干纱缠绕圆柱壳体预成型技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了适于快捷生产、低成本加工、厚壁圆柱壳体制件成型的“干纱缠绕圆柱壳体预成型技术”,并对这一工艺进行了较为全面和系统的分析研究。
     干纱缠绕圆柱壳体预成型技术是基于传统螺旋缠绕工艺,省去了浸胶(和烘干)工序,仅以干纱或干纱过水的方式直接进行圆柱壳体制件的预成型的新探索。在干纱缠绕圆柱壳体预成型的测试试验基础上,分析和总结了干纱缠绕预成型可能出现的问题,分析和论述了干纱缠绕圆柱壳体预成型的可行性和必要性。
     基于干纱缠绕中稳定性不良的首要问题,本文建立了空间构架的力学分析模型,结合微积分和微分几何学理论,分析了干纱缠绕圆柱壳体过程中纱线在其空间各平面的受力情况,推导了干纱缠绕的平衡条件。
     在稳定性研究中,分析了传统缠绕中的层间不稳定因素,即“内松外紧”情况,并在两个不同模型下推导了缠绕张力优化方案。在考虑纱层间压应力的“纱层压力模型”下,推导出了适于配置张力实时控制设备情况下的缠绕张力递减公式,以实现各纱层的等应力状态。在考虑缠绕半径增大的“缠绕半径增大模型”下,推导和证明了纱线缠绕张力的变化趋势,推导出了适于厚壁制件缠绕的调速张力控制公式,实现了以主轴调速来间接控制张力的方法,从而实现各纱层纱线的等应力状态。
     本文基于经典连续缠绕的区段划分思想,确立了干纱缠绕工艺的三区段划分原则,并推导出几种不同折回曲线的三区段长度和落纱点与导纱点动程差的计算公式。借鉴传统缠绕线型分析的“切点法”和“标准线法”,在三区段划分原则下,提出了适于干纱缠绕圆柱壳体预成型技术的“全程线同侧切点分析法”,并按此方法导出了线型规律的算法。
     最后基于已推导的公式和算法,开发了用于干纱缠绕圆柱壳体的计算机辅助设计系统软件。软件功能包括稳定性分析、参数计算、工艺设计、二维工艺图输出和三维仿真模拟加工等。有效减少人为主观估算和处理,降低劳动强度。通过优化工艺设计,从而实现缩短生产周期,节约生产成本和提高加工生产效率的目的。
In this dissertation, the technology of cylinder non-resin winding preforming was put forward and studied comprehensively and systematically. This technology was established under the requirement of fast producing, low cost manufacture and large thickness preforming in the field of cylinder composite.
    The technology of cylinder non-resin winding preforming was based on the traditional circular helix winding technology. But this new technology of cylinder non-resin winding preforming got rid of the process of resin soaking (and drying). It was a new explore of directly wind by yarn without resin or yarn only with some water. On the base of non-resin winding preforming experiments, this dissertation summarized and analyzed possible problems in non-resin winding preforming. Feasibility and significance of cylinder non-resin winding preforming was also analyzed and discussed.
    Considering the significance of yarn stability problem in non-resin winding technology, a spatial mechanics model was established. And by means of calculus and differential geometry theory, mechanics analyzing was achieved in different plane during the non-resin winding process. Furthermore, the mechanics balance requirement of non-resin winding was deduced.
    In the study of stability, the factor of instability in traditional winding which named relax inside and tightness outside was analyzed. Under the model of yarn layer pressure which emphasized particularly on pressure between different yarn layers, the gradient descent formula of winding tension was brought forward for realizing of equal yarn stress. Under the model of increasing winding radius which took increasing winding radius into account only, the transformation trend of winding tension was deduced and calculated. And the velocity modifying formula was put forward, which was fit for large thickness cylinder preforming. Obviously, this formula also achieved indirectly control of winding tension.
