纳米羟基磷灰石晶体/复合树脂口腔修复材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国人均患龋率为40%。据朱希涛教授估算,以每个龋齿患者平均有两个龋齿,则我国有13亿龋齿有待充填修复,需要大量的齿科充填材料。出于健康、美观以及保护自身牙体组织的考虑,人们倾向选择新型齿科修复材料,使银汞合金正逐渐走出人们的视线。自从1962年美国学者Bowen R L发明了以Bis-GMA树脂为基质,以二氧化硅为填料的牙科复合树脂以来,复合树脂的发展一直十分迅速,目前在临床上的应用范围也越来越广。与银汞合金相比,复合树脂的固化收缩率大和耐磨性不足也限制了它的应用。人们渴望开发性能更为优越的材料来满足口腔临床应用的需要。
     众所周知,人体骨和牙齿是由天然有机分子构成的连续相和弥散其中的羟基磷灰石纳米晶粒所组成的复合材料。因此,从仿生学角度出发,通过模仿人牙的组成成分、结构性质并制备出与人牙无机质在组成、晶体结构、形貌、特定的活性基团及微量元素含量等方面极其相似的纳米类骨磷灰石晶体,将其加入到高分子或树脂中可以发挥其生物功能效应,并有助于提高复合材料的力学性能。如n-HA与骨直接键合可促进骨和牙齿的再矿化,有利于骨重建和防龋能力的提高。为了制备类人体组织的生物医用材料,羟基磷灰石和高分子的复合材料被广泛地研究。通过模拟自然骨的组成结构与功能,利用不同性质的材料优化组合而形成的钙-磷/高聚物复合材料由于能够兼具钙-磷材料生物活性和高分子材料的力学性能近年引起了人们极大的兴趣和广泛的关注。这种修复材料的出现和发展,为获得结构和性质类似于人体组织的生物材料开辟了一条广
There are more than 40 percent of the whole population in our country who suffer from their caries. If one patient has two caries, there would be more than 1.3 billion caries which need repairing. Therefore, it would urgently demand a huge amount of dental restorative materials said by professor ZHU Xi-tao. Amalgam is becoming less and less relevant as a standard restorative. Patients'increased health-awareness, their desire for enhanced esthetics, continued discussions on amalgam and recent developments in materials' research are all reasons for developing new dental restoratives. Composite resin, invented by Bowen R L, an American scholar in 1962, in which Bis-GMA resin was taken as the matrix and silica etc. as the fillings, has already becoming a kind of useful materials instead of amalgam to repair hard tissue in clinical application. But the main problems incurred with composite fillings in the posterior region to date have been their tendency to form marginal gaps due to polymerization shrinkage and lack of strength and bioactivity. Apart from polymerization shrinkage, contact with the opposing
    dentition also causes elastic deformation of the filling material, which adversely affects its bond strength on the tooth structure. The above mentioned shortagesassociated with the current composite resin limit its further widespread application.As we know, various biological materials existing in nature, such as shells、 pearls、 bone and teeth, are all inorganic/organic composites with good mechanical properties. In order to fabricate biomedical materials which imitate human hard tissue to great extent, hydroxyapatite (HA)/polymer composites have attracted much attention because such composites may have osteoconductivity as a result of the presence of HA. HA has been extensively investigated due to its excellent biocompatibility, bioactivity and osteoconductivity as well as its similarity to the main mineral component of bone and teeth. According to the principle of biomimesis, if we could synthesize a kind of HA which has a similar composition, crystal structure, morphology, and crystalinity to that of human teeth, and then mix them with the current composite resin, some expected functions would be exhibited when it is applied to repair human teeth, such as the effect of biological function. Furthermore, the mixed HA would be conducive to the teeth reconstruction and the ability of anti-caries.In this research, the properties of CHARISMA(?) composite resin and the composition and structure of human posterior teeth were investigated firstly. Then the teeth-like nano-hydroxyapatite were fabricated. In addition, the interaction between n-HA and silane coupling agent was studied. On the basis, the n-HA/CHARISMA(?) composite was prepared by melting mixation technique.1. CHARISMA(?) resin is one kind of composites which consists of 71.44wt% inorganic filling materials and 28.56wt% organic phase. The inorganic materials are made of amorphous silica, barium and aluminum glass and titanium'oxide. The organic phase is a substance which contains: -OH, -C=O, -CH3 and -CH2. The testing results show that CHARISMA? resin matchs the basic requirement for composite resin according to GB11749-89, while its bioactivity and biocompatibility need to be further improved since there is no calcium and phosphate ions present in the resin.
