汽油发动机润滑系统性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
润滑系统是汽油发动机中最重要的子系统之一,为发动机各个摩擦副提供动力润滑,其性能的好坏直接影响了发动机的性能和寿命。而当前能源形势日益严峻,提高发动机燃油经济性的需求越来越迫切。如何通过对润滑系统性能进行优化,使发动机的摩擦损失以及机油泵的驱动功率降低,从而对降低发动机功率损耗,提高燃油经济性做出贡献是本文研究的课题。
     本文首先对发动机润滑系统最重要的两种耗油件:主轴承和连杆大头轴承进行研究,采用基于多体动力学的弹性流体动力学方法,获得了详细的轴承性能。针对多体动力学计算时间长,优化成本高的问题,开创性地利用kriging插值估计方法建立轴承的近似模型。利用拉丁超立方采样(LHS)方法进行实验设计(DOE),对轴承的众多参数进行筛选,获得了6个最重要的参数作为设计变量参与优化设计。采用非支配遗传算法(NSGA)对轴承进行基于近似模型的多目标优化,降低了轴承的机油流量和摩擦功耗。全转速范围内平均降低14.14%的摩擦功耗,最大降低686.27W。
     然后在优化的轴承基础上,对原机润滑系统管路管径进行优化,使得润滑管路流阻降低。在轴承机油流量降低和管路流阻降低的双重优化作用下,在油压达到原机水平的前提下,机油泵排量从原机的8.80ml/rev减小至7.989ml/rev,全转速范围内驱动功率平均降低11.02%,最大降低了71.46W。
Lubrication system is one of the most significant subsystems in gasoline Internal Combustion Engine, it provides hydrodynamic lubrication for friction pairs of the engine. The performance of lubrication system determines the performance and life of the engine directly. And nowadays the energy crisis becomes more and more serious, people pay more and more attention on improving engine fuel economy. Therefore, the project which this paper worked on is to investigate how to reduce the friction loss of the engine and driven power of the oil pump by optimizing lubrication system, so that the engine fuel economy can be improved due to lubrication system optimization.
     In this paper, main bearings and conrod bigend bearings, which are two most important oil consumers of lubrication system, were investigated using multi-body dynamics (MBD) and elasto-hydrodynamics (EHD), detailed bearing performance was obtained. Owning to the high computation cost of MBD and EHD, Kriging interpolation method was implemented in this paper, to establish approximation models of engine bearings pioneeringly. Latin Hypercube Sampling (LHS) was used to conduct Design of Experiment (DOE). Bearings parameters screening was first proceeded, 6 parameters were chosen from lots of parameters as design variables to attend the optimization. Multi-objective optimization of the bearings based on approximation models was conducted using Non-dominated Genetic Algorithm (NSGA). Oil Consumption and friction loss of the bearings were reduced. Over a whole speed range, the friction loss of the engine dropped 14.14%, up to 686.27W was saved. And then the pipes diameters of lubrication system were optimized based on optimized bearings, in order to reduce the flow resistance. Under the optimization of both bearings and lubrication pipes, the same oil pressure level was reached as premise, the oil pump size was reduce from 8.80 ml/rev to 7.989 ml/rev, the driven power was dropped 11.02% over the whole speed range, up to 71.46W driven power was saved. Finally, compared with baseline engine, the economy was improved up to 0.7964%.
引文
[1]童宝宏,桂长林,陈华, et al.发动机润滑系统的研究与进展[J].车用发动机, 2007, (2): 5-8.
    [2]王康,周岳康.内燃机曲轴轴承摩擦功损研究[J].上海汽车, 2009, (010): 21-4.
    [3]桂长林,杨杰.发动机摩擦学设计理论和方法的研究[J].机械工业技术发展基金项目研究报告(95JA0101), 1999,
    [4] Evans P.G., Johanson K. The System Performance Benefits of Lubrication Flow Control [J]. 2004,
    [5] Lo R.S., Engineers Society of Automotive. Digital Simulation of Engine Lubrication Systems [M]. Society of Automotive Engineers, 1971.