    Depending on section partition theory in tradition winding technology, the principle of three sections in non-resin winding was established in the dissertation. And the length of three sections and displacement difference between drop-yarn point and draught-yarn point in different retracing curves were calculated and deduced. Using tangent point method and standard line method in line type analyzing of traditional winding technology for reference, the method of same orientation tangent point analyzing in
    whole track was put forward under the three sections principle. And by means of this method of same orientation tangent point analyzing in whole track, the formula of line type and winding rule for non-resin winding were deduced.
    Finally, the special CAD (Computer Aid Design) software for non-resin winding technology was developed on the base of formulae and arithmetic acquired in above paragraphs. The functions of the software included stability analysis, parameter calculation, process design, planar technology diagram output and 3D (three-dimensional) simulation, and so on. The software had abundant functions and good compatibility. Anyway, it could decreased man-made and subjective guesstimate, reduced the working intensity, optimized the parameter design and even shortened the process period, reduced producing cost and improved the manufacture efficiency.
引文
[1] Ryuta Kamiya, Bryan A. Cheeseman, Peter Popper, Tsu-Wei Chou, Some recent advances in the fabrication and design of three-dimensional textile perform: a review, Composites Science and Technology, 2000; 60:33~47
    [2] 丁辛,易洪雷,三维机织几何结构的数值表征,东华大学学报,2003,29(3):15~19
    [3] Anahara M, Yasui Y, Omori H, Three-dimensional textile and method of producing the three-dimensional textile. European Patent: 0-426-878-Al, 1991.
    [4] Yasui Y, Anahara M, Hori F, Mita Y, Production of three-dimensional woven fabric, Japanese Patent Publication 05106140, 1993.
    [5] J. Brandt, K. Drechsler, F.J. Arendts, Mechanical performance of composites based on various three-dimensional woven-fiber performs, Composites Science and Technology, 1996,56:381~386
    [6] A.P. Mouritz, M.K. Bannister, P.J. Falzon, K.H. Leong, Review of applications for advanced three-dimensional fibre textile composites, Composites Part A, 1999, 30:1445~1461
    [7] Guang-Wu Du, Frank Ko, Analysis of multiaxial warp-knit preforms for composite reinforcement, Composites Science and Technology, 1996, 56:253~260
    [8] Dexter HB, Hasko GH, Mechanical properties and damage tolerance of multiaxial warp knit composites, Composites Science and Technology, 1996, 56:367~380
    [9] O.Rozant, P.-E.Bourban, J.-A.E.Manson, Warp-knit laminates for stampable sandwich performs, Composites Science and Technology, 2001, 61:145~156
    [10] 王善元,张汝光等,纤维增强复合材料,上海:中国纺织大学出版社,1998
    [11] 陶肖明,冼杏娟,高冠勋, 纺织结构复合材料,北京:科学出版社,2001
    [12] Z.X. Tang, R.Postle, Mechanics of three-dimensional braided structures for composite materials-part I : fabric structure and fibre volume fraction, Composite Structures, 2000, 49:451~459
    [13] L.Chen, X.M. Tao, C.L. Choy, On the microstructure of three-dimensional braided performs, Composites Science and Technology, 1999, 59:391~404
    [14] 孙慧玉,复合材料预成型物三维编织技术,航空制造工程,1997,10:16~18
    [15] 钟智丽,苏大伟,编织结构复合材料的编织原理,天津纺织科技,1995,1
    [16] 张建艺,卢嘉德,RTM的编织预成型工艺及其应用展望,宇航材料工艺,1996,2:45~50
    [17] Yasui Y, Anahara M, Hori F, Takeuchi J, Method of producing fabric reinforcing matrix for composites, USA Patent 5327621, 12 July, 1994.
