碾压混凝土重力坝抗震措施模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的快速发展,我国水电能源开发利用进入重要的发展时期。一大批世界级高混凝土坝在我国西南地区开工建设,而这些地区正是高烈度地震频发地区,有的设防地震烈度甚至达到了Ⅸ度。这些高混凝土坝的抗震安全将直接关系到相关地区国民经济的和人民生命财产安全。本文以研究碾压混凝土重力坝的地震破坏形态、破坏机理与抗震措施为目的,从碾压混凝土重力坝坝段动力模型试验入手,结合数值计算研究重力坝的破坏模式与抗震措施,讨论抗震配筋优化问题。为工程设计人员有针对性地采取工程措施进行大坝抗震设计提供参考。具体做了以下五个方面的工作:
     1.为了模拟实际工程中采用的抗震配筋措施,探索细金属丝在仿真混凝土中的特性。通过模拟配筋的四点弯折试验得到在适筋情况下可以不考虑钢筋与混凝土的粘结滑移效应的结论。在这种情况下,研究配筋量的相似率:采用牛顿第三定律与粘结力相似准则,推导出钢筋有效面积比尺作为相似配筋量的相似率。
     2.以仿真混凝土为基体,掺入粘土或橡胶颗粒来增强仿真材料塑性,探讨高塑性的仿真材料的物理特性。为在不完全几何相似的情况下的模型大变形反应和塑性混凝土的相似材料两方面研究提供了一定的参考。
     3.采用水下电液伺服地震模拟系统对阿海碾压混凝土重力坝典型坝段进行无抗震措施与局部模拟配筋抗震措施模型试验。分析厂房坝段动力破坏形式,研究局部配筋对地震荷载作用下对挡水与溢流坝段破坏动力非线性反应影响。
     4.利用ABAQUS平台对阿海碾压混凝土重力坝进行有限元分析。采用弹塑性损伤本构模拟混凝土非线性,同时依据模型试验配筋量相似比率建立局部抗震配筋的坝体原型有限元模型,进行了挡水坝段的抗震配筋影响分析。
     5.优化配筋方案计算分析不同形式的局部抗震配筋对挡水坝段的动力非线性反应的影响,具体从动力放大倍数、极值应力、极值位移、损伤发展、不可恢复应变与整体耗能几方面进行探讨。同时给出线弹性情况下规范配筋量与之进行对比。
With the rapid development of national economy, the exploitation and utilization of water power is stepped the key development stage. A batch of dams, word-class high concrete dams, have being constructed in southwest of China. However, the place is a high intensity seismic zone. Specially, the adopted design level of earthquake ground motion reaches to nine degree at some dam sites. It is very significant that aseismic safety of dams for industrial and agricultural production and the safety of the people's life and property in the large region of downstream. In order to study the dynamic destruction mechanism and aseismic measures of concrete gravity dam in earthquake, the dynamic shaking table model tests and finite element analysis were adopted to investigate failure mode and aseismic measures in this paper. The optimization design of aseismic reinforcement at some key parts was also discussed. Test results can provide references for engineering design. The main contents of the paper are five parts as follows:
     1. As stainless steel wires were embedded in emulation concrete, properties of them were studied for the purpose of simulation of reinforced concrete. Base on four point bend tests, neglction of bond-slip was concluded at model tests. With this hypothesis, similarity of quantity of steel was elicited to employ effective area scale of steel bars. The derivation process was applied with Newton's third law and similarity of cohesive force.
     2. High plastic emulation materials were made by means of using emulation concrete as basal body and added clay or added crushed rubbers. And physical characteristics of materials were investigated. The test results can be useful for study of model's large deformation and plastic strain in view of incomplete geometric similarity.
     3. Model test of Ahai RCC dam was carried out with electric-hydraulic underwater seismic simulated servo system. Model test was divided into two sections, models without aseismic measures and models with aseismic reinforced concrete at some key parts. And then the failure mode of Ahai house-dam and effect of aseismic reinforced concrete for water retaining dam section were studied.
     4. Finite element analysis of Ahai RCC dam was conducted with software of ABAQUS. The plastic damage model was applied as concrete nonlinear constitutive relation. Base on the similarity of aseismic steel and quantity of aseismic wire in test, the finite model with rebar was created. The effect of rebar in water retaining dam section was analyzed.