    2. The crystal morphology and composition of human dental apatite were investigated using IR, XRD and TG techniques. The results show that two carbonate substitution types (A and B) exist in human posterior dental apatite, of which, carbonate apatites (A-type, substitution for -OH) have increased lattice constants a, and B-type, substitution for PO43-, are usually characterized by reduced a lattice constant. With the increase of calcining tempreture, the carbonates located in both A and B type substitution sites escaped from the dental apatite lattice and A-type carbonate disappeard in relatively low sinter temperature, but appeared again with the further increase of tempreture; while the B-type carbonate existed all the time with tempreture increase although its quantity decreased. XRD spectra show that there is an extensive degree of peak broading for the human dental apatite dried at 80 ℃ and the peaks become relatively sharp and well-resolved at high temperature, indicating that the crystal size and crystallizability of the teeth apatite increases with the thermal treatment temperature. Thermo gravimetric analysis showed that there were different types of water loss at temperature between 25℃ and 1000℃.The dentine contains more water and organic material, so its weigt loss was greater than that of enamel. The apatite crystals in enamel linked much closer than those of dentine. Therefore there would need more energy to break enamel than dentin. Those analyse provide a promising perspective for the tooth-like restorative material preparation.Nano-apatite crystals were made from hydrothermal treatment at 145 ℃ under normal pressure. The crystal morphology and composition of the synthesized nano-HA were investigated using TEM, IR, XRD, ICP and XPS techniques and were also compared with those of human posterior teeth. The results indicate that nano-apatite crystals have a similar composition, crystal structure, morphology and crystalinity to those of human teeth, and also containing CO32- and Na+ ions. From the view of biomimesis, the CO32- and F ions or groups should be introduced to the nano-apatite to mimic the biological apatite as much as possible. The research provides a wy for further n-HA/dental resin composites preparation.3. n-HA surface wae treated with silane. The interface of n-HA and silane
    coupling agent was investigated. An effective surface modification method was developed to treat n-HA crystals slurry by using γ-(trimethoxysilyl) propyl methacrylate as a coupling agent. FT-infrared spectroscopy (FT-IR), Raman spectroscopy and X-ray photoelectron spectrum (XPS) were used to characterize the silane-modified n-HA. The experimental results showed that peaks of hydroxyl group of n-HA decrease greatly after n-HA treated by silane, implying the occurrence of possible chemical reaction between n-HA and silane. Moreover, several surface modification mechanism is involved, including hydrogen bond chemical bond as well as the charge effect. The analysis of n-HA/silane interface is important for further n-HA/polymer or n-HA/dental resin composites preparation.4. The n-HA/CHARISMA(?) resin was fabricated by melting mixation technique under the help of the diluent TEGDMA. The testing results showed that the proerties of the CHARISMA(?) resin could be changed by adding n-HA crystals, some characteristics were improved after the mixation of n-HA into CHARISMA(?) resin. The usage of diluent TEGDMA helps to enlarge the inorganic content of the composite but decreases the properties of composite. n-HA crystals should be added in the process of CHARISMA(?) resin formation.
引文
1 崔福斋,冯庆玲.生物材料学[M].北京:科学出版社,1996.
    2 王勃生,孟庆思.生物材料的战略意义及近期发展方向.[J].材料导报,1993,3:1~5.
    3 R.C. Randall, N.H.F. Wilson. Clinical testing of restorative materials: Some historical landmarks. [J]. Dentistry, 1999, 27 (4): 543~550.
    4 H. Forss and E. Widstrom. Factors influencing the selection of restorative materials in dental care in Finland. [J]. Dentistry, 1996, 24(4):257~262.
    5 R.W. Wassell, J.F. McCabe and A.W.G. Walls. Wear rates of regular and tempered composites. [J]. Dentistry. 1997, 25(1): 49~52.
