感应耦合电能传输系统的特性与设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应耦合电能传输技术(ICPT)作为一个崭新的研究领域,近年来开始受到广泛关注。在ICPT系统中,能量可以通过电磁场,由一个静止的原边电源传给一个或多个可以运动的副边负载,由于其不需要经过导线接触,避免了可能由于接触引起的隐患,如火花,接触不良等。同时也可以使接头和连接器等免于维护,不受天气等外界环境的影响。ICPT除了在一般便携式电子设备中能够提供更为方便快捷的充电方式,用于电动汽车的供电,在某些特殊场合,如水下、矿井等较为危险的环境中,也受到了特别的青睐。随着各个领域对非接触式电能传输越来越多的需求,感应电能传输技术也越来越成为研究热点。
     本文以松散耦合变压器的等效模型为基础,对感应耦合电能传输电路的基本特性及其参数设计方法进行了研究,主要包括以下几个方面的内容:
     1.建立松散耦合变压器模型
     在感应耦合电能传输系统中,变压器由于耦合不紧密,存在较大的漏感,耦合系数很低,其特性与常规变压器有较大不同。在常规变压器等效模型的基础上,本文建立了松散耦合变压器的模型,阐明了其两种模型的磁通及各电气参数间的等效关系,并基于该模型分析了耦合系数、负载、线圈电阻等对松散耦合变压器传输特性的影响。对变压器参数的几种测量方法和不同测量方法可能引起的误差给出了理论分析和实验研究结果,并以此给出不同测量方法的适用场合。
     2.感应耦合电能传输电路的多谐振补偿设计方法
     为了提高功率传输能力,通常在松散耦合的变压器两侧以并联或串联的电容作为补偿,构成谐振电路。本文详细分析了各种补偿形式,包括仅在变压器一侧进行补偿的单谐振补偿结构(含原边串联补偿、原边并联补偿、副边串联补偿、副边并联补偿),和在变压器两侧同时进行补偿的多谐振补偿结构(含原边串联副边串联补偿、原边串联副边并联补偿、原边并联副边串联补偿、原边并联副边并联补偿等),并着重对其功率因数、电压增益、电流增益等进行分析研究,提出多谐振补偿结构能有效提高电路的功率因数,从而减小电路元件的应力和输入电源的功率等级。基于对多谐振补偿的研究结果,本文提出了一种通用的基于功率因数的多谐振补偿设计方法,该方法能够对系统进行有效的补偿,使得系统在不同负载下均具有较高的功率因数。
     3.电流型感应耦合电能传输电路的稳态及小信号建模
     基于理论分析和实验研究,分别建立了线性负载和整流桥负载两种情况下的电流型推挽感应耦合电能传输电路稳态模型,并考虑了磁芯损耗的影响,为电流型感应耦合电能传输系统参数优化设计提供了理论依据。基于电流型推挽感应耦合电能传输电路在不同阶段的动态方程分析,给出各阶段的谐振频率表达式,并着重讨论了电路参数对各谐振频率的影响,得出了实现频率表达式简化的条件及其结果,并通过实验进行了验证。在以一般平均法得到的稳态方程基础上,给出了电路的小信号模型。
     4.非接触式充电平台的设计
     作为感应耦合电能传输电路的一种具体应用,本文最后通过仿真和实验研究设计了一台用于便携式电子设备的非接触式充电平台实验装置。该充电平台利用无磁芯的平面变压器实现非接触式的电能传输,提出一种基于有限元分析(FEA)仿真的非接触式充电平台原边线圈优化布局方法,从而可以实现充电平面上方磁场分布的基本均匀。并基于多个绕组的变压器模型,对充电平台为多个负载同时供电的情况进行了电路分析。提出一种基于最大化功率因数原则的,多负载非接触式充电平台电路的参数设计方法,使得系统可以在不同的负载数目情况下均具有较高的功率因数,同时保持每个负载上的电压基本不变。与其他方法相比,该设计方法有利于实现在同样功率情况下具有较小的电路元件的电压、电流应力,提高元器件利用率。
As an emerging research field, Inductively Coupled Power Transfer (ICPT) technology has attracted wide spread attention recently. In ICPT system, power could be transferred from a stable primary source to one or more movable secondary loads through magnetic field. As no wires are needed to transfer power in the system, dangers from contact such as spark, non-reliable connect could be avoided. At the same time, connectors are maintenance free, and free from bad weather or other poor environmental conditions. Besides convenient charging for consumer electronic devices and electrical vehicles, ICPT can be widely used for charging in special conditions, such as underwater, mining wells, etc. As there are more and more demands of non-contact power transfer in various fields, ICPT technology has been a popular research project.
     The dissertation mainly focuses on the basic characteristics and the parameter design method of ICPT system based on the model of loosely coupled transformer, including following aspects:
     1. Modeling of loosely coupled transformer
     In ICPT system, there are large leakage inductances in the transformer due to the non-compact coupling, which results in a fairly low coupling coefficient, and the characteristics are much different from conventional transformers. Loosely coupled transformer model is built in this dissertation based on conventional transformer models; the equivalence of flux and electrical parameters between leakage inductance model and mutual inductance model is clarified. Based on the built model, the effect of coupling coefficient, load resistance and wire resistance to the transformer voltage and current transfer characteristic is analyzed in detail. Theoretical analysis and experimental results are given to elaborate different measure methods of transformer parameters and to clarify the differences during measurement in each method. And suggestions on how to appropriately choose the measure method are given.
     2. Multi-resonant compensation design method of ICPT
     To improve the power transfer capability, series or parallel capacitors are usually used in either side of the transformer as compensation, which can help to constitute resonant circuit. Different compensation topologies are discussed in detail, including single-resonant compensation, which compensate on only one side of the transformer (including primary series compensation, primary parallel compensation, secondary series compensation and secondary parallel compensation), and multi-resonant compensation, which compensate on both sides of the transformer (including primary series secondary series compensation, primary series secondary parallel compensation, primary parallel secondary series compensation and primary parallel secondary parallel compensation, etc.). Analyses are focused on the power factor, voltage gain and current gain in each topology; the results show that compared with single-resonant compensation, multi-resonant compensation can greatly improve the power factor. As a result, the circuit components and the power source can be selected at a lower power rate. According to the analysis, a general design method based on power factor is proposed to perform circuit parameter design, with which the system can be effectively compensated, and a high power factor can be achieved under different load condition.
     3. Steady state and small-signal model of a current source ICPT system
     Based on theoretical and experiment analysis, steady state model of the linear and rectifier load is built, respectively. Core loss of the circuit is discussed briefly. An optimization principal for ICPT system parameter design is proposed. Resonant frequencies of different stages in this circuit are discussed in detail based on the analysis of dynamic circuit equations. Several simplification conditions are obtained, and experimental results verified the analysis. Small signal model of the circuit is given based on the steady state operation point obtained from general average method.
     4. Non-contact charging platform design
     As a practical application of ICPT, a non-contact charging platform for portable electronic devices is built through simulations and experiments. The charging platform uses coreless planar transformer to realize non-contact power transfer. An optimized primary winding structure design technique is proposed by Ansoft FEA simulation. Based on multi-winding transformer model, circuit analysis of charging for multi-loads is presented. Finally a parameter design procedure in light of maximizing the power factor is proposed, by which the power factor can achieve a high value at different load numbers, and the voltage on each load remains constant. Compared with other methods, the proposed method can lower the voltage and current stress of circuit components at the same power rate, and help to achieve efficient components utilization.
引文
[1] N. Tesla, Apparatus for transmitting electrical power[P]. US patent 1119732
    
