混凝土重力坝的动力损伤分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界上水力资源最丰富的国家之一,而西部地区是我们国家水能资源最丰富的地区,所以我国将在西南地区建设一批世界级的高混凝土坝。鉴于西部地区处于强震区,本文对混凝土重力坝在地震作用下的损伤破坏进行了深入的研究。在宏观均质假定的基础上考虑混凝土材料的抗拉非线性,基于大型通用软件ANSYS的二次开发将弹性损伤力学的本构关系以更新单元刚度的方式植入损伤计算过程中,初步建立了易于操作和实现的大坝动态损伤分析方法,并应用于工程实例卡拉水电站重力坝的地震破坏研究中。具体的内容主要包括以下三个方面:
     (1)数值计算的结果是否准确需要经过实际工程的检验,但混凝土重力坝属于大型工程,且遭受强震的震害实例比较少,根据有限的数据验证数值方法的准确性还存在较大的困难。为此,本文首先基于ANSYS自身的计算平台对仿真混凝土重力坝的振动台试验进行了数值模拟,主要的计算内容包括静力分析、模态分析和时程分析。由于目前仿真混凝土材料的动态性能测定方法的发展还不纯熟,所以计算的主要目的是通过模态分析得到符合重力坝基频测量值的混凝土动态弹性模量,和通过时程分析得到符合重力坝各个高程加速度测值的材料的动态抗拉强度。
     (2) ANSYS软件对于非线性本构的模拟能力有限,为了将更加符合混凝土损伤开裂的应力应变关系准确地植入数值计算中,本文将所用的ANSYS软件进行了二次开发。通过对ANSYS求解过程的优化,使时程计算能够随着时间和坝体受力的推进逐步调整单元的弹性模量,以拟合带残余强度的双折线损伤演化模型。用所建立的损伤计算模型分析重力坝的动态响应,将计算得到的加速度结果与振动台试验得到的坝体各个测点加速度值进行对比,给出了相差比率。深入分析了重力坝模型在不同强度地震动作用下的损伤发展以及开裂状态,给出了破坏单元的损伤发展时程图,并将分析结果同阻抗仪的损伤测量结果和宏观裂缝进行了比对,验证损伤计算方法的可行性。
     (3)混凝土重力坝的动力损伤分析目的是对已建或拟建的大坝施以一定强度的地震动激励,来探求随着时间推进重力坝各个部位的受力状态和损伤发展。本文根据卡拉水电站重力坝的具体工程实际,利用上文给出的损伤计算方法分析了大坝的动力灾变情况,并将计算结果与线性分析进行了对比,给出了卡拉重力坝在设计和校核地震动作用下的损伤状态。
China is one of the most rich countries in hydropower resources of the world. In consideration of the abundance of the hydropower, there will be constructed quite a few high concrete dams in the southwestern region. Because of the strong earthquake in the western region, in-depth research for the seismic damage of the concrete dams are conducted in this paper. The consideration of the tensile nonlinear of concrete materials is based on macro homogeneous assumption. According to the secondary development of ANSYS, the constitutive relationship of elastic damage mechanics is implanted in the calculation process by the way of updating the stiffness. As an easy operating'analysis method, the dynamic damage model is set up, and it is applied to study the seismic damage of Kala gravity dam. The contents of this paper include the following three aspects:
     (1) The accuracy of numerical results needs the actual project's inspection. However, concrete gravity dam is a large project, and the damage examples suffered strong earthquake are less, that will have a significant difficulty to evaluate an analysis method according to the limited data. Therefore, based on ANSYS computing platform, the shaking table test of simulation concrete gravity dam is simulated, and the contents include static analysis, modal analysis and the time history analysis. Due to the immature determination method of the dynamic performance of simulation concrete, the main calculational purpose is to get the dynamic elastic modulus which tallies with dam's foundation frequency through modal analysis, and the dynamic tensile strength which tallies with the measuring acceleration through time history analysis.
     (2) The ability of ANSYS is limited on nonlinear constitutive simulation, So it has been used for the secondary development in order to be more in line with the stress-strain relationship of concrete damage during the numerical calculation. Through the optimization of ANSYS solving process, time history calculation can adjust the elastic modulus of elements with time and the advancement of stress, that can fit with bilinear evolution model. Dynamic response of gravity model dam is analyzed with the damage calculation model established in this paper. The acceleration results are compared with measuring acceleration data in the shaking table test on each point, and then the difference ratios are given. On this basis, damage development and cracking condition of model dam are in-depth analysis under different seismic intensity, this research also provides the elements'damage development figures and compares with the measuring data from the impedance meter and the macroscopic crack, that verifies the feasibility of damage calculation method.
     (3) Seismic damage analysis of concrete gravity dam is to explore the stress and damage development as time promoting of existing or proposed dam with a certain intensity of .seismic waves. According to the damage calculation method mentioned above, dynamic damage situation of Kala gravity dam is analyzed in this paper. The calculated results are compared with linear analysis, and the damage status of Kala dam under design and check earthquake is given.