    [18] 道德锟,吴以心,李兴国,立体织物与复合材料,上海:中国纺织大学出版社,1997
    [19] Rolincik, Paul G, Jr., "AUTOWEAVE—A unique automated 3-D weaving technology", Proceedings of the symposium on advanced materials technology'87, society for the advancement of material and process engineering, Vol.32, 1987, 195~207
    [20] Robert W. King, "three-dimensional fabric material", U.S. Pat. No.4001478, Jan. 4, 1977
    [21] 王跃存,马崇启,三维环形织物及其自动织造,纺织学报,2002,23(4):46~47
    [22] 顾平,普通织机织三维织物的实验研究,纺织学报,2002,23(5):24~26
    [23] A.C.Long, C.D.Rudd, M.Blagdon, et al. Deformation mechanisms of engineered fabrics during perform manufacture. Proceedings of 10th International Conference on Composite Materials (ICCM-10), Canada, 1995, Vol.Ⅲ, 205~212
    [24] A.C.Long, C.D.Rudd, M.Blagdon, et al. Characterizing the processing and performance of aligned reinforcements during perform manufacture. Composites Part A, 1996, 27A: 247~253
    [25] 张艳明,纬编双轴向多层衬纱织物的成型性研究,博士学位论文,天津工业大学,2005
    [26] W Li, M Hammad and A. EI-Shiekh. Structural Analysis of 3-D Braided Performs for Composites Part I : The Four-step Preforms. Journal of Textile Institute,1990(4): 491~514
    [27] W Li, M Hammad and A. EI-Shiekh. Structural Analysis of 3-D Braided Performs for Composites Part Ⅱ : The Two-step Preforms. Journal of Textile Institute, 1990(4): 515~537
    [28] 异型整体结构复合材料预成型件的编织技术,产业用纺织品,1996,12(4):25~27
    [29] P.Popper, R.F.McConnell, U.S. Patent 4719837, 1998.1
    [30] 道德锟,潘志成,管状立体编织物的结构研究,字航材料工艺,1996,5:15~23
    [31] 焦亚男,李晓久,董孚允,三维缝合复合材料性能研究,纺织学报,2002,23(2):16~18
    [32] 姚承照,冯志海,许斌,复合材料增强体依模整体缝合工艺研究,工程材料,1999,7:29~31
    [33] C. Weimer, P.Mitschang, Aspects of the stitch formation process on the quality of sewn multi-textile-preforms, Composites Part A, 2001, 32:1477~1484
    [34] Tien S. Pan, Paul D. Herrington, The effects of critical stitching parameters on a stitched composite laminate, The 1998 ASME International Mechanical Congress and Exposition November 15-20, 1998, Anaheim, California, 229~234
    [35] C.Weimer, T.Preller, P.Mitschang, K.Drechsler, Approach to net-shape performing using textile technologies. Part I: edges, Composites: Part A, 2000, 31:1261~1268
    [36] Mandell John F., Samborsky Daniel D., Wang Lei, Wahl Neil K., New fatigue data for wind turbine blade materials, Journal of Solar Energy Engineering, Transactions of the ASME, 2003, 125(11): 506~514
    [37] Mouritz A.P., Comment on the impact damage tolerance of stitched composites, Journal of Materials Science Letters, 2003, 22(4): 519~521