    [2] G. Scheible, J. Schutz and C. Apneseth. Novel wireless power supply system for wireless communication devices in industrial automation systems[C]. IEEE IECON 2002, vol.2: 1358-1363
    
    [3] C Fernandez, O Garcia, R. Prieto, J. A. Cobos and J. Uceda. Overview of different alternatives for the contactless transmission of energy[C]. IEEE IECON 2002, vol. 2:1318-1323
    
    [4] E. Culurciell, A. G. Andreou. Capacitive inter-chip data and power transfer for 3-D VLSI[J]. IEEE Trans on Circuits and Systems II: Express Briefs, 2006, 53(12):1348-1352
    
    [5] J. Kim, J. Choi, C. Kim, A. Chang and I. Verbauwhede. A low power capacitive coupled bus interface based on pulsed signaling[C]. IEEE Custom Integrated Circuits Conf, 2004, vol. 1:35-38.
    
    [6] W. C. Brown, The history of power transmission by radio waves[J]. IEEE Trans on Microwave Theory and Techniques, 1984,MIT-32(9): 1230-1242
    
    [7] C. Kim, D. Seo, J. You, J. Park and B. H. Cho. Design of a contactless battery charger for cellular phone[J]. IEEE Trans on Industrial Electronics, 2001, 48(6):1238-1247
    
    [8] W. Lim, J. Nho, B. Choi and T. Ahn. Low-profile contactless battery charger using planar printed circuit board windings as energy transfer device[C]. IEEE PESC 2002,vol. 2: 579-584
    
    [9] H. Hertz, Dictionary of scientific biography, vol. VI [M]. New York: Scribner,1970-1980
    
    [10] J. J. O'Neill, Prodigal genius — the life of Nikola Tesla [M]. New York:Washburn, 1944.
    
    [11] J. C. Schuder, H. E. Stephenson. Energy transport to a coil which circumscribes a ferrite core and is implanted within the body[J]. IEEE Trans on Bio-Med. Eng. 1965,vol. BME-12, Nos. 3 and 4,154-163
    
    [12] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green and J. T. Boys. The design of a contact-less energy transfer system for a people mover system[C]. Power System Technology 2000, Proceedings PowerCon 2000, vol. 1: 79-84
    [13] G. A. J. Elliott, J. T. Boys and A. W. Green. Magnetically coupled systems for power transfer to electric vehicles[C]. IEEE Power Electronics and Drive Systems 1995, vol.2: 797-801
    
    [14] A. W. Green, J. T. Boys. 10kHz inductively coupled power transfer- concept and control[C]. IEEE Power Electronics and Varible-Speed Drives, 1994: 694-699
    
