin computing modeling, two parts of the drag reduction numerical simulation of shark skin, riblet drag reduction numerical simulation and scale drag reduction numerical simulation, were researched separately. The results indicated that the convection movement of secondary vortex is the main reason of riblet drag reduction. Another reason of riblet drag reduction is the existence of small space between the scales which can hold low speed fluid. The small vortex in the space can turn sliding friction into rolling friction and prevent high speed fluid rushing the wall of shark skin scale.
     Then, two methods, heat-embossing electroforming method and vacuum casting method were attampted in shark skin replicating. Process of heat-embossing electroforming method includes three steps:Firstly, micro-replication template was produced with PMMA by heat-embossing. Then, PE shark skin replica was produced by polymer casting based on shark skin template. Finally, taking the PE replica as an electroforming template, the shark skin nickel mould was finished after electroforming. Process of vacuum casting method includes two steps:Firstly, replication material was casted onto shark skin and put into vacuum tank. After solidification, the mould was finished. Then, liquid silicone rubber shark skin replica was produced by using of this mould in vacuum environment also. It could be concluded as following after comparison and analysis. Clear and similar shark skin riblet and scale was nearly replicated on shark skin metal mould by electroforming. Template made by vacuum casting had clear groove and scale structure. Nevertheless, the phenomenon of the existing of fillet on shark skin metal mould was serious, which had relationship with the complex structure on shark skin. So we can draw the conclusion of that, vacuum casting method is a relatively perfect shark skin replication method.
引文
[1]王小波.妙趣横生的鱼体仿生[J].百科知识,2006,2:25-26.
    [2]Koeltzsch K, Dinkelacker A, Grundmann R. Flow over convergent and divergent wall riblets[J]. Experiments in Fluids,2002,33(2):346-350.
    [3]刘博,姜鹏,李旭朝,等.鲨鱼盾鳞肋条结构的减阻仿生研究进展[J].材料导报,2008,22(7):14-17.
    [4]Reif W F. Morphogenesis and function of the squamation in sharks [J]. Neues Jahrbuch fur Geologie and Palaentologie. Abhandlungen Band,1982,164:172-183.
    [5]Choi H, Moin P, Kim J. Direct numerical simulation of turbulent flow over riblets[J]. Fluid Mech,1993,255(1):503-539.
    [6]Frohnapfel B, Jovanovi J, Delgado A. Experimental investigations of turbulent drag reduction by surface-embedded grooves [J]. Journal of Fluid Mechanics,2007,590: 107-116.
    [7]丛茜,封云,任露泉.仿生非光滑沟槽形状对减阻效果的影响[J].水动力学研究与进展,2006,21(2):232-238.
    [8]田丽梅,任露泉,刘庆平,等.仿生非光滑旋成体表面减阻特性数值模拟[J].吉林大学学报(工学版),2006,36(6):908-913.
    [9]封云,丛茜,金敬福,等.沟槽非光滑表面流场的数值分析[J].吉林大学学报(工学版),2006:36(2):103-107.
    [10]丛茜,封云.三角形沟槽表面流场的数值模拟[J].船舶力学,2006,10(5):11-16.
    [11]胡海豹,宋保维,潘光,等.鲨鱼沟槽表皮减阻机理的仿真研究[J].系统仿真学报,2007,19(21):4901-4907.
    [12]胡海豹,宋保维,杜晓旭,等.条纹沟槽表面近壁区流场数值计算[J].火力与指挥控制,2008,33(4):54-56.
    [13]刘志华,董文才,夏飞.V型沟槽尖峰形状对减阻效果及流场特性影响的数值分析[J].水动力学研究与进展,2006,21(2):223-231.
    [14]Walsh M J. Drag characteristics of V-groove and transverse curvature riblets[J]. AIAA, 1980,72:168-184.
    [15]Walsh M J. Riblets as a viscous drag reduction technique [J].AIAA Journal,1983,21 (4):485-486.
    [16]Bechert D W. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics,1997,338(5):59-87.
    [17]Bechert D W, Bruse M, Hage W. Experiments with three-dimensional riblets as an idealized model of shark skin [J]. Experiments in Fluids,2000,28(5):403-412.
    [18]Lynn T B, Bechert D W, Gerich 0 A. Direct drag measurements in turbulent flat-plate boundary layer with turbulence manipulators[J]. Experiments in Fluids,1995,19: 405-416.
    [19]Bechert D W, Bruse M, Hage W, et al. Fluid mechanics of biological surfaces and their technological application[J], Naturwissenschaften,2000,87(4):157-171.
    [20]Choi K S, Gadd G E, Pearcey H H, et al. Tests of drag-reducing polymer coated on a riblet surface[J]. Applied Scientific Research,1989,46(3):209-216.
    [21]Lee S J, Jang Y G. Control of flow around a NACA 0012 airfoil with a micro-riblet film [J]. Journal of Fluids and Structures,2005,20(5):659-672.