    [38] C. Weimer, Preform-engineering: Applied sewing technologies to incorporate part and process functions into dry textile reinforcements, Composites Science and Technology, 2003, 63(11): 2089~2098
    [39] Velmurugan R., Gupta N.K., Solaimurugan S., Elayaperumal A., The effect of stitching on FRP cylindrical shells under axial compression, International Journal of Impact Engineering, 2004, 30:923~938
    [40] Shekar Vimala, GangaRao Hota V.S., Composites with 3-D stitching fabrics, International Journal of Materials and Product Technology, 2003, 19:188~199
    [41] 程小全,赵龙,缝合复合材料可用性——简单层合板的基本性能,北京航空航天大学学报,2003,29(11):1001~1005
    [42] P.Potluri, E.Kusak, T.Y.Reddy, Novel stitch-bonded sandwich composite structures, Composite Structures, 2003, 59:251~259
    [43] 朱建勋,细编穿刺织物的结构特点及性能,宇航材料工艺,1998,1:41~43
    [44] 黄故,现代纺织复合材料,北京:中国纺织出版社,2000
    [45] 肖翠蓉,唐羽章,复合材料工艺学(第一版),长沙:国防科技大学出版社,1991
    [46] 雷文,玻璃钢管道的技术特点及在我国的应用现状分析,玻璃钢/复合材料,1999,1,36~38
    [47] 孔庆宝,纤维缠绕技术进入新的高速发展阶段,纤维复合材料,1998,3,35~38
    [48] Frank C. Shen, A filament-wound structure technology overview, Materials Chemistry and Physics, 1995, 42:96~100
    [49] J.Rousseau, D.Perreux, N.Verdiere, The influence of winding patterns on the damage behaviour of filament-wound pipes, Composites Science and Technology, 1999, 59:1439~1449
    [50] J.H.Zhao, X.N.Jing, W.P.Howson, EW.Williams, Stress analysis of a multilayered composite cylinder with broken fibres over a finite region, Composites Science and Technology, 2001, 61:2361~2370
    [51] R.Schledjewski, M.Latrille, Processing of unidirectional fiber reinforced tapes-fundarnents on the way to a process simulation tool (ProSimFRY), Composites Science and Technology, 2003, 63:2111~2118
    [52] 同济大学数学教研室,高等数学(上册)(第3版),北京:高等教育出版社,1988
    [53] 同济大学数学教研室,高等数学(下册)(第3版),北京:高等教育出版社,1988
    [54] 梅向明,黄敬之,微分几何学(第三版),北京:高等教育出版社,2003
    [55] Manfredo P.do Carmo,Differential Geometry of Curves and Surfaces(第2版),北京:机械工业出版社,2005
    [56] 冷兴武,纤维缠绕原理,济南:山东科学技术出版社,1990,205~208
    [57] Frank C.Shen, A filament-wound structure technology overview, Materials Chemistry and Physics, 1995, 42:96~100
    [58] 王耀先,复合材料结构设计,北京:化学工业出版社,2001.202~206
    [59] 李新华,薛忠民 等, 纤维缠绕复合材料压力容器梯度张力施加方法, CN1528586A,2004
    [60] 丁保庚,杨福江.缠绕张力公式的研究,玻璃钢/复合材料,2000,6:3~6
    [61] 王春香等,纤维缠绕过程中的张力分析,复合材料学报,2002,19(3):120~123
    [62] 谢传锋,静力学(第2版),北京:高等教育出版社,2004
    [63] J.H.Ginsberg,J.Genhl 著,吴家骥 王牧 方汉英 等译,静力学,北京:人民教育出版社,1982,18~32
    [64] 郝桐生,理论力学(第3版),北京:高等教育出版社,2003.
    [65] 冷兴武,纤维缠绕基本原理的应用,纤维复合材料,1998,4:10~12
    [66] 张福承,纤维缠绕圆柱体端部布线、超长与中心转角研究,纤维复合材料,2001.3:31~34
    [67] 陈元甫,机织工艺与设备(上册)(第一版),北京:纺织工业出版社,1982,66~81
    [68] 陈人哲,纱线力学问题,北京:纺织工业出版社,1989,9~11
    [69] 戴继光,机织学(上册),北京:纺织工业出版社,1985,28~34