    [15] O. H. Stielau, G A. Covic. Design of loosely coupled inductive power transfer systems. IEEE Power System Technology, PowerCon 2000, vol. 1: 85-90
    
    [16] John G Hayes, Battery charging systems for electrical vehicles. Electric Vehicles- A Technology Roadmap for the Future (Digest No. 1998/262), IEE Colloquium on,1998: 4/1-4/8
    
    [17] J. G. Hayes, J. T. Hall, M. G Egan and J. M. D. Murphy. Full-Bridge, series-resonant converter supplying the SAE-J1773 electric vehicle inductive charging interface[C]. IEEE PESC 1996, vol. 2: 1913-1918
    
    [18] J. G. Hayes, M. G Egan and J. M. D. Murphy. Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface[J].IEEE Trans on Industrial Applications, 1999,35(4): 884-895
    
    [19] N. H. Kutkut, D. M. Divan, D. W. Novotny and R. H. Marion. Design considerations and topology selection for a 120kW IGBT converter for EV fast charging[J]. IEEE Trans on Power Electronics. 1998,13(1): 169-178
    
    [20] N. H. Kutkut, K. W. Klontz. Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler[C]. IEEE APEC 1997:841-847
    
    [21] R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand and N. Buchheit. A Multi-resonant converter for non-contact charging with electromagnetic coupling[C].IEEE IECON 1997, vol. 2: 792-797
    
    [22] K. Sugimori, H. Nishimura, K. Harada, H. Sakamoto and Kimiyoshi Morisake. A novel contact-less battery charger for electric vehicles[C]. IEEE PESC 1998: 559-564
    
    [23] H. Sakamoto, K. Harada, S. Washimiya, K. TakeharaY. Matsuo and F. Nakao.Large air-Gap xoupler for inductive charger[J]. IEEE Trans on Magnetics, 1999,35(5): 3526-3528
    
    [24] M. Eghtesadi. Inductive power transfer to an electric vehicle-analytical model[C].IEEE Vehicular Technology Conference 1990: 100-104
    
    [25] F. Nakao, Y. Matsuo, M. Kitaoka and H. Sakamoto. Ferrite core couplers for inductive chargers[C]. IEEE Power Conversion Conference, PCC Osaca 2002, vol. 2:850-854
    
    [26] F. Sato, J. Murakami, H. Matsuki, S. Kikuchi, K. Harakawa and T. Satoh. Stable energy transmission to moving loads utilizing new CLPS[J].IEEE Trans on Magnetics,1996,32(5):5034-5036
    [27]F.Sato,J.Murakami,T.Suzuki,H.Matsuki,S.Kikuchi K.Harakawa,H.Osada,and K.Seki.Contactless energy transmission to mobile loads by CLPS-test driving of an EV with starter batteries[J].IEEE Trans on Magnetics,1997,33(5):4203-4205
    [28]S.Y.R.Hui,W.C.H.Wing.A new generation of universal contactless battery charging platform for portable consumer electronic equipment[J].IEEE Trans on Power Electronics,2005,20(3):620-627
    [29]S.Y.R.Hui,W.C.H.Wing.A new generation of universal contactless battery charging platform for portable consumer electronic equipment[C].IEEE PESC 2004:638-644
    [30]X.Liu,S.Y.(Ron) Hui.Optimal design of a hybrid winding structure for planar contactless battery charging platform[J].IEEE Trans on Power Electronics,2008,23(1):455-463
    [31]李宏.感应电能传输--电力电子及电气自动化的新领域[J].电气传动,2001,2,62-64
    [32]A.Kurs,A.Karalis,R.Moffatt,J.D.Joannopoulos,P.Fisher and M.Soljacic Wireless power transfer via strongly coupled magnetic resonances[J].Science 2007,317(5834):83-86
    [33]J.T.Boys,G.A.J.Elliott and G.A.Covic.An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups[J].IEEE Trans.on Power Electronics,2007,22(1):333-335
    [34]A.W.Green.Modeling of a push-pull parallel resonant converter using a generalized state-space averaging[J].Electric Power Applications,IEE Proceedings B,1993,140(6):350-356
    [35]A.Hu,J.T.Boys and G.A.Covic.Dynamic ZVS direct on-line start up of current fed resonant converter using initially forced DC current[C].IEEE ISIE 2000:312-317
    [36]A.P.Hu,G.A.Covic and J.T.Boys.Direct ZVS start-up of a current-fed resonant inverter[J].IEEE Trans on Power Eletronics Letters,2006,21(3):809-812
    [37]Chwei-Sen Wang,O.H.Stielau and G.A Covic.Load models and their application in the design of loosely coupled inductive power transfer systems[C].Power System Technology,PowerCon 2000.vol.2:1053-1058
    [38]Chwei-Sen Wang,G.A.Covic and O.H.Stielau.Investigating an LCL load resonant inverter for inductive power transfer applications[J].IEEE Trans.on Power Electronics. 2004,19(4): 995-1002
    
    [39] Chwei-Sen Wang, O. H. Stielau and G A. Covic. Design considerations for a contactless electric vehicle charger[J]. IEEE Trans on Industrial Electronics. 2005,52(5): 1308-1314
    