    6 Paul C. Biomimetic ceramic and composite biology and materials synthesis. [J].MRS Bulletin, 1992, 17(10):37~39.
    7 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    8 薛淼,宁丽.我国口腔材料学进展.[J].功能材料,1997,28(6):557~560.
    9 薛淼.口腔应用材料学[M].天津:天津科技翻译出版公司,1997.
    10 薛淼.口腔生物材料研究的新进展.[J].口腔材料器械杂志,1999,8(1):1~9.
    11 陈曦.纳米复合树脂的研究进展.[J].临床口腔医学杂志,2003,19(12):754~755.
    12 陈治清.口腔材料学[M](第2版).北京:人民卫生出版社,2000.
    13 Lerich R, Policard A. The normal and pathological physiology of bone and its problems [M]. Henry kimpton, London, 1928.
    14 Hench L, Splinter R, Greenlee T et al. Bonding mechanisms at the interface of ceramic prosthetic materials. [J]. Biomed Eng, 1971, 2:117~141.
    15 Aoki H. Science and medical application of hydroxyapatite. Japan Association of Apatite Science[M]. Takayama Press System Center Co., Tokyo, 1991.
    16 《材料科学技术百科全书》编辑委员会,师昌绪.材料科学技术百科全书[M].北京:中国大百科全书出版社,1995.
    17 Knaack D, Goad ME, Aiolova M, et al. Resorbable calcium phosphate bone substitute. J Biomed Mater Res. 1998, 43(4):399~409.
    18 赵玮.口腔生物磷酸钙的晶体特性及其生物学意义.[J].国外医学口腔医学分册,2001,28(1):51~53.
    19 D.F.威廉姆斯.医用与口腔材料[M].R.W.卡恩,P.哈森,E.J.克雷默.材料科学与技术 丛书[M]14卷(译).北京:科学出版社,1999年.
    20 李潇,施长溪,朱光第.医用复合树脂的新进展.[J].国外医学生物医学工程分册,2004,27(5):318~321.
    21 Ellakwa AE, Shrtall AC, Marquis PM. Influence of fiber type and wetting agent on the flexural oroperties of an indirect fiber reinforced composites. [J]. Prosthet Dent, 2002, 88(5): 485~490.
    22 唐立辉,陈萍,刘峰,等.硼酸铝晶须对不同树脂体系实验复合树脂力学性能的作刚.[J].牙体牙髓牙周病学杂志,1997,7(2):120~122.
    23 徐恒昌,王同,郑刚,等.用于牙科复合树脂的具有固位力外形的无机填料的研究.[J].中国生物医学工程学报,1995,4(14):285~288.
    24 Rueggberg F. From vulcanite to vinyl, a history of resins in restorative dentistry. [J].Prosthet. Dent, 87(4):364~379.
    25 Furman B, Rawls HR, Wellinghoff S. Metal-oxide nanoparticles for the reinforcement of dental restorative resins. [J].Crit. Rev. Biomed. Eng, 2000, 28:439~443.
    26 Schmidt D, Shah D, Giannelis E.P. New advances in polymer/layered silicate nanocomposites. [J].Current Opinion in Solid State and Materials Science, 2002, 6:20~212.
    27 Xu MHK, Eichmiller FC. [P].Reinforcement of dental and other composite materials. US No. 5861445, 1999.
    28 上海科文出版社.聚合物材料助剂手册[M].上海:上海科文出版社,85.3.
    29 KENNETH J. PHILLIPS' Science of Dental materials [M] (Eleventh Edition). Anusavice, SAUDRERS, 2003.
    30 McDonough WG, Antonucci JM, Dunkers JP. Interracial shear strength of dental resin-glass fibers by the microbond test. [J]. Dent. Mater, 2001,17(6): 492.
    31 牛光良,王同,徐恒昌.[J].硅烷偶联剂的浓度对钡玻璃与树脂基质间粘结强度的影响.中国生物医学工程学报,1999,18(2):211~213.
    32 白鸣霞,等.偶联剂在口腔材料中应用及研究现状.[J].天津医科大学学报,2004,10(4):598~600.
    33 肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2003.