    [6] Chun S.M., Park Y.W., Jang S. A Study on Engine Lubrication System By Optimized Network Analysis- Part Ii: Parametric Study [J]. 2000,
    [7] Chun S.M., Park Y.W., Jang S. A Study on Engine Lubrication System By Optimized Network Analysis- Part I: Case Study [J]. 2000,
    [8]童宝宏.关于内燃机润滑系统网络法设计理论和方法的研究[D];合肥工业大学, 2007.
    [9]林灵,詹樟松,闵龙, et al. VVA发动机润滑系统CAE优化[J].重庆理工大学学报:自然科学, 2011, (12): 44-50.
    [10] Senatore-Dime A., Cardone-Dime M., Buono-Dime D. Fluid-dynamic analysis of a high performance engine lubricant circuit [J]. 2007,
    [11] Tao W., Yuan Y., Liu E.A., et al. Robust Optimization of Engine Lubrication System [J]. New SI engine and component design and engine lubrication and bearing systems, 2007, 2093(171).
    [12]王成焘,姚振强,陈铭.汽车摩擦学[M].上海交通大学出版社, 2002.
    [13]芈振南.流体动压滑动轴承优化设计(一)流体动压滑动轴承设计与最优化[J].润滑与密封, 1986, (02)
    [14] Dowson D., Ashton Jn. Optimum computerized design of hydrodynamic journal bearings [J]. International Journal of Mechanical Sciences, 1976, 18(5): 215-22.
    [15] Dowson D., Blount Gn, Ashton Jn. Optimization methods applied to hydrodynamic bearing design [J]. International Journal for Numerical Methods inEngineering, 1977, 11(6): 1005-27.
    [16]芈振南.流体动压滑动轴承优化设计(二)流体动压滑动轴承的性能函数[J].润滑与密封, 1986, (04)
    [17]芈振南.流体动压滑动轴承优化设计(三)优化设计的数学模型[J].润滑与密封, 1986, (05)
    [18]芈振南.流体动压滑动轴承优化设计(四)圆柱轴承优化设计[J].润滑与密封, 1986, (06)
    [19]邵正宇.内燃机径向滑动轴承优化设计[J].内燃机, 2002, (005): 13-5.
    [20]王增胜,刘保国,吴磊等.齿轮箱流体动压滑动轴承的多目标优化[J].机械传动, 2007, 31(005): 74-5.
    [21]刘宝兴,周大元.流体动压滑动轴承优化设计[J].机械工程师, 2005, (005): 56-8.
    [22]陈科,赵韩.基于神经网络的动压轴承优化设计[J].轴承, 2001, (7): 5-7.
    [23]肖志信.基于遗传算法的液体动压滑动轴承的优化设计[J].机床与液压, 2002, (002): 132-3.
    [24]李智,卢兰光.改进型蚁群算法在内燃机径向滑动轴承优化设计中的应用[J].内燃机工程, 2004, 25(5): 38-41.
    [25] Dowson D., Higginson Gr. A numerical solution to the elasto‐hydrodynamic problem [J]. ARCHIVE: Journal of Mechanical Engineering Science 1959-1982 (vols 1-23), 1959, 1(1): 6-15.
    [26] Patir N., Cheng Hs. Application of average flow model to lubrication between rough sliding surfaces [J]. ASME J Lubr Technol, 1979, 101(2): 220-30.
    [27] Poynton Wa. Effects of Oil Groove Locations on the Performance of the Big End Bearing of a Medium Speed Diesel Engine [J]. SAE paper 1999-01-1316, 1999,
    [28] Wang. Ducai, Parker Derrick, Williams. Bob. Correlation of Measured and Predicted Oil Flow For A Big-End Bearing [J]. SAE paper 2000-01-2919, 2000,
    [29] Zottin W. Bearings Performance Simulation With Elasto-Hydrodynamic Lubrication(Ehl) Model [J]. SAE paper 2000-01-3299, 2000,
    [30]汪森,沈颖刚,舒歌群,等.内燃机主轴承EHD模拟计算研究[J].润滑与密封, 2007, 32(003): 156-60.
    [31] Ma Mt, Mcluckie Irw, Poynton A., et al. An EHD study of a connecting rod big end bearing including elasticity and inertia effects of the bearing structure [M]. AVL.