    [40] J. T. Boys, G A. Covic and A. W. Green. Stability and control of inductively coupled power transfer system[J]. IEE Proc-Electric Power Applications. 2000,147(1): 37-43
    
    [41] A. P. Hu, S. Hussmann. Improved power flow control for contactless moving sensor applications[J]. IEEE Power Electronics Letters. 2004,2(4): 135-138
    
    [42] J. James, J. T. Boys and G A. Covic. A variable inductor based tuning method for ICPT pickups[C]. IEEE Power Engineering Conference, IPEC 2005, vol. 2:1142-1146
    
    [43] S. Hussmann, A. P. Hu. A micro-computer controlled ICPT power pick-up and its EMC considerations for moving sensor applications[C]. IEEE Power System Technology, PowerCon 2002, vol. 2: 1011-1015
    
    [44] W. H. Jr-Uei, A. P. Hu, S. Akshya, X. Dai and Y. Sun. A new contactless power pick-up with continuous variable inductor control using magnetic amplifier[C]. IEEE Power System Technology, PowerCon 2006: 1-8
    
    [45] G. A. J. Elliott, J. T. Boys and G. A. Covic. A design methodology for flat pick-up ICPT systems[C]. IEEE Industrial Electronics and Applications, ICIEA 2006:1-7
    
    [46] U. K. Madawala, J. Stichbury and S. Walker. Contactless power transfer with tow-way communication[C]. IEEE IECON 2004: 3071-3075
    
    [47] A. P. Hu, J. T. Boys and G. A. Covic. Frequency analysis and computation of a current-fed resonant converter for ICPT power supplies[C]. IEEE Power System Technology, PowerCon 2000, vol. 1: 327 - 332
    
    [48] A. P. Hu, J. T. Boys and G. A. Covic. ZVS frequency analysis of a current-fed resonant converter[C]. Power Electronics Congress, CIEP 2000: 217-221
    
    [49] J. T. Boys, G. A. Covic and Y. Xu. DC analysis technique for inductive power transfer pick-ups[J]. IEEE Power Electronics Letters. 2003,1(2): 51-53
    
    [50] Y. Xu, J. T. Boys and G. A. Covic. Modeling and controller design of ICPT pick-ups[C]. IEEE Power System Technolog, PowerCon2002, vol. 3: 1602-1606
    
    [51] Chwei-Sen Wang, G. A. Covic and O. H. Stielau. General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems[C].IEEE IECON 2001, vol. 2: 1049 -1054
    [52] Chwei-Sen Wang, G A. Covic and O. H. Stielau. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems[J]. IEEE Trans on Industrial Electronics. 2004,51(1): 148-157
    
    [53] J. T. Boys, A. P. Hu and G. A. Covic. Critical Q analysis of a current-fed resonant converter for ICPT applications. Electronics Letters. 2000, 36(17): 1440 -1442
    
    [54] U. K. Madawala, D. Thrimawithana and N. Kularathna. An ICPT-supercapacitor technology for contactless power transfer with surge suppression[C]. IEEE IECON 2005: 964-968
    
    [55] G. A. Covic, J. T. Boys and H. G. Lu. A three-phase inductively coupled power transfer system[C]. IEEE Industrial Electronics and Application, ICIEA 2006: 1-6
    
    [56] SAE Electric vehicle inductive coupling recommended practice[S], SAE J-1773,Feb. 1,1995
    
    [57] I. A. Khan. Battery Chargers for Electric and Hybrid Vehicles[C]. IEEE Power Electronics in Transportation 1994: 103-112
    
    [58] A. Esser. Contactless charging and communication for electric vehicles[J]. IEEE Industry Applications Magazine. 1995,1(6): 4-11
    
    [59] J. G Hayes, M. G Egan. A comparative study of phase-shift, frequency, and hybrid control of the series resonant converter supplying the electric vehicle inductive charging interface[C]. IEEE APEC 1999:450-457
    
    [60] J. G Hayes, M. G. Egan. Rectifier-compensated fundamental mode approximation analysis of the series-parallel LCLC family of resonant converters with capacitive output filter and voltage-source load[C]. IEEE PESC 1999: 1030-1036.
    
    [61] M. G Egan, D. L. O'Sullivan, J. G Hayes, M. J. Willers and C. P. Henze.Power-factor-corrected single-stage inductive charger for electric vehicle batteries[J].IEEE Trans on Industrial Electronics. 2007, 54(2): 1217 - 1226
    
    [62] K. W. Klontz, D. M. Divan and D. W. Novotny. An actively cooled 120-KW coaxial winding transformer for fast charging electric vehicles[J]. IEEE Trans on Industrial Applications. 1995,31(6): 1257-1263
    
    [63] R. Severns, E. Yeow, G. Woody, J. Hall and J. Hayes. An ultra-compact transformer for a 100W to 120KW inductive coupler for electric vehicle battery charging[C]. IEEE APEC 1996, vol. 1: 32-38
    
    [64] H. Abe, H. Sakamoto and K. Harada. A noncontact charger using a resonant converter with parallel capacitor of the secondary coil[J]. IEEE Trans on Industry Applications. 2000, 36(2): 444-451
    [65] H. Abe, H. Sakamoto and K. Harada. Load voltage stabilization of noncontact energy transfer using three resonant circuit[C]. IEEE Power Conversion Conference,PCC Osaca 2002, vol. 2: 466-471
    