    34 Kinomoto Y, Torii M, Takeshige F, et al. Polymerization contraction stresses of resin-based composite restorations within beveled cavity preparation of class Ⅰ restorations. [J]. Am J Dent, 2003, 16(2):139~143.
    35 Alster D, Feilzer A J. De gee. The dependence of shrinkage stress reduction on porosity concentration in thin resin layers. [J]. Dent. Res, 1992, 71: 1619~1622.
    36 Condon JR, Ferracane J L. Reduction of composite contraction stress through non-bonded microfiller particles. [J].Dent. Mater, 1998, 14:256~260.
    37 Condon J.R, Ferrance JL. Reduced polymerization stress through non-bonded nanofiller particles. [J].Biomaterials, 2002, 23:3807~3815.
    38 F.J.M. Roeters, N.J.M. Opdam, B.A.C. Loomans. The amalgam-free dental school. [J]. Dent, 2004, 32(5):371~377.
    39 张怀勤,巢永烈.复合树脂的研究进展.[J].国外医学口腔医学分册,2005,32(1):23~24.
    40 C. Compend Contin. [J].Educ. Dent. 1999, 20(Supp):4~15.
    41 Bouschlicher MR, Rueggeberg FA, Boyer DB. [J].Esthet. Dent., 2000, 12(1):23~32.
    42 Mills RW, Jandt KD, Ashworth SH. [J].Br Dent, 1999, 186(8):388~391.
    43 Loza-Herrero MA, Rueggeberg FA, Wofford DT. [J].Dent. Res, 2000, 27(6): 488~493.
    44 Knobloch LA, Kerby RE, Seghi R, et al. [J].Int. Proetho-dont, 1999, 12(5): 432~438.
    45 张立德.纳米材料[M].北京:化学工业出版社,2000.
    46 Colvert P. [J].Nature, 1996, 383(26):300.
    47 Birringer R, Gleiter H, Klein HP, et al. Nanocrystalline materials: An approach to a novel solid structure with gaslike disorder. [J].Phy. Lett. A, 1984,102: 365~369.
    48 Chikara Hayashi. Ultrafine particles. [J]. Vacuum. Science and Technology. 1987, 5(5): 1375~1384.
    49 李维芬.纳米材料的性质.[J].现代化工,1999,19(6):534~537.
    50 苗鸿雁,罗宏杰,王秀峰,陆彩飞.低压条件下纳米氧化锆的水热结晶合成.[J].陶瓷工程,1998,32(5):1~4.
    51 Yan DS, Liu HB, Zheng YS, et al. [J]. Nanostr. Mater, 1997, 9(7): 442~450.
    52 李玉宝.纳米生物医药材料[M].北京:化学工业出版社,2004.
    53 王昕,孙康宁,尹衍升等.纳米复合陶瓷材料研究进展.[J].复合材料学报,1999,16 (1):34~38.
    54 de Groot K, Wolke JGC, Jansen JA. Calcium phosphate coatings for medical implants. [J].Proc Instn Mech Engrs, 1998, 212 part H: 137.
    55 Aoki H. An additional clinical application of apatite-coated ceramics for use as dental prosthesis. [J]. JPN Kakai Tokkyo Koho, 1978, 118: 411.
    56 中国材料研究学会.2000年材料科学与工程新进展(上)[M].北京:冶金工业出版社,2001.
    57 朱明刚,邬鸿彦,孔令宜,等.Ti基表面多层超细HA涂层复合种植体的制备.[J].材料工程,1999,7(7):1564~1565.
    58 黄立业,憨勇,徐可为.电化学沉积-水热合成法制备羟基磷灰石生物涂层的工艺研究.[J].硅酸盐学报,1998,26(1):87~91.
    59 黄立业,徐可为,纳米针状羟基磷灰石涂层的制备及其性能的研究,[J].硅酸盐学报,1999.27(3):351~356.
    60 Thomas KA, Kay JF, Cook SD, et al. The effect of surface macrotexture and hydroxyapatite coating on the mechanical strength and histological profiles of titanium implant materials. [J]. Biomed Mater Res, 1987, 21: 1395.
    61 Chen J, Tong W, Cao Y, et al. Effect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment. [J]. Biomed Mater Res, 1997, 34: 15.