    [32] Ferreira Robinson, Antonio Luis. Comparison of Hydrodynamic andElastohydrodynamic simulation applied to Journal Bearings [J]. SAE paper 2010-36-0360, 2010
    [33]程颖,宋潇,孙善超.曲轴系柔性多体动力学与动力润滑耦合仿真[J].北京理工大学学报, 2006, 26(004): 314-7.
    [34]林琼,郝志勇,郭磊.曲轴系统多体动力与油膜动力润滑耦合的数字化仿真研究[J].内燃机工程, 2007, 28(3): 45-8.
    [35]蓝军.径向滑动轴承载荷和磨损分析[J]. AVL AST 2006年中国用户大会论文集上海: AVL, 2006
    [36]徐跃强,毕玉华,申立中,等.发动机主轴承EHD分析研究[J].科学技术与工程, 2010, (034): 8427-31.
    [37]鲍辰宇,乌维君,张朝, et al.机车柴油机曲轴主轴承润滑和疲劳失效虚拟分析[J].机车车辆工艺, 2006, (6).
    [38]陈家瑞.汽车构造[M].北京:人民交通出版社. 2002: 252-261.
    [39]农迅,吴锋.内燃机润滑系统管道压力分析与模拟[J].车用发动机, 2001, (005): 24-6.
    [40] Klingebiel F., Kahlstorf U. Simulating engine lubrication systems with 1-D fluid flow models [J]. SAE Paper 010284, 2000.
    [41] Cehreli Zeynep N., Durgun Zeki Tolga. Lubrication System Development on 5-Cylinder Engine [J]. SAE Paper 2007-01-2577, 2007
    [42]丁宁,高卫民,平银生, et al.汽油机新型润滑系统一维仿真及试验研究[J].内燃机工程, 2011, 32(001): 49-53.
    [43] Huebner K.H., Engineers Society of Automotive. A Simplified Approach to Flow Network Analysis: Application to Engine Lubrication Systems [M]. Society of Automotive Engineers, 1975.
    [44] Flowmaster V7 Reference Help [J/OL] 2008
    [45] Kcoch. Franz, Haubner. Frank G., Orlowsky. Kolja. Lubrication and Ventilation System of Modern Engines-Measurements, Calculations and Analysis [J]. SAE Technical Paper 2002-01-1315, 2002
    [46] Simpson T.W., Poplinski Jd, Koch P.N., et al. Metamodels for computer-based engineering design: survey and recommendations [J]. Engineering with computers, 2001, 17(2): 129-50.
    [47] Box G.E.P., Wilson Kb. On the experimental attainment of optimum conditions [J]. Journal of the royal statistical society series b (methodological), 1951, 13(1): 1-45.
    [48] Rumelhart D.E., Widrow B., Lehr M.A. The basic ideas in neural networks [J]. Communications of the ACM, 1994, 37(3): 87-92.
    [49] Langley P., Simon H.A. Applications of machine learning and rule induction [J]. Communications of the ACM, 1995, 38(11): 54-64.
    [50]陈魁.试验设计与分析[M].清华大学出版社, 2005.
    [51] Sacks J., Welch W.J., Mitchell T.J., et al. Design and analysis of computer experiments [J]. Statistical science, 1989, 4(4): 409-23.
    [52] Lophaven Sn, Nielsen Hb, S?ndergaard J. manual of DACE, a matlab kriging tool box [J]. 2002
    [53] Giunta A.A., Watson L.T., Koehler J. A comparison of approximation modeling techniques: polynomial versus interpolating models, F, 1998 [C].
    [54] Schaffer J.D. Some experiments in machine learning using vector evaluated genetic algorithms [J]. 1985
    [55] Srinivas N., Deb K. Muiltiobjective optimization using nondominated sorting in genetic algorithms [J]. Evolutionary computation, 1994, 2(3): 221-48.
    [56]陈潇凯,陈勇,林逸.目标分流法理论及其在汽车开发中的应用[J].北京理工大学学报, 2009, 006): 515-9.
    [57] Papalambros P.Y., Michelena N.F. Trends and challenges in system design optimization, F, 2000 [C].
    [58] AVL Excite PowerUnit_UserGuide [J]. AVL LIST Gmbh, 2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700