    [66] H. Sakamoto, K. Harada, H. Abe and S. Tokuomi. A magnetic coupled charger with no-load protection[J]. IEEE Trans on Magnetics. 1998,34(4): 2057-2059
    
    [67] W. Lim, J. Nho, B. Choi and T. Ahn. Low-profile contactless battery charger using planar printed circuit board windings as energy transfer device[C]. IEEE PESC 2001, vol.2: 579-584
    
    [68] Yungtack Jang, M. M. Jovanovie. A contactless electrical energy transmission system for portable-telephone battery chargers[J]. IEEE Trans on Industrial Electronics. 2003, 50(3): 520-527
    
    [69] X. Liu, P. W. Chan and S. Y. R. Hui. Finite element simulation of a universal contactless battery charging platform[C]. IEEE APEC 2005, vol. 3: 1927-1932
    
    [70] X. Liu, S. Y. (Ron) Hui. Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features[J].IEEE Trans on Power Electronics. 2007,22(6): 2202-2210
    
    [71] X. Liu, S. Y. R. Hui. An analysis of a double-layer electromagnetic shield for a rniversal contactless battery charging platform[C]. IEEE PESC 2005: 1767-1772
    
    [72] X. Liu, S. Y. R. Hui. Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform[J]. IEEE Trans on Power Electronics. 2007,22(1): 1366-1372
    
    [73] S. Y. R. Hui. Planar Inductive Batery Charger[P]. UK patent GB238972
    
    [74] S. Y. R. Hui .Planar Inductive Chargers[P]. British patent application 0226893.6.
    
    [75] S. Y. R. Hui. Apparatus for energy transfer by induction[P]. British patent application 0226892.8.
    
    [76] S. Y. R. Hui, S. C. Tang. Coreless printed-circuit board (PCB) transformers and operating techniques. U.S. patent application 09/316735.
    
    [77] C. Fernandez, P. Zumel, A. Lazaro and A. Barrado. A simple approach to design a contact-less power supply for a moving load[C]. IEEE APEC 2007: 1607-1612
    
    [78] H. D. Chalifoux, F. H. Christiansen, R. D. Robinson, T. L. Parrot and J. C. Peters. An energy transmission and energy conversion system for artificial hearts assist devices[J]. IEEE Trans. Am. Soc. Mech. Eng. 1968, 68-WA/ENER-6
    
    [79] F. W. Fraim, F. N. Huffman. Performance of a tuned ferrite core transcutaneous transformer[J]. IEEE Trans. Biomed. Eng. 1971, BME-18: 352-359
    
    [80] C. Sherman, W. Clay, K. Dasse and B. Daly. Energy transmission across intact skin for powering internal artificial organs[C]. IEEE Amer. Soc. Artif. Int. Organs,1981, vol.27:137-141.
    
    [81] E. S. Hochmair. System optimazation for improved accuracy in transcutaneous signal and power transmission[J]. IEEE Trans on Bio-Med. Eng. 1984, BME-31(2):177-186
    
    [82] P. R. Troyk, M.A.K Schwan, Closed-loop class E transcutaneous power and data link for microImplants[J]. IEEE Trans on Biomedical Engineering, 1992, 39(6):589-599
    
    [83] W. H. Moore, D. P. Holschneider, T. K. Givrad and J. M. I. Maarek. Transcutaneous RF-powered implantable minipump driven by a class-E transmitter[J].IEEE Trans on Biomedical Engineering. 2006, 53(8):1705 -1708
    
    [84] C. M. Zierhofer, E. S. Hochmair. High-efficiency coupling-insensitive transcutaneous power and data transmission via an inductive link[J]. IEEE Trans on Biomedical Engineering. 1990, 37(7): 716-722
    
    [85] T. H. Nishimura, T. Eguchi, K. Hirachi, Y. Maejima, K. Kuwana and M. Saito. A large air gap flat transformer for a transcutaneous energy transmission system. IEEE PESC 1994,vol. 2: 1323-1329
    
    [86] T. H. Nishimura, T. Eguchi, K. Hirachi, M. Saito and Y. Maejima. An advanced transcutaneous energy transformer for a rechargeable cardiac pacemaker battery by using a resonant DC to DC converter[C]. IEEE IECON 1996, vol. 1: 524-529
    
    [87] H. Miura, S. Arai, F. Sato, H. Matsuki and T. Sato. A synchronous rectification using a digital PLL technique for contactless power supplies[J]. IEEE Trans on Magnetics. 2005,41(10): 3997-3999
    
    [88] H. Miura, S. Arai, Y. Kakubari, F. Sato, H. Matsuki and T. Sato. Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts[J]. IEEE Trans on Magnetics. 2006,42(10):3578-3580
    
    [89] A. Ghahary, B. H. Cho. Design of a transcutaneous energy transmission system using a series resonant converter[J]. IEEE Trans on Power Electronics. 1992, 7(2):261-269
    