     5. Optimization design of reinforcement at some key parts of dam had been made through numerical calculation of nonlinear reaction under design input of ground motion. Concretely, the research contents included dynamic amplification coefficients、extreme values of stress、extreme values of strain、development of damage、variation of irrecoverable strain and dissipation energy. The paper also investigated aseismic bars under the circumstances of linear elastic constitutive relationship.
引文
[1]Hansen K D,Roehm L H.The Response of concrete Dams to Earthquakes.Water Power and Dam Construction,1979(4)
    [2]Chopra A K,Chakvabauti P.The Koyna Earthquake and the Damage to the Koyna Dam.Bulletin of Seismological Society of America,1973,63(2).
    [3]Skrikerud P E,Bachmann H.Discrete crack modeling for dynamically loaded:unreinforced concrete structures.Earthquake Engineering and Structural Dynamicacs,1986,14(2).
    [4]Bhattaechajee S S,Leger P.Seismic creaking and energy dissipation in concrete gravity dams.Earthquake Engineering and Structural Dynamicacs,1993,22(11).
    [5]Yusuf Calayir,Muhammet Karaton.Seismic fracture analysis of concrete gravity dams including dam-reservior interaction.Computer and Structures,2005,83.
    [6]Leger P,Lecterc M.Evaluation of earthquake ground motions to predict cracking reponse of gravity dams.Earthquake Engineering and Structural Dynamicacs,1996,25(3).
    [7]陈万吉.裂缝重力坝的非线性分析.计算结构力学及其应用.1985,2(3).
    [8]Zhang Chuhan,Wang Guanglun,Wang Shaomin.Experimental tests concrete and nonlinear fracture analysis of rolled compacted concrete dams.Civil Engineering,2002,14(2).
    [9]Ghrib F,Tinawi R.An application of damage mechnics for seismic analysis of concrete gravity dams.Earthquake Engineering and Structural Dynamicacs,1995,24.
    [10]Cevera M,Oliver J,Faria R.Seismic evaluation of concrete dams via continuum damage models.Earthquake Engineering and Structural Dynamicacs,1995,24.
    [11]Valliappan S,Yazdechi M,Khalili N.Seismic analysis of arch dams:a continuum damage mechanics approach.International Journal for Numerical Methods in Engineering,1999,45.
    [12]Jeeho Lee,Grengory L.Fenves.A plastic-damage concrete model for earthquake analysis of dams.Earthquake Engineering and Structural Dynamicacs,1998,27(9).
    [13]Yazdchi M,Khalili N,Valliappan S.Non-linearseismic behavior of concrete gravity dams using coupled finite-boundary element technique.International Journal for Numerical Methods Engineering,1999,45.
    [14]张我华,邱战洪,余功栓.地震荷载作用下坝及其岩基的脆性动力损伤分析.岩石力学与工程学报,2004,23(8).
    [15]杜成斌,苏擎柱.混凝土坝地震动力损伤分析.工程力学,2003,20(5).
    [16]陈健云,李静,林皋.基于率性损伤模型的混凝士重力坝地震响应分析.哈尔滨工业大学学报,2005,37(6).
    [17]杜荣强,林皋,胡志强.混凝土重力坝弹塑性损伤安全评价.水利学报,2006,37(9).
    [18]陈厚群,侯顺载,涂劲等.丰满大坝抗震动力分析与安全评价.大坝与安全,1999,(3).
    [19]冯树荣,肖峰.龙滩碾压混凝土重力坝挡水坝段抗震特性研究.水力发电,2004,30(6).
    [20]张国新,金峰,王光纶.基于流形元的子域奇异边界元法模拟重力坝的地震破坏闭.工程力学,2001,18(4).
    [21]Zhang C,Xu Y,Wang G,et al.Non-linear seismic response of arch dams with contranction joint opening and joint reinforcements.Earthquake Engineering and Structural Dynamicacs,2000,29(10).
    [22]郭永刚,涂劲,陈厚群.抗震钢筋对高拱坝抗震性能的影响.水利学报,2004.
    [23]龙渝川,张楚汉,迟福东等.混凝土重力坝抗震配筋加固措施的效果研究.水力发电学报,2008,27(4).
    [24]赵瑞东.碾压混凝土坝配筋抗震措施的试验及数值研究:(硕士学位论文).大连:大连理工大学,2007.
    [25]何天福.碾压混凝土坝钢纤维混凝士抗震加固措施研究:(硕士学位论文).大连:大连理工大学,2007.
    [26]江见鲸,陆新征,叶列平著.混凝土结构有限元分析.北京:清华大学出版社,2005.