    [22]Gupta B, Goodman R, Jiang F K, et al. Analog VLSI system for active drag reduction [J]. Micro IEEE,1996,16(5):53-59.
    [23]Han M, Lim H C, Jang Y G, et al. Fabrication of a micro-riblet film and drag reduction effects on curved objects[C]. In:Institute of Electrical and Electronics Engineers. The 12th International Conference on Solid State Sensors, Actuators and Microsystems. Boston:IEEE,2003:369-399.
    [24]Lee S J, Lee S H. Flow field analysis of a turbulent boundary layer over a riblet surface[J]. Experiments in Fluids,2001,30(2):153-166.
    [25]Bechert D W, Bruse M, Hage W, et al. Biological surfaces and their technological application——laboratory and fight experiments on drag reduction and separation control[C]. In:American Institute of Aeronautics and Astronautics.28th AIAA Fluid Dynamics Conference. Snowmass Village:AIAA,1997:1-34.
    [26]韩鑫,张德远,李翔,等.大面积鲨鱼皮复制制备仿生减阻表面研究[J].科学通报,2008,53(7):838-842.
    [27]韩鑫,张德远.鲨鱼皮复制工艺研究[J].中国科学E辑:技术科学,2008,38(1):9-15.
    [28]苏炳煌,李光吉,蒲侠,等.鲨鱼皮表面微结构在高分子表面的复制方法初探[J].材料研究与应用,2008,2(4):460-464.
    [29]Chu D C, Karniadakis G E. A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces [J]. Journal of Fluid Mechanics,1993,250:1-42.
    [30]Ball P. Shark skin and other solutions [J]. Nature,1999,400(6744):507-509.
    [31]Schmitz G J, Grohn M, Polaczek A B. Fabrication of Micropatterned Surfaces by Improved Investment Casting[J]. Advanced Engineering Materials,2007,9(4):265-270.
    [32]HAN X, ZHANG D Y. Study on the micro-replication of shark skin [J]. Technological Sciences,2008,51(7):890-896.
    [33]Yoon H S, Chun H H. Turbulent Flow over Thin Rectangular Riblets [J]. Journal of Mechanical Science and Technology,2005,19(9):1801-1810.
    [34]Naresh M D, Arumugam V, Sanjeevi R. Mechanical behaviour of shark skin [J]. J. Biosci, 1997,22(4):431-437.
    [35]Rudschuck S, Hirsch D, Zimmer K, et al. Replication of 3D-micro-and nanostructures using different UV-curable polymers [J]. Microelectronic Engineering,2000, 53(1-4):557-560.
    [36]徐中,赵军,吴正华,等.凹坑形非光滑表面的减阻性能分析[J].航空精密制造技术,2005,45(1):33-38.
    [37]何军,李恩田,史小军.长输管道中V形沟槽减阻效果的试验研究[J].石油机械,2009,37(1):13-16.
    [38]王英奎,江春波,李玲.流动减阻的研究综述[J].水力发电,2008,34(2):67-70.
    [39]马龙,周月豪,熊良才,等.LIGA工艺中微电铸工艺研究[J].激光技术,2006,30(1):47-49.
    [40]明平美,朱荻,胡洋洋,等.超声微细电铸试验研究[J].中国机械工程,2008,19(6):446-449.
    [41]雷卫宁,朱荻,李冬林,等.高性能微细电铸的实验研究[J].材料工程,2008(10):25-28.
    [42]郑晓虎,朱荻.金属微结构阵列的电铸成型[J].光学精密工程,2008,16(3):473-477.
    [43]傅继东.快速电铸制模技术[J].广西轻工业,2008,24(8):50-51.
    [44]刘益芳,崔宏巍,吕文龙,等.利用微电铸制作镍悬臂梁[J].厦门大学学报(自然科学版),2005,44(5):955-957.
    [45]杜立群,刘海军,秦江,等.微电铸器件铸层均匀性的研究[J].光学精密工程,2007,1 5(1):69-75.
    [46]宫德海.基于准LIGA技术的微型齿轮型腔成型工艺研究及模具设计[D]:(硕士学位论文).大连:大连理工大学机械工程学院,2005.
    [47]姜笃山.精密电铸法制造复杂薄壁零件的工艺研究[D]:(硕士学位论文).大连:大连理工大学机械工程学院,2007.
    [48]肖日松.微电铸工艺参数对模具质量影响研究[D]:(硕士学位论文).大连:大连理工大学机械工程学院,2006.
    [49]刘海军.微电铸器件均匀性的研究[D]:(硕士学位论文).大连:大连理工大学机械工程学院,2006.
    [50]刘仁志.实用电铸技术[M].北京:化学工业出版社,2006.
    [51]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007.
    [52]贾月梅,赵秋霞,赵广慧.流体力学[M].北京:国防工业出版社,2006.
    [53]韩占忠,王敬,兰小平.Fluent流体工程仿真计算实力与应用[M].北京:北京理工大学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700