    [90] C. G Kim, Bo. H. Cho. Transcutaneous energy transmission with double tuned duty cycle control[C]. IEEE Energy Conversion Engineering Conference, IECEC 1996, vol. 1:587-591
    
    [91] G. B. Joung, Bo. H. Cho. An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer[J]. IEEE Trans on Power Electronics. 1998,13(6): 1013-1022
    [92] C. Fernandez, O. Garcia, J. A. Cobos and J. Uceda. A simple DC-DC converter for the power supply of a cochlear implant[C]. IEEE PESC 2003, vol. 4: 1965-1970
    
    [93] H. Matsuki, K. Ofuji, N. Chubachi and S. Nitta. Signal transmission for implantable medical devices using figure-of-eight coils[J]. IEEE Trans on Magnetics.1996, 32(5): 5121-5123
    
    [94] Takeshi Inoue Toshi Hiro Nishimura, Masao Saito and Mutsuo Nakaoka. A transcutaneous energy transmission system for an artificial organ by using a novel resonant converter[C], IEEE System Engineering 1992: 294-297
    
    [95] Y. Kanai, M. Mino, T. Sakai and T. Yachi. A non-contact power-supply card powered by solar cells for mobile communications[C]. IEEE APEC 2000,vol.2:1157-1162
    
    [96] D. A. G. Pedder, A. D. Brown and J. A. Skinner. A contactless electrical energy transmission system[J]. IEEE Trans on Industrial Electronics. 1999,46(1): 23-30
    
    [97] P. Stanislaw, S. Robert. AC to DC converter for contactless electrical energy transmission, practical results[C]. EPE 2003: 1-10
    
    [98] J. Hirai, T. Kim, and A. Kawamura. Practical study on wireless transmission of power and information for autonomous decentralized manufacturing system[J]. IEEE Trans on Industrial Electronics. 1999,46(2): 349-359
    
    [99] Thierry Bieler, Marc Perrottet, Valerie Nguyen and Yves Perriard. Contactless power and information transmission[J]. IEEE Trans on Industry Applications. 2002,38(5): 1266-1272
    
    [100] K. D. Papastergiou, D. E. Macpherson. An airborne radar power supply with contactless transfer of energy—Part I: rotating transformer[J]. IEEE Trans on Industrial Electronics. 2007, 54(5): 2874-2884
    
    [101] K. D. Papastergiou, D. E. Macpherson. An airborne radar power supply with contactless transfer of energy—Part II: converter design[J]. IEEE Trans on Industrial Electronics. 2007, 54(5): 2885-2893
    
    [102] J. de Boeij, E. Lomonova, J. Duarte and A. Vandenput. Contactless energy transfer to a moving sctuator[C]. IEEE IAS 2006, vol. 4: 2020-2025
    
    [103] J. de Boeij, E. Lomonova and A. Vandenput. Contactless energy transfer to a moving load part I: topology synthesis and FEM simulation[C]. IEEE Industrial Electronics 2006, vol. 2: 739-744
    
    [104] J. de Boeij, E. Lomonova, J. Duarte and A. Vandenput. Contactless rnergy transfer to a moving load part II: simulation of electrical and mechanical transient[C].IEEE Industrial Electronics 2006, vol. 2: 745-750
    [105] E. Abel and S. M. Third. Contactless power transfer-an exercise in topology[J].IEEE Trans on Magnetics[J]. 1984,20(5): 1813-1815
    
    [106] A. W. Kelley, W. R. Owens. Connectorless power supply for an aircraft-passenger entertainment system[J]. IEEE Trans on Power Electronics. 1999,4(3): 348-354
    
    [107] J. M. Barnard, J. A. Ferreira and J. D. van Wyk. Sliding transformers for linear contactless power delivery[J]. IEEE Trans on Industrial Electronics. 1997, 44(6):774-779
    
    [108] J. M. Barnard, J. A. Ferreira, J. D. van Wyk. Optimising sliding transformers for contactless power transmission systems[C]. IEEE PESC 1995, vol. 1: 245-251
    
    [109] A. Esser, Hans-Christoph Skudelny. A new approach to power supplies for robots[J]. IEEE Trans on Industry Applications. 1991,27(5): 872-875
    
    [110] A. Esser, A. Nagel. Contactless high speed signal transmission integrated in a compact rotatable power transformer[C]. EPE 1993:409-414
    
    [111] J. Lastowiecki, P. Staszewski. Sliding transformer with long magnetic circuit for contactless electrical energy delivery to mobile receivers[J]. IEEE Trans. on Industrial Electronics. 2006, 53(6): 1943-1948
    
    [112] S. Adachi, F. Sato, S. Kikuchi. Consideration of contactless power station with selective excitation to moving robot[J]. IEEE Trans on Magnetics. 1999, 35(5):3583-3585
    
    [113] R. D. Lorenz. Robotics and Automation Applications of Drives and Converters[J]. Proceedings of the IEEE. 2001, 89(6): 951-962
    
    [114] K. I. Woo, H. S. Park, Y. H. Cho, and K. H. Kim. Contactless energy transmission system for linear servo motor[J]. IEEE Trans on Magnetics, 2005, 41(5):1596-1599
    
