铣削加工中心数字化样机开发与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国的制造业面临着巨大的机遇和严峻的挑战,而机床工业是装备制造业的核心,关系到国家的经济命脉和安全。传统的机床产品设计开发流程一般为方案设计、图纸设计、制造实物样机和实物样机试验直至产品投产上市,该过程周期过长,成本费用过高,不能满足企业对质量、效率以及成本的综合要求。
     而数字化样机技术作为机床产品设计开发的一项全新技术,它的出现和发展给传统的机床产品设计方法带来了一次革命。应用这项技术,工程师在建立机床的数字化数字模型之后可以对它进行各种计算机仿真分析,在产品设计阶段发现其中的潜在问题和不足之处,并快速修正设计错误、改进设计方案。因此,在机床产品设计过程中应用数字化样机技术可以减少对实物样机的依赖,这样不仅可以降低开发成本,缩短产品开发周期,而且可以提高设计质量和产品性能,增强企业的竞争力。
     数控机床是改造传统产业并构造数字化企业的重要基础装配。作为一种结构复杂且高度自动化的机电产品,它的设计对于运动性能、动力学性能、机械结构性能以及加工性能等方面都有着严格要求。为了保证数控机床的设计质量,缩短设计周期并有效降低设计成本,要将数字化样机技术应用到该产品的整个设计流程中。
     本文以TH5650立式铣削加工中心为研究对象,运用大型三维软件UG建立了数控铣床的三维数字化模型,并通过计算机图形交换格式将所建立的几何模型导入到UG Motion模块及有限元分析软件ANSYS Workbench和数控加工仿真软件VERICUT中,建立它的运动仿真模型,有限元模型以及加工仿真模型。
     以基于运动学和动力学仿真的UG Motion模块验证分析了影响机床爬行的主要因素,对TH5650立式铣削加工中心进行了运动平稳性分析,从而给出了数控铣床进给系统的优化建议。在ANSYS Workbench有限元分析软件平台上,采用模态分析技术获得机床结构的模态固有频率和主振型,实现对机床结构的改进和优化设计。在完成仿真分析之后全面评估了数控铣床的运动及动力性能、结构性能以及加工性能,为设计提供了质量保证,也为铣床的改进提供了可靠的依据。它不仅可以大大降低设计开发费用,而且能够在保证铣床最终质量的前提下大大缩短设计周期,加快铣床的上市速度,给委托企业带来巨大的经济效益。
     本文所采用数字化样机技术有效地实现了数控铣床的建模与仿真,这种方法不只是适用于数控铣床的设计开发,其它机床产品也可以应用同样的方法和思路,并且还可以推广到其它一些复杂机械系统的研究、设计和开发,因此本文的研究方法及结论具有较强的工程实用性。
Chinese manufacturing industry faces great opportunity and big challenge, and the machine tool industry is the hard core of the manufacturing industry. Traditional products design and development procedure generally contains sketch design, drawing design, physical prototype manufacture and prototype experiment. This procedure makes long period and costs highly, which can not meet the integrative needs of quality, efficiency and cost. But virtual prototype technology is a kind of completely new one, whose emergence and development brings an innovation to the traditional way of products design. By applying this technology, engineer can make various simulation and analysis on the built virtual digital model of the product, which could help them to find out the potential problems and mistakes of the product in the design period, and then they can amend the mistakes and improve the design sketch quickly. Therefore, applying virtual prototype technology in the process of product design could reduce its dependence on the physical one, which could reduce the development cost, cut the development cycle, improve the design quality and product performance and increase the competition capability of the enterprise.
     NC machine tool is important and infrastructural equipment enterprise for reconstructing traditional industry and building digital enterprise. As a mechanical and electrical product with complicated structure and high automation, its design has the rigorous requirements on kinematic capability, dynamic capability, mechanical structural capability and machining capability. To assure the design quality of NC machine tool, cut the design period and reduce the design cost effectively, virtual prototype technology should be introduced into the whole design procedure of this product. This paper studied the TH5650 vertical NC boring and milling machine, according to the design requirement, use large-scale three-dimensional software UG to set up the three-dimensional parameter entity's model of the numeric machine tool. Through the graphics interchange format of computer, introduce the geometry models established into ANSYS and UG Motion.
     With UG Motion on the base of kinematics and dynamics emulation,certificated and analysed the main factor about machine tool creep,and analysed the kinesi stationarity of the TH5650 vertical NC boring and milling machine, then gave some optimization suggestion of the NC milling machine feeding system. On the finite element analysis flatform of ANSYS Workbench, through modal analysis get the natural frequency and the main modal of the machine structure, optimize the structure of machine tool. After completing the simulation analysis, evaluate kinematic & dynamic capability, structure capability and machining capability roundly. It also provided the design with quality assurance and the milling machine improvement with reliable warrant. It not only decreased the design cost greatly, cut the design period enormously when guaranteeing the ultimate quality of the milling machine, but also make the product come into the market as possible as quickly, which brought huge economy benefits to the enterprise.
     By applying virtual prototype technology, this paper realized the modeling and simulation of the NC milling machine. This method is not only suitable for the design and development of milling machine, but also forthe other machine tool products. And it also can be extended to research, design and develop other mechanical system with complicated structure. So the research method and the consequence in this paper have the significant practical value.