引文
[1]张甫杰.混凝土重力坝动力响应分析及抗震措施研究[D].大连:大连理工大学,2008.
    [2]陈厚群.徐泽平,李敏.汶川大地震和大坝抗震安全[J].水利学报,2008,39(10):1158-1167.
    [3]陈厚群.汶川地震后的思考[J].中国三峡,2009,(5):14-20.
    [4]程尧平.混凝土重力坝整体抗震安全性研究[D].天津:天津大学,2008.
    [5]李亚非.高混凝土重力坝开裂成因分析及数值研究[D].山东:山东大学,2010.
    [6]中国水力发电工程学会抗震防灾专业委员会.现代水利水电工程抗震防灾研究与进展(2011年)[C].北京:中国水利水电出版社,2011.
    [7]赵锦华.仿真混凝土的力学性能研究及重力坝的动力模型数值分析[D].大连:大连理工大学,2008.
    [8]Kaplan M F. Crack propagation and the fracture of concrete [J]. American Concrete Institute Journal Proceedings,1961,58(11):591-610.
    [9]Dougill J W. On stable progressively fracturing solids [J]. Journal of Applied Mathematics and Physics,1976,27:423-437.
    [10]潘坚文,王进廷,张楚汉.超强地震作用下拱坝的损伤开裂分析[J].水利学报,2007(2):14-20.
    [11]钟红,林皋,李建波,胡志强.高拱坝地震损伤破坏的数值模拟[J].水利学报,200839(7):48-862.
    [12]Skrikerud M F, Bachmann H. Discrete crack modeling for dynamically loaded, unreinforced concrete structures [J]. Earthquake Engineering Structural Dynamics, 1986,14:297-315.
    [13]Ayari L M, Saouma V E. A fracture mechanics based seismic analysis of concrete gravity dams using discrete cracks [J]. Engineering Fracture Mechanics, 1990,35:587-598.
    [14]杜荣强,林皋,胡志强.混凝土重力坝动力弹塑性损伤安全评价[J].水利学报,2006,37(9):1056-1061.
    [15]黄云,金峰,王光纶,张楚汉.高拱坝上游坝踵裂缝稳定性及其扩展[J].清华大学学报(自然科学版),2002,42(4):555-559.
    [16]顾爱军.含诱导缝坝体的非线性断裂力学分析[J].合肥工业大学学报,2005,28(12):1585-1589.
    [17]Vahid Lotfi, Radin Espandar. Seismic analysis of concrete arch dams by combined discrete crack and non-orthogonal smeared crack technique [J]. Engineering Structures,2004,(26):27-37.
    [18]Wang Guanglun, Pekau 0 A, Zhang Chuhan, Wang Shaomin. Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics [J]. Engineering Fracture Mechanics,2000,65:67-87.
    [19]Bhattacharjee S S, Leger P. Seismic cracking and energy dissipation in concrete gravity dams [J]. Earthquake Engineering Structural Mechanics,1993,22:991-1007.
    [20]Calayir Y, Karaton M. Seismic fracture analysis of concrete gravity dams including dam-reservoir interaction [J]. Computers and Structures,2005,83:1595-1606.
    [21]陈胜宏,汪卫明,徐明毅,邹丽春.小湾高拱坝坝踵开裂的有限单元法分析[J].水利学报,2003,(1):66-71.
    [22]方修君,金峰,王进廷.基于扩展有限元法的Koyna重力坝地震开裂过程模拟[J].清华大学学报(自然科学版),2008,48(12):2065-2069.
    [23]杜效鹄,段云岭,王光纶.重力坝断裂数值分析研究[J].水利学报,2005,36(9):1035-1041.
    [24]Oliver J, Huespe A E, Blanco S, Linero D L. Stability and robustness issues in numerical modeling of material failure with the strong discontinuity approach [J]. Computer Methods in Applied Mechanics and Engineering,2006,195:7093-7114.
    [25]Papadrakakis M, Papadopoulos V, Lagaros N D, Oliver J, Huespe A E, Sdnchez P. Vulnerability analysis of large concrete dams using the continuum strong discontinuity approach and neural networks [J]. Structural Safety, 2008,30(3):217-235.
    [26]Cevera M, Oliver J, Faria R. Seismic evaluation of concrete dams via continuum damage models [J]. Earthquake Engineering and Structural Dynamics, 1995,24 (9):1225-1245.
    [27]Valliappan S, Yazdchi M, Khalili N. Seismic analysis of arch dams-a continuum damage mechanics approach [J]. International Journal for Numerical Methods in Engineering,1998,45:1695-1724.
    [28]Yazdchi M, Khalili N, Valliappan S. Non-linear seismic behavior of concrete dams using coupled finite element-boundary element technique [J]. International Journal for Numerical Methods in Engineering,1999,44:101-130.