    [27]方诗圣,何敏,胡成,李宏国.配变形钢筋T形截面连续梁的微混凝土结构模型试验.合肥工业大学学报(自然科学版),2002,(02).
    [28]朱彤,林皋,马恒春.混凝土仿真材料特性及其应用的试验研究.水力发电学报,2004,23(4).
    [29]倪汉根,金崇磐.大坝抗震特性与抗震计算.大连:大连理工大学出版社,1994
    [30]水利工程研究所抗震研究室.一个坝的动力特性.大连理工大学学报,1979,18(2).
    [31]倪汉根,周晶,王炳乾.双曲拱坝动力特性的初步研究.大连理工大学学报,1983,22(3).
    [32]夏颂佑等.动态坝工结构模型材料的探讨.河海大学学报,1984,(2)
    [33]江泉,杜成斌,马良筠.分缝拱坝模型动力试验研究和分析.河海大学学报,1998,26(3).
    [34]陈厚群,唐继儒,钱维栋.枫树坝坝内式厂房段的动力特性和地震反应.水力学报,1980.
    [35]尹祥平.碾压混凝土重力坝地震坝前动水压力研究.(硕士学位论文).大连:大连理工大学,2006.
    [36]杨俊杰.相似理论与结构模型试验.武汉:武汉理工大学出版社,2005.
    [37]Raphael J M.Properties of plaster celite mixtures for models.Symposium on Concete Dams Models,Lisbon,Portugal,1963.
    [38]B.M.Bakhtin,V.I.Dumenko.Seismic stability of concrete gravity dam having a lightweight profile.Gidrotekhnicheskoe Stroitel'stvo(Hydrotechnical Construction),1979,(5).
    [39]V.M.Lyatkher,A.D.Kapstan,I.V.Semenov.Seismic stability of the toktogul dam.Gidrotekhnicheskoe Stroitel'stvo(Hydrotechnical Construction),1977,5(2).
    [40]Donlon W P,Hall J F.Shaking table study of concrete gravity dam monoliths.Earthquake Engineering and Structural Dynamicacs,1991,20(8).
    [41]张镜剑.用脆性材料进行水工结构的断裂破坏模型试验.华北水利水电学院学报.1984,(1).
    [42]赵中级.重力坝上游坝面和坝踵水平裂缝断裂力学分析.华北水利水电学院学报.1982,(1).
    [43]张立翔,邱流潮,封伯昊等.重力坝大孔口坝段抗震试验研究.地震研究,1999,22(2).171-181
    [44]杜青,毕佳,谭跃虎等.石膏相似材料的模型试验.施工技术,2005,34(11):71-72.
    [45]宫必宁,重力坝地震动水压力试验研究.河海大学学报,1997,25(1):98-102.
    [46]David W.Harris,Nathan Snorteland,Timothy Dolen,et al.Shaking table 2-D models of a concrete gravity dam.Earthquake Engineering and Structural Dynamicacs,2000,29(6).
    [47]杨政,廖红建,楼康愚.微粒混凝土受压应力应变全曲线试验研究.工程力学,2002,19(2):90-94.
    [48]鞠杨,国名超,吴振声.微粒混凝土受拉性能研究.工业建筑,1994,(12):28-35.
    [49]沈朝勇,周福霖,黄襄云等.动力试验模型用微粒混凝土的初步试验研究.广州大学学报,2005,4(3):249-253.
    [50]方诗圣,胡成,吴文清等.微混凝士模型材料基本性能试验研究.合肥工业大学学报,1999,22(5):76-79.
    [51]朱彤.结构动力模型相似问题及结构动力试验技术研究.(博士学位论文).大连:大连理工大学,2004.
    [52]范书立,陈健云,周晶等.龙开口水电站溢流坝段动力模型破坏试验研究.水利学报,2007(增).
    [53]陈兴华.脆性材料结构模型试验.北京:水利水电出版社,1984.
    [54]Balsara J P,Walker R E,Fower J.Vibration characteristics of the North Fork Dam Model.Technical ReportN-74-2,U.S.Army Waterways Experiment Station,Vicksburg,Mississippi,1974.
    [55]Balsara J P,Norman C D.Vibration tests and analysis of model arch dam.Earthquake Engineering and Structural Dynamics,1975,4(2):163-178.
    [56]K.Baba.Model and full-scale concrete gravity dam studies in Japan.Pro.Int.Res.Conf.Earthquake Eng.,Skopje,Yugoslavia,1980.