    62 A.M. Ektessabi. Surface modification of biomedical implants using ion-beam-assisted sputter deposition. [J]. Nuclear Instruments and Methods in Physics Research B, 1997, 127/128:1008~1014.
    63 Moszner N, Vekel Th. Sol-gel composites for dental materials. European polymer federation congress. 15-20, July, 2001.
    64 Yin R, Sharp L, Sub BI, Loeb M. Optimium Silane Loading on the Filler for the Stress Reduction upon Polymerization. Bisco. Inc., Schaumburg.
    65 Chan DC, Tius HW, Chung KH, et al. Radiopacity of Titanium Oxide nanoparticle filled resins. [J]. Dent. Mater, 1999, 15(3):219~222.
    66 Luo J, Lannutti JJ, Seghi RR. Effect of filler porosity on the abrasion resistence of nanoporous silicagel/polymer composites. [J].Dent. Mater, 1998, 14(1):29~36.
    67 Xu HH, Smith DT, Schumacher GE, et al. [J].Biomedical Materials Research, 2000,52(4):812~818.
    68 Xu HH, Quinn JB, Smith DT, et al. [J]. Biomaterials, 2002,23(3):735~742.
    69 钟玉修,倪龙兴,吴道澄,等.[J].牙体牙髓牙周病学杂志,2003,13(4):331~333.
    70 徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    71 赵云风.口腔生物力学[M].北京:北京医科大学、中国协和医科大学联合出版社,1996.
    72 Heuer, A. H. et al. Innovative materials processing strategies: a biomimetic approach. [J]. Science, 1992, 255: 1098~1105.
    73 Cuisinier FJG, Steuer P, Voegel JC, Brisson A. High resolution electron microscopy study of crystal growth mechanisms in chicken bone composites. [J].Cryst. Growth, 1995, 156: 443~453.
    74 Plate U, Hohling HJ, Reimer L, et al. Analysis of the calcium distribution in predentin by EELs and of the early crystal formation in dentin by ESL and ESD. [J].Microsc. 1992, 166:329.
    75 Brown WE. Octacalcium phosphate and hydroxyapatite. [J]. Nature, 1962, 192:1048.
    76 Houlle P, Voegel JC, Schultz P, et al. High resolution electron microscopy: s tructure and growth mechanisms of human dentine crystal. [J].J Dent. Res, 1997, 76(3): 895.
    77 Plate U, Hohling HJ. Morphological and structure studies of early mineral formation in enamel of rat incisors by electron spectroscopic imaging (ESL) and electron spectroscopic diffration (ESD). [J]. Cell Tissue Res, 1994, 277: 151.
    78 陈小平,张蓉,等.牙本质生物矿化机制的研究.[J].牙体牙髓牙周病学杂志,2002,12(12):684~687.
    79 冯厚德,李毅苹.羟基磷灰石与美容牙膏.[J].牙膏工业,2002,4:27~30.
    80 Tuntuan Li, Akao M, Takagi M. Tissue reaction of hydroxyapatite sol to rat molar pulp. [J]. Mater. In Medicine, 1998; 9(11): 611~672.
    81 Larry L. Hench, June Wilson, ed. An Introduction to Bioceramics[M]. London: World Scientific Press, 1993.
    82 沈卫,顾艳芳,刘昌胜,孙祥明,胡黎明.羟基磷灰石的表面特性.[J].硅酸盐通报, 1996, 1:45~52.
    83 Y. Li ,X. Zhang, W. Chen et al, The influence of multiphase calcium phosphate bioceramics on bone formation in nonosseous tissues, Trans 19th Annual Meeting of the Society for Biomaterials, 28April-2May ,1993, Birmingham, AL, USA, 1993, 165.
    84 朱晏军,王玮竹,阎玉华.纳米羟基磷灰石(HAP)的制备方法及应用.[J].佛山陶瓷,2003,7:9~11.
    85 Y. Li, C.P.A.T. Klein, X. Zhang et al. Formation of a bone apatite-like layer on the surface of porous hydroxyapatite ceramics. [J].Biomaterials, 1994, 15:835~841.