    [115] P. Sergeant, A. Van den Bossche. Inductive coupler for contactless power transmission[J]. IET Electronic Power Applications. 2008,2(1): 1-7
    
    [116] M. D. Feezor, F. Y. Sorrell and P. R. Blankinship. An interface system for autonomous undersea vehicles[J]. IEEE Journal of Oceanic Engineering. 2001, 26(4):522-525
    
    [117] T. Kojiya, F. Sato, H. Matsuki and T. Sato. Automatic power supply system to underwater vehicles utilizing non-contacting technology[C]. Oceans 04, MTTS/IEEE Techno-Ocean 2004, vol. 4:2341-2345
    
    [118] K. W. Klontz, D. M. Divan, D. W. Novotny and R. D. Lorenz. Contactless power delivery system for mining applications[J]. IEEE Trans on Industry Applications.1995,31(1):27-35
    [119]B.J.Heeres,D.W.Novotny,D.M.Divan and R.D.Lorenz.Contactless underwater power delivery[C].IEEE PESC 1994,vol.1:418-423
    [120]L.Ran,E.Chong,C.H.Ng,M.E.A.Farrag and J.Holden.An inductive charger with a large air-gap[C].IEEE Power Electronics and Drive Systems,PEDS 2003,vol.2:868-871
    [121]R.W.Erickson,D.Maksimovic.Fundamentals of power electronics 2~(nd) ed[M].Kluwer,Norwell,MA,2001.
    [122]S.M.Sandier著,尹华杰等译.开关电源仿真[M].人民邮电出版社,2007。
    [123]J.P.Agrawal.Power electronic systems--theory and design[M].Prentice-Hall,Inc.2001
    [124]J.G.Hays,N.O.Donovan,M.G.Egan.The extended T model of the multiwinding transformer[C].IEEE PESC 2004:1812-1817
    [125]J.G.Hays,N.O'Donovan,M.G.Egan and T.O'Donnell.Inductance characterization of high-leakage transformers[C].IEEE APEC 2003,vol.2:1150-1156
    [126]J.G.Hays,M.G.Egan,N.Wang and T.O'Donnell.Series-coupling test characterization of on-chip silicon-integrated and PWB-integrated transformers[C].IEEE APEC 2007:97-103
    [127]D.Fu,Y.Qiu,B.Lu,F.Wang and F.C.Lee.An improved three-level LCC converter with a novel control strategy for high-frequency high-power-density capacitor charging power supplies[C].IEEE APEC 2006:1401-1405.
    [128]孔剑虹.功率变换器拓扑中磁性元件磁芯损耗的理论与实验研究[D].浙江大学博士学位论文,2002。
    [129]I.Batarseh,R.Liu,A.Ortiz-Conde,A.Yacoub and K.Siri.Steady state analysis and performance characteristics of the LLC-type parallel resonant converter[C].IEEE PESC 1994:597-606
    [130]M.M.Swamy and A.K.S.Bhat.Analysis,design and optimization of a secondary-side resonant converter operating in the discontinuous capacitor voltage model[J].IEEE Trans on Industrial Electronics.1993,40(3):334-346.
    [131]J.M.Espi,A.E.Navarro,A.Ferreres,R.Garcia and J.Maicas.Obtaining large-signal circuits of DC-DC resonant converters using the "controlled sources method"[C].IEEE ISIE 1999:618-623
    [132]A.J.Forsyth,G.A.Ward and S.V.Mollov.Extended fundamental frequency analysis of the LCC resonant converter[J].IEEE Trans on Power Electronics.2003,18(6):1286-1291
    [133]A.W.Green.Modeling a push-pull parallel resonant converter using generalized state-space averaging[J],IEE proceeding-B Electric Power Applications.1993,140(6):350-356.
    [134]S.R.Sanders,J.M.Noworolski,X.Z.Liu and G.C.Verghese.Generalized averaging method for power conversion circuits[J].IEEE Trans on Power Electronics.1991,6(2):251-259
    [135]J.M.Alonso,J.Ribas and A.J.Calleja.Dynamic modeling of high frequency Resonant Inverters for the implementation of closed loop electronic ballasts[C].IEEE CIEP 2000:281-286.
    [136]O.Ojo,I.Bhat.Steady-state and dynamic analyses of high-order parallel resonant convertors[J],IEE Proceedings-B Electric Power Applications.1993,140(3):209-216
    [137]J.A.Martin-Ramos,J.Diaz,A.M.Pernia,F.Nuno and J.Sebastian.Large-signal modeling of the PRC-LCC resonant topology with a capacitor as output filter[C].IEEE APEC 2002:1120-1126
    [138]Hai-Jiang Jiang,G.Maggetto.Identification of steady-state operational modes of the series resonant DC-DC converter based on loosely coupled transformers in below-resonance operation[J].IEEE Trans on Power Electronics.1999,14(2):359-371