    [70] 姚穆 周锦芳 黄淑珍 等著,纺织材料学(第二版),北京:中国纺织出版社,1996,273~276
    [71] 王增加,李辅安,喻俊伟,纤维缠绕成型的CAD/CAM技术研究,纤维复合材料,2001,4,38~39
    [72] Youqi Wang, Xuekun Sun, Digital-element simulation of textile processes, Composites Science and Technology, 2001,61:311~319
    [73] I.Porat, K.Greenwood, Zhao Li, CAD/CAM of three-dimensional woven structure (performs) for fibre-reinforced composites, Composites: Part A, 1996, 27:111~117
    [74] Sabit Adanur, Tianyi Liao, 3D modeling of textile composite perform, Composites Part A, 1998, 29B:787~793
    [75] Z.Zhang, M.Sarhadi, An integrated CAD/CAM system for automated composite manufacture, Materials Processing Technology, 1996, 61:104~109
    [76] 杨连贺,三维机织复合材料预制件结构优选CAD,天津工业大学学报,2003,22(1):40~42
    [77] B.S.Johansen, Aa.Lystrup, M.T.Jensen, CADPATH: a complete program for the CAD-, CAE- and CAM-winding of advanced fiber composites, Journal of Material Processing Technology, 1998, 77:194~200
    [78] 富宏亚,韩振宇,付云忠,一种高性能的纤维缠绕CAD/CAM软件——WINSOFT,军命两用技术与产品,2003,11:41~43
    [79] 韩振宇,王永章,富宏亚,复合材料纤维缠绕成型CAD/CAM相关技术研究,玻璃钢/复合材料,2003,5:32~34
    [80] 白和丰,吴耀楚,代启光,树脂基复合材料纤维缠绕方案优选专家系统的推理机研究,武汉工业大学学报,1991,1:102~107
    [81] 胡冰,纤维缠绕机CAD系统的研究,硕士学位论文,武汉工业大学,2000
    [82] 刘小静,纤维缠绕机(FWM)专用CAD系统的研制,硕士学位论文,武汉工业大学,2001
    [83] 杜志强,张毅,CAD/CAM技术在筒形压力容器缠绕成型工艺中的应用,制造业自动化,2001,3:43~46
    [84] 郑人杰,实用软件工程(第二版),北京:清华大学出版社,1997
    [85] 张海藩,软件工程导论(第四版),北京:清华大学出版社,2003
    [86] 杨金纯,棉纺纱条不匀计算机诊断系统的开发,硕士学位论文,天津工业大学,2004
    [87] Mark Segal, Kurt Akeley, The OpenGL Graphics System: A Specification, U.S.: Silicon Graphics Inc., 2004.
    [88] Neider, Jackie, Tom Davis, OpenGL Programming Guide (Second Edition), U.S.: Addison-Wesley Publishing Company, 2000
    [89] 乔林,OpenGL程序设计,北京:清华大学出版社,2004
    [90] 林锐,交互式协同式三维图形软件开发系统与可视化平台的研制,博士学位论文,浙江大学,2000
    [91] 张杰峰,openGL在纤维缠绕机三维运动仿真中的应用,机械,2005,32(2):34-36
    [92] 吕锋,吴皓莹,谢兴同,基于OpenGL的纤维缠绕的三维运动仿真,武汉理工大学学报,2002,24(9):76~78
    [93] 吴皓莹,FRP纤维缠绕机多轴运动控制的三维动态仿真,硕士学位论文,武汉理工大学,2002
    [94] 田会方,肖碧香,纤维缠绕复合材料弯管线型设计与仿真,玻璃钢/复合材料,2005,4:36~38
    [95] 田会方,田从莲,基于openGL的纤维缠绕三通管的动态仿真组合,机床与自动化加工技术,2005,8:64~66
    [96] Signsoft GmbH, Visit 3.0 Doumentation, 2001
    [97] 肖建,杨新臣等编著,Delphi 7 编程基础,北京:清华大学出版社,2003
    [98] 乔林,参透 delphi/kylix,北京:中国铁道出版社,2003
    [99] 龚沛曾等,Visual Basic 程序设计教程,北京:高等教育出版社,2001
    [100] Evangelos Petroutsos Kevin Hough 著,邱仲潘 等译,Visual Basic 6 高级开发指南,北京:电子工业出版社,1999
    [101] Microsoft Corporation,MSDN Library Visual Studio 6.0(CHS.).1998.
    [102] John Robbins 编著,潘文林 陈武 译,应用程序调试技术,北京:清华大学出版社,2001
    [103] Michael E.Bays 著,章柏幸 杨作兴 译,软件发布方法,北京:清华大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700