    [29]张我华,邱战洪,余功栓.地震荷载作用下坝及其岩基的脆性动力损伤分析[J].岩石力学与工程学报,2004,23(8):1311-1317.
    [30]邱战洪,张我华,任廷鸿.地震荷载作用下大坝系统的非线性动力损伤分析[J].水利学报,2005,5:629-636.
    [31]陈健云,李静,林皋.基于速率相关混凝土损伤模型的高拱坝地震响应分析[J].土木工程学报,2003,36(10):46-50.
    [32]Wu Jianying, Li Jie, Faria R. An energy release rate-based plastic-damage model for concrete [J]. International Journal of Solids and Structures, 2006,43 (3-4):583-612.
    [33]梁昕宇,党发宁,田威,陈厚群,靳卫强.基于CT图像的混凝土损伤演化分形特性研究[J].西安理工大学学报,2010,26(4):382-387.
    [34]马怀发,王立涛,陈厚群,李德玉.混凝土动态损伤的滞后特性[J].水利学报,2010,41(6):659-664.
    [35]潘坚文,王进廷,张楚汉.超强地震作用下拱坝的损伤开裂分析[J].水利学报,2007,38(2):143-149.
    [36]Lee J, Fenves L G. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics,1998,124(3):892-900.
    [37]唐春安,王述红,傅宇方.岩石破裂工程数值试验[M].北京:科学出版社,2003.
    [38]Japan Society of Civil Engineers. Earthquake Resistant Design for Civil Engineering Structures in Japan[R].1996,16-18.
    [39]陈雯.金安桥碾压砼重力坝动力模型试验中的几个关键问题[D].大连:大连理工大学,2006.
    [40]夏颂佑.坝工结构动态模型试验若干问题的探讨[J].河海大学学报,1984,(4):1-9.
    [41]Zhou J, Lin G, Zhu T, etc. Experimental investigations into seismic failure of high arch dams [J]. Journal of Structural Engineering,2000,126(8):926-935.
    [42]林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000,40(1):1-8.
    [43]R.克拉夫,J.彭津.结构动力学[M].北京:高等教育出版社,2006.
    [44]徐植信,胡再龙.结构地震反应分析[M].北京:高等教育出版社,1993.
    [45]位敏.高地震烈度下碾压混凝土重力坝动力特性及抗震安全分析研究[D].武汉:武汉大学,2005.
    [46]李国豪.工程结构抗震动力学[M].上海:上海科学技术出版社,1980.
    [47]侯新录.结构分析中的有限元法与程序设计[M].北京:中国建材工业出版社,2004.
    [48]李人宪.有限元法基础[M].北京:国防工业出版社,2002.
    [49]龙驭球.有限元法概论[M].北京:高等教育出版社,1991.
    [50]杜平安,甘娥忠.有限元法原理、建模及应用[M].北京:国防工业出版社,2004.
    [51]Yuan J X. Identification of the machine tool structural parameters by dynamic data system and finite element method [D]. USA:University of Wisconsin-Madison,1983.
    [52]朱伯芳.有限元法原理与应用[M].北京:中国水利水电出版社,1998.
    [53]张鸿庆,王鸣.有限元的数学理论[M].北京:科学出版社,1991.
    [54]黄艾香,周天孝.有限元理论与方法[M].北京:科学出版社,2009.
    [55]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [56]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [57]范书立,陈建云.碾压混凝土重力坝动力模型破坏试验研究[J].水力发电,2009,35(5):33-35.
    [58]李瓒,陈兴华,郑建波,王光纶.混凝土拱坝设计[M].北京:中国电力出版社,2000.
    [59]Seed H B, et al. Racemation accelerograms for high magnitude earthquake, USB/EERC-69/07 [R]. University of California, Berkeley,1969.
    [60]潘家铮.水工结构分析文集[M].上海:电力工业出版社,1981.
    [61]梁昕宇,党发宁,田威,陈厚群.不同加载率对混凝土试件动力特性的影响研究[J].水力发电学报,2009,28(5):35-40.
    [62]徐芝纶.弹性力学[M].北京:高等教育出版社,1982.
    [63]Clough R, et al. Dynamic Interaction Effects in Arch Dam, USB/EERC-85/11 [R]. University of California, Berkeley,1985.
    [64]中华人民共和国电力行业标准.混凝土重力坝设计规范(DL5108-1999)[S].北京:中国电力出版社,2000.
    [65]中华人民共和国电力行业标准.水工建筑物荷载设计规范(DL5077-1997)[S].北京:中国电力出版社,1998.
    [66]王春涛,练继建.重力坝坝踵应力集中问题的有限元法研究[J].水利水电技术,2003,34(5):47-49.
    [67]赵中极.重力坝上游坝面和坝踵水平裂缝断裂力学分析[J].华北水利水电学院学报,1982,(1):38-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700