    [139]Hai-Jiang Jiang,G.Maggetto and P.Lataire,Steady-state analysis of the series resonant DC-DC converter in conjunction with loosely coupled transformer-above resonance operation[J].IEEE Trans on Power Electronics.1999,14(3):469-480
    [140]P.Beart,L.Cheng and J.Hay.Inductive energy transfer system having a horizontal magnetic field[P].UK patent application GB2399225.
    [141]S.Y.R Hui,X.Liu.Auxiliary winding for improved performance of a planar inductive charging platform[P].UK patent pending.GB2434042
    [142]C.M.Zierhofer,E.S.Hochmair.Geometric approach for coupling enhancement of magnetically coupled coils[J].IEEE Trans on Biomedical Engineering.vol.1996,43(7):708-714
    [143]C.Fernandez,R.Prieto,O.Garcia and J.A.Cobos.Coreless magnetics transformer design procedure[C].IEEE PESC 2005:1548-1554.
    [144]伍瑛.新型无接触供电系统的研究[D].中国科学院电工所博士学位论文, 2004
    [145]Y.Jang,M.M.Jovanovie.Contactless electrical energy transmission system[P].U.S.Patent 6301128 B1,Oct 9,2001
    [146]L.Ka-Lai,J.W.Hay,P.G.W.Beart.Contact-less power transfer[P].U.S.Patent 7042196 B2,May 9,2006
    [147]W.Lim,J.Nho,B.Choi and T.Ahn.Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device[J].IEEE Trans on Industrial Electronics.2004,51(1):140-147
    [148]孙跃,王智慧,戴欣,苏玉刚,李良.非接触电能传输系统的频率稳定性研究[J].电工技术学报.2005,20(11):56-59
    [149]伍瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报.2004,24(5):63-66
    [150]韩腾,卓放,闫军凯,刘涛,王兆安.非接触电能传输系统频率分叉现象研究[J].电工电能新技术.2005,24(2):44-47
    [151]张峰,王慧贞.非接触感应能量传输系统中松耦合变压器的研究[J].电源技术应用.2007,10(4):54-58,64
    [152]张峰,王慧贞,秦海鸿,姜田贵.松耦合全桥谐振变换器的原理分析与实现[J].电力电子技术.2007,41(4):28-30
    [153]伍瑛,严陆光,徐善纲.新型无接触能量传输系统[J].变压器.2003,40(6):63-66
    [154]伍瑛,严陆光,徐善纲.运动设备无接触供电系统耦合特性的研究[J].电工电能新技术.2005,24(3):5-8,80
    [155]秦海鸿,王慧贞,严仰光.非接触式松耦合感应电能传输系统原理分析与设计[J].电源技术应用.2004,7(5):257-262
    [156]欧阳红林,杨民生,朱思国,童调生.非接触式移动电源技术研究[J].湖南大学学报.2006,33(1):55-59
    [157]孙登亚,黄文新,胡育文.基于新型可旋转变换器的感应电能传输技术[J].电源技术应用.2005,8(10):61-64
    [158]D.Kacprzak,G.Covic and J.T.Boys.Optimization of inductively coupled power transfer system with fiat pickups[J].IEEE InterMag 2003:ER20
    [159]韩腾,卓放,刘涛,王兆安.可分离变压器实现的非接触电能传输系统研究[J].电力电子技术.2004,38(5):28-29
    [160]张敏,周雒维.松耦合感应电能传输系统的分析[J].重庆大学学报.2006,29(7):33-37
    [161]武瑛,严陆光,黄常纲,徐善纲.新型无接触电能传输系统的性能分析[J]. 电工电能新技术.2003,22(4):10-13
    [162]S.A.Kanchubotla.The steady-state and dynamic characteristics of fourth order current-source resonant power converters[D].Master thesis,The University of Texas,2003
    [163]S.E.Mick.Analysis and design considerations for AC coupled interconnection systems[D].PhD thesis,North Carolina State University,2004
    [164]G.Wang.Wireless power and data telemetry for retinal prosthesis[D].PhD thesis,University of California,Santa Cruz,2006
    [165]X.Gao.Inductive links with integrated receiving coils for MEMS and implantable applications[D].PhD thesis,Arizona State University,2005
    [166]S.S.Mohan.The design,modeling and optimization of on-chip inductor and transformer circuits[D].PhD thesis,Stanford University,1999
    [167]盛松涛,杜贵平,张波.感应耦合式无接触电能传输系统设计[J].通信电源技术.2007,24(5):33-36
    [168]戴欣,孙跃.单轨行车新型供电方式及相关技术分析[J].重庆大学学报(自然科学版),2003,26(1):50-53
    [169]苏玉刚,杜伟炯,唐春森,孙跃.基于非接触电能传输技术的锂离子电池快速充电技术[J].自动化信息.2005,54(10):69-70
    [170]张永祥,田野,李琳,明廷涛.松耦合感应电能传输系统的设计[J].海军工程大学学报.2006,18(1):31-33
    [171]刘志宇,都东,齐国光.感应充电技术的发展与应用[J].电力电子技术.2004,38(3):92-94
    [172]姜田贵,张峰,王慧贞.松耦合感应能量传输系统中补偿网络的分析[J].电力电子技术.2007,41(8):42-44
    [173]K.Klontz.Contactless battery charging system[P].U.S.Patent 5341083,Aug.23,1994.
    [174]J.J.Hayes,D.R.Ivin.Power transfer and voltage level conversion for a battery-powered electronic device[P].U.S.Patent 5889384,Mar.30,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700