    86 Y. Li, J. de Wijn, C.P.A.T. Klein, S. Van De Meer, K. De Groot. Preparation and characterization of nanograde osterapatite-like rodcrystals. [J]. Mater Sci Mater Med, 1994, 5: 252~255.
    87 Y. Li, C.P.A.T. Klein, J. de Wijn, S. Van De Meer, K. De Groot..Shape change and phases transition of needle-like non-stoichiometric apatite crystals. [J]. Mater Sci Mater Med, 1994, 5: 263~268.
    88 Y. Li, J. de Wijn, C.P.A.T. Klein, S.V.D. Meer. Morphology and composition of nanograde calcium phosphate needle-like crystals formed by simple hydrothermal treatment. [J].Mater Sci Mater Med, 1994, 5:326~331.
    89 Y. Li, C. Klein, J. de Wijn et al. Morphology and phase structure of nanograde bone apatite-like rodshaped crystals. [J]. Biomaterials, 1993, 6:173~178.
    90 S. Khouri, M. Ferrari. Nanotechnology needs for cardiovascular sciences. [J]. Biomedical Microdevices, 2001,3(2):83~87.
    91 Xuejiang Wang, Yubao Li, Jie Wei, Klass de Groot. Development of biomimetic nano-hydroxyapatite/poly (hexamethylene adipamide) composites. [J]. Biomaterials, 2002, 23: 4787~4791.
    92 WANG Xue-jiang, LI Yu-bao, YAN yong-gang et al. Development of Biomimetic Composites of Nano-hydroxyapatite and Polyamide as a bone substitute. [J]. Chinese Journal of Biomedical Engineering (English edition), 2001: 199~203.
    93 王学江,汪建新,李玉宝,冯健清,严永刚,黄玫,杨爱萍.常压下纳米级羟基磷灰石针 状晶体的合成.[J].高技术通讯,2000,10(11):92~94.
    94 Wang Xuejiang, Wei Jie, Wang Jianxin, Li Yubao. Preparation of Nanograde Hydroxyapatite Needle-like crystals under Normal Atmospheric Pressure. 2001 Society for Biomaterials, 27th Annual Meeting Transactions, Saint Paul, Minnesota, USA, Volume ⅩⅪⅤ, April 24~29, 2001, 305.
    95 魏杰,李玉宝,左奕,杨爱萍.水热合成法制备纳米磷灰石晶体比较研究.[J].高技术通讯,2003,9:76~79.
    96 魏杰,李玉宝,陈维琼,左奕.纳米级类骨磷灰石晶体的研制.[J].功能材料,2003.4:471~472.
    97 杨晓庆,魏杰,李玉宝.不同条件下制备的纳米磷灰石晶体形貌和尺寸研究.[J].化学研究与应用,2003,3:411~413.
    98 左奕,李玉宝,魏杰.常压下纳米磷灰石晶体的合成和表征.[J].高技术通讯,2003.7:12~16.
    99 Tromel GZ. The optimum conditions for the formation of hydroxyapatite. [J]. Physic Chem, 1932, 158: 422~425.
    100 Henning PA, Fsson EA, Crins J. Triclinic oxy-hydroxyapatite. [J]. Mater Sci, 2001, 36 (2): 663~668.
    101 苗健,高琦,许思来.微量元素与相关疾病[M].郑州:河南医科大学出版社,1997.
    102 莫安春,吴红昆,陈治清,李玉宝,秦专.钇/羟基磷灰石纳米微晶对口腔细菌生长繁殖的影响.[J].口腔医学研究,2003,19(6):454~456.
    103 Sbordone L, Barone A, Ramaglia L, et al. Antimicrobial susceptibility of periodontopathic bacteria associated with failing implants. [J]. Peridontol, 1995, 66(1): 69~77.
    104 Correia R.N, Magalhaes PAAP, et al. Wet synthesis and characterition of modified hydroxyapatite powder. [J]. Mat. Sci; Mat. in Med., 1996,7: 501.
    105 Aoki H. Medical applications of hydroxyapatite [M]. Ishiyaku EuroAmerica, Inc. Tokyo, st. Louis, 1995.
    106 Sadae, Kmazawah, Murakamiy. Hydrothermal synthesis of crystalline hydroxyapatite ultrafineparticles. [J]. Chem. Eng. Comm., 1991, 103: 57.