    [57]G.Oberti,Lauletta E.Structural models for the study of dam earthquake resistance.Pro.Int.Cong.Large Dams,Istanbul,1981.431-442.
    [58]Niwa A,Clough R W.Shaking table research on concrete dam models.Report No:UCB/EERC 80-05,Earthquake Engineering Research Center,University of California,Berkeley,1980.
    [59]Niwa A,Clough R W.Non-linear seismic reponse of arch dams.Earthquake Engineering and Structural Dynamics.1982,10(2):267-281.
    [60]李干荣.流溪河小车水电站拱坝结构模型试验与应力分析.水力发电,1958,(15):24-29.
    [61]杨俊杰.相似理论与结构模型试验.武汉:武汉理工大学出版社,2005.
    [62]邱绪光.实用相似理论.北京:北京航空学院出版社,1988.
    [63]林皋.研究拱坝震动的模型相似律.水利学报,1958,(1):79-104.
    [64]左东启.模型试验的理论和方法.北京:水利电力出版社,1984.
    [65]夏颂佑,张楚芳,张鸣歧.动态结构模型相似条件若干问题的探讨.河海大学学报,1980,(1)59-72.
    [66]黄维平,王连广.人工质量在砖混结构振动台试验中的作用.地震工程与工程振动,2001,21(3),99-103.
    [67]杨旭东.振动台模型试验若干问题的研究.北京:中国建筑科学研究院,2005.
    [68]吕西林,陈跃庆,陈波等.结构-地基动力相互作用体系振动台模型试验研究.地震工程与工程振动,2000,20(4):20-29.
    [69]赵中极.重力坝上游坝面和坝踵水平裂缝断裂力学分析.华北水利水电学院学报,1982,(1),38-65.
    [70]张林,何显松,胡成秋等.碾压混凝土与石膏的断裂特性在拱坝模型开裂相似中的应用.四川大学学报,2001,33(3):5-8.
    [71]陈篪,蔡其巩,王仁智.工程断裂力学.北京:国防工业出版社.
    [72]李清富,张鹏,张保雷.塑性混凝土弹性模量的试验研究.水力发电,2005,(03).
    [73]Rafat Siddique,Tarun R Naik.Properties of concrete containing scrap-tire rubber-an overview.Waste Management,2004,(24):563-569.
    [74]朱涵,刘春生,张永明,李志国.橡胶集料掺量对混凝土压弯性能的影响.天津大学学报,2007,(07).
    [75]Zhou J,Lin G,Jerrerson A D,et al.Experimental investigation into seismic failure of high arch dams.Journal of Structural Engineering,ASCE,2000,126(8):926-935.
    [76]王海波,李德玉,陈厚群.拱坝振动台动力破坏试验研究.土木工程学报,2006,39(7):109-118.
    [77]Haibo Wang,Deyu Li.Experimental study of dynamic damage of an arch dam.Earthquake Engineering and Structural Dynamics,2007,36(3):347-366.
    [78]任亮等.一种增敏型光纤光栅应变传感器的开发与应用.光电子·激光,2008,19(11):1437-1441.
    [79]吴波,李惠,李玉华.结构损伤分析的力学方法.地震工程与工程振动,1997,17(1):14-21.
    [80]杨建辉等.基于残余应变的多侧压下混凝土受拉疲劳损伤研究.工程力学,2006,23(增):169-176.
    [81]Lee J,Fenves G L.A Plastic-damage concrete model for earthquake analysis of dams.Earthquake Engineering and Structural Dynamics,1998,27(9):937-956.
    [82]Hillerborg A,Modeer M,Petersson P E.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.Cement and Concrete Research,1976,16:773-782.
    [83]Petersson P E.Crack Growth and Formation of Fracture Zones in Concrete and Similar Materials.Report TVBM-IO06.Unviersity of Lund.,1981
    [84]尹双增.断裂损伤理论及应用.北京:清华大学出版社,1992.
    [85]Valente G.Size effect of measured fracture energy of concrete in three point bend tests on notched beam.In:A R Luxmoore,ed.Numerical methods in fracture mechanics.Proceeding of the 4th International Conference.Swansea,1987.
    [86]曲卓杰,吴胜兴,刘龙强等.小湾拱坝抗震钢筋粘结滑移试验研究.河海大学学报,2004,32(3):308-312.
    [87]龙渝川,张楚汉,迟福东等.混凝土重力坝抗震配筋加固措施的效果研究.水力发电学报,2008,27(4):77-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700