引文
1.盛伯浩.数控机床的现状与发展[J].制造技术与机床,2004,1:23-25
    2.刘伟达,刘剑雄,严波.基于数字化样机技术的数控机床现代设计方法[J].机电产品开发与创新,2005,18(1):119-121
    3.陈小川等.数字化制造技术研究概况综述[J].机械制造,1998(12):8-10
    4.熊光楞,李伯虎,柴旭东.数字化样机技术[J]:系统仿真学报,2001.1
    5.赵雯,王维平,朱一儿等.协同数字化样机技术研究[J].系统仿真学报,2001.1
    7.郝云堂,金烨,李辉.数字化样机技术及其在ADAMS中的实践.机械设计与制造[J].2003,7(3):16-19
    8. LI Bohu,Chai Xudong, Quan Chunlai, etc[J].Research on tools suit for collaborative virtual prototyping engineering.Proc of ENROSIM 2001.Delflt,Netherlands,2001
    9.蒙艳玫,李尚平,刘正士,郑淑贤.数字化样机技术及其在创新产品开发中的应用[J].广西科学,2001,8(4):256-269
    10. RICHARD Z. New and developing areas in modeling and simulation from a European perspective system[J]. simulation and Scientific Computing,1999,10(19-21):10-14
    11.李瑞涛,方湄,张文明.数字化样机技术的概念及应用[J].机电一体化,2005.5
    12.宋培林.数字化模型[M]:机械工程的一门新兴技术.
    13. AEIGLER B P,etc.The DEVS environment for high-performance modeling and simulation, IEEE, CS&,1997,4(3):61-67
    14.张旭等.机械系统数字化样机技术的研究与开发[J].中国农业大学学报,1999(2):25-28
    15.付国本,徐岩等编著.UGNX4.0机械设计实例教程[M],北京:电子工业出版社,2007
    16.罗学科,谢富春.数控原理与数控机床[M].北京:化学工业出版社,2004
    17.王庆林.UG铣制造过程实用指导[M].北京:清华大学出版社,2003
    18.曹东兴.XH7710型多面加工中心数字化仿真及可行性研究[D],北京:北京机械工业学院,2003
    19.UGS公司.UG CAST Online Library,2004
    20.廖伯瑜.机床动力学Ⅰ[M].北京:机械工业出版社,1983
    21.(美)MSC.Software著.邢俊文,陶永忠译.MSC.ADAMS/VIEW基础培训教程[M].清华大学出版社,2004
    22.徐东鸣.数控加工的仿真技术与实现方法[J].工具技术,2004,38(9):52-54
    23.高国利.数字化制造的机械加工过程[J].仿真组合机床与自动化加工技术,1999(12)
    24.张冲,汪方宝,朱春林.基于VERICUT的数字化制造技术的应用[J].合肥工业大学学报(自然科学版),2004,27(1):109-112
    25.王卫兵编著.UG NX数控编程实用教程[M].北京:清华大学出版社,2004
    26. M Alkan Donmez.Development of Virtual Machine Tool(UT)[J].Technical Paper of the North American Manufacturing Research Institute of SEM,1997.
    27. S Yang,J Yuan, J Ni.The Improvement of Thermal Error Modeling and Compensation on Machine Tools by CMAC Neural Network International Journal of Machine Tools and Manufacture,1996,36(4):527-537.
    28. www.mouldbbs.com
    29. www.ugcn.com
    30.朱乃雄.机械动态设计[M].机械工业出版社,1992
    31.廖伯瑜.机床动力学Ⅰ[M].北京:机械工业出版社,1983
    32.廖伯瑜.机床动力学Ⅱ[M].北京:机械工业出版社,1983
    33.何耀熊.任意结构数控机床机构运动学建模与求解[J].机械工程学报,2002,38(10):32-35
    34.王飞月.机床的动态特性分析[J].河北工业科技,2001,18(4):27-29
    35.UGS公司.UG Help Document.2004
    36.罗学科,谢富春.数控原理与数控机床[M].北京:化学工业出版社,2004
    37.缪炳荣,肖守讷.机车车体结构模态的有限元分析.机械与电子.2002(5):59-60
    38.王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999
    39.刘国庆,杨庆东.ANSYS应用教程机械篇[M].北京:中国铁道出版社,2003
    40. LeeJaehyung, ThompsonDJ, YooHongHee, LeeJangMoo. Vibration analysis of avehicle body and suspension system using as ub structure synthesis method[J] Int VehicleDesign,2000,24(4):360-371
    41.王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安工业大学出版社,1999
    42. Ghanem R.Stochastic Finite Elements with Multiple Random Non Gaussian propertiex[J].journal of engineering mechanical,2001,125(1):26-40
    43.杨萧,唐恒龄,廖伯瑜.机床动力学(Ⅱ)[M].机械工业出版社,1983
    44.龚曙光.ANSYS基础应用及范例解析[M].机械工业出版社,2003
    45. JefferyM.Steel.Applied Finite Element Molding[M].NewYork;Eastan Kodak Company Rochester,1989.
    46.龚曙光.ANSYS基础应用及范例解析[M].机械工业出版社,2003,1:1-2
    47.廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用—建模、分析、仿真、修改、控制、优化[M].北京:机械工业出版社,2004:447-448.
    48. YanLH,LeungTP,LiDB,etal.Theoretical and experimental study of modal strain analysis[J] Sound and Vibration.1996.191(2):251260.
    49.付智永.高速车削加工中心关键技术的若干研究[D].沈阳:东北大学,2003
    50.李佳.数控机床及应用[M].北京:清华大学出版社,2001
    51.王海涛.数控铣床数字样机建模与仿真技术研究[D],西安理工大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700