    107 Minks, Choi Jw, Choish. Synthesis of ultrafine hydroxyapatite powder by hydrothermal reaction. [J]. Yoop Hakhoechi, 1992, 39(12): 997.
    108 Bouyer E, Gitzhofer F, Boules MI, morphological study of hydroxyapatite nanocrystal suspersion. [J]. Mater Sci; Mater in Medicine, 2000, 11: 523-531.
    109 Li Yubao, Zhang Xingdong, de Groot, R. Hydrolysis and phase transition of alpha-tricalcium phosphate. [J]. Biomaterials, 1997, 18(10): 737~741.
    110 薄颖慧,廖凯荣,卢泽俭等.聚乳酸/羟基磷灰石复合材料的研究:Ⅰ.超细微羟基磷灰石的合成及表面处理.[J].中山大学学报(自然科学版),1999,38(3):43~47.
    111 邝志清,潘春跃,黄可龙.Sol-gel法制备羟基磷酸钙超细粉.[J].中南工业大学学报 2000,31(3):246~248.
    112 Suchanck WL, Shink P, Byrappa K, et al. Mechanochemical synthesis of carbonated apatite powders at room tempreture. [J].Biomaterials, 2002, 23(3): 699~710.
    113 Nakamura S, Isobe T, Senna M. hydroxyapatite nano sol prepared via a mechanochemical route. [J]. Nanoparticle Research, 2001, 3: 57~61.
    114 Yeong KCB, Wang J, Ng SC. Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO_4. [J]. Biomaterials, 2001, 22: 2705~2710.
    115 Tas AC. Synthesis of biomimetic Ca-hydroxyapatite powders at 37 in synthetic body fluids. [J]. Biomaterials, 2000.21: 1429~1438.
    116 Zhang S, Gonsalves KE. Preparation and characterization of thermally stable nanohydroxyapatite. [J]. Mat, Sci: Mat in Med. 1997, 8:25~28.
    117 Fukuchi N, Akao M, Sato A. Effect of hydroxyapatite microcrystals on macrophage activity. [J]. Biomed. Mater. Eng. 1995; 5(4):219~31.
    118 贺鹏,赵安赤.聚合物改性中纳米复合新技术.[J].高分子通报,2001(1):74.
    119 曹珍元.纳米材料的化工应用与开发.[J].化工新型材料,2000,28(11):3.
    120 洪伟良,刘剑洪,等.无机—有机纳米复合材料研究进展.[J].化学研究应用,2000,12(2):132.
    121 徐国财,邢宏龙.纳米SiO_2在紫外光固化涂料中的应用.[J].涂料工业,1999,19(7):3.
    122 傅强,杜荣昵,等.聚合物分子复合材料的研究进展.[J].高分子材料与工程,1999,15(2):10.
    123 井新利,郑茂盛,等.PMMA—SiO_2原位复合材料的制备及性能研究.[J].高分子材料与 工程,1998,14(4):62.
    124 吴秋菊,薛志坚,等.具有伸展链构象聚苯胺/蒙脱土混杂纳米复合物的合成与表征.[J].高分子学报,1999(5):551.
    125 邢宏龙,徐国财,等.纳米粉体的分散及纳米复合材料的成型技术.[J].材料导报,2001,(9):62.
    126 陈立新,焦剑,蓝立文.功能塑料[M].北京:化学工业出版社,2004.
    127 Colvert P. [J]. Nature, 1996, 383(26): 300.
    128 黄锐,王旭,李忠明.纳米塑料[M].北京:中国轻工业出版社,2002.
    129 李旭华,袁荞龙,王得宁.二阶非线性光学聚氨酯对电光效应的共振增强.[J].功能高分子学报,2003,13(6):211.
    130 Vaia R A, Giannelis E P. Liquid crystal polymer nanocomposites: direct intercalation of thermotropic liquid crystalline polymers into layered silicates. [J]. Chem. Mater., 1993, 5: 1694.
    131 曾戎,章明秋,曾汉民.高分子纳米复合材料研究进展(Ⅰ)——高分子纳米复合材料的制备、表征和应用前景.[J].宇航材料工艺,1999,(1):1.
    132 黄锐,徐伟平,郑学晶,等.纳米级无机粒子对聚乙烯的增强与增韧.[J].塑料工业,1997,25(3):106.
    133 周其凤,胡汉杰.高分子化学[M].北京:化学工业出版社,2001.
    134 符连社,张洪杰,邵华.溶胶-凝胶法制备无机/有机杂化材料研究进展.[J].材料科学与工程,1999,17(1):84.
    135 张剑锋,郑强,高长有.溶胶—凝胶法制备高分子/无机复合材料.[J].功能材料,2000,31(4):357.
    136 王家芬,章文贡.溶胶凝胶法合成有机无机杂化材料进展—1.组分间以化学键作用的有机—无机杂化材料.[J].高分子通报,2001,(1):60.
    137 王家芬,章文贡.溶胶凝胶法合成有机无机杂化材料进展—2.组分间以次价力作用的有机—无机杂化材料.[J].高分子通报,2001,(2):30.
    138 黄智华,邱坤元.溶胶—凝胶化学与无机/有机杂化高聚物材料的合成.[J].大学化学,1995,10(5):1.
    139 漆宗能,尚文宁.聚合物/层状硅酸盐纳米复合材料理论与实践[M].北京:化学工业出版社,2002.
    140 Shuguang Zhang. [J].Biotechnology Advances, 2002,20: 321.
    141 姚晖,杜昶,杨韶华,崔福斋,雷涛.纳米羟晶/胶原仿生骨修复家兔颅颌骨缺损的实验研究.[J].透析与人工器官,2000,11:5~8.
    142 Hsu FY, Chueh SC, Wang YJ. Microspheres of hydroxyapatite/reconstituted collagen as supports for osterblast cell growth. [J]. Biomaterials, 1999,20(20):1931~1936.
    143 Johnson KD, Frierson KE, Keller TS, Cook Charles, Scheinberg Robert, Zerwekh Joseph, Meyers Laura, Sciadini MF. Porous ceramics as bone graft substitutes in long bone defects: a biomechanical and radiographic analysis. [J]. Orthop Res, 1996, 14: 351~369.
    144 Katthagen BD. Experimental animal investigation of bone regeneration with collagen-apatite. [J]. Arch Orthop Trauma Surg, 1984, 103 (4): 291~302.
    145 Zhang Qi-Qing, Ren Lei, Wang Chun, Liu Ling-Rong, Wen Xue-Jun, Liu Yu-Hua, Zhang Xing-Dong. Porous hydroxyapatite reinforced with collagen protein. [J]. Artif Cells Blood Subsiti Immobil Biotechnol, 1996, 24: 693~702.
    146 M. B. Yaylaoglu, P. Korkusuz, u.ors, F. Korkusuz, V. Hasirci. Development of a calcium phosphate-gelatin composite as a bone substitute and its use in drug release. [J]. Biomaterials, 1999, 20: 711~719.
    147 C. Du, F.Z. Cui, Q.L. Feng, X.D. Zhu, K. deGroot. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. [J]. Biomed Mater Res, 1998, 42: 540~548.
    148 K.I. Clarke, S.E. Graves, A.T.C. Wong, J.W. Triffitt, M.J.O. Francis, J.T. Czernuszka. Investigation into the formation and mechanial properties of a bioactive materials based on collagen and calcium phosphate. [J]. Mater Sci Mater Med, 1993, 4: 107~110.
    149 Rhee SH, Suetsugu Y, Tanaka J. Biomimetic configurational arrays of hydroxylapatite nanocrystals on bio-organics. [J]. Biomaterials, 2001, 22: 2843~2847.
    150 WeiJie, LiYubao. Preparation of hydroxyapatite and polyamide nano-composite by co-solution. Trans. of 29th annual meeting, Reno, Nevada, USA, April 30-May 3, 2003: 596.
    151 M. Wang, X.Y.Yang, K.A. Khor, Y. Wang. Preparation and characterization of bioactive monolayer and functionally graded coatings. [J]. Mater Sci Mater Med, 1999, 10: 269~273.
    152 李玉宝.生物医学材料[M].北京:化学工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700