虚拟样机技术在XK640数控铣床设计开发中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的产品设计开发流程一般为方案设计、图纸设计、制造实物样机和实物样机试验直至产品投产上市,该过程周期过长,成本费用过高,不能满足企业对质量、效率以及成本的综合要求。而虚拟样机技术作为产品设计开发的一项全新技术,它的出现和发展给传统的产品设计方法带来了一次革命。应用这项技术,工程师在建立产品的虚拟数字模型之后可以对它进行各种计算机仿真分析,在产品设计阶段发现其中的潜在问题和不足之处,并快速修正设计错误、改进设计方案。因此,在产品设计过程中应用虚拟样机技术可以减少对实物样机的依赖,这样不仅可以降低开发成本,缩短产品开发周期,而且可以提高设计质量和产品性能,增强企业的竞争力。
     数控机床是改造传统产业并构造数字化企业的重要基础装配。作为一种结构复杂且高度自动化的机电产品,它的设计对于运动性能、动力学性能、机械结构性能以及加工性能等方面都有着严格要求。为了保证数控机床的设计质量,缩短设计周期并有效降低设计成本,要将虚拟样机技术应用到该产品的整个设计流程中。本文以XK640立式数控铣床为研究对象,建立了其三维虚拟数字模型,并在该模型的基础上分别建立它的运动仿真模型,有限元模型以及加工仿真模型,在完成仿真分析之后全面评估了数控铣床的运动及动力性能、结构性能以及加工性能,为设计提供了质量保证,也为铣床的改进提供了可靠的依据。同时在XK640数控铣床虚拟样机的建立及仿真过程中,充分考虑了制造生产因素和客户需求因素,确保铣床的可制造性和人性化。最后经制造企业实际生产,证明应用虚拟样机技术开发设计XK640数控铣床是非常成功的,它不仅大大降低了设计开发费用,并在保证铣床最终质量的前提下大大缩短了设计周期,加快了铣床的上市速度,给委托企业带来了巨大的经济效益。
     本文采用虚拟样机技术有效地实现了数控铣床的建模与仿真,这种方法不只是适用于数控铣床的设计开发,其它机床产品也可以应用同样的方法和思路,并且还可以推广到其它一些复杂机械系统的研究、设计和开发,因此本文的研究方法及结论具有重要的实用价值。
Traditional products design and development procedure generally contains sketch design, drawing design, physical prototype manufacture and prototype experiment. This procedure makes long period and costs highly, which can not meet the integrative needs of quality, efficiency and cost. But virtual prototype technology is a kind of completely new one, whose emergence and development brings an innovation to the traditional way of products design. By applying this technology, engineer can make various simulation and analysis on the built virtual digital model of the product, which could help them to find out the potential problems and mistakes of the product in the design period, and then they can amend the mistakes and improve the design sketch quickly. Therefore, applying virtual prototype technology in the process of product design could reduce its dependence on the physical one, which could reduce the development cost, cut the development cycle, improve the design quality and product performance and increase the competition capability of the enterprise.NC machine tool is important and infrastructural equipment for reconstructing traditional industry and building digital enterprise. As a mechanical and electrical product with complicated structure and high automation, its design has the rigorous requirements on kinematic capability, dynamic capability, mechanical structural capability and machining capability. To assure the design quality of NC machine tool, cut the design period and reduce the design cost effectively, virtual prototype technology should be introduced into the whole design procedure of this product. This paper studied the XK640 vertical NC milling machine, built its 3D virtual digital model. On the basis of this model it also built the motion simulation model, finite element model and machining simulation model, which could be use to evaluate kinematic & dynamic capability, structure capability and machining capability roundly after completing thesimulation analysis. It also provided the design with quality assurance
    and the milling machine improvement with reliable warrant. Simultaneously, in the process of building the NC machine tool virtual prototype and simulation, this paper fully considered the manufacture factors and customer' s different needs, which could make sure that the milling machine could be manufactured and with more humanity. With the survey on the spot, it is proved that the application of virtual prototype technology on the design of XK640 NC milling machine is very successful, it not only decreased the design cost greatly, cut the design period enormously when guaranteeing the ultimate quality of the milling machine, but also make the product come into the market as possible as quickly, which brought huge economy benefits to the enterprise.By applying virtual prototype technology, this paper realized the modeling and simulation of the NC milling machine. This method is not only suitable for the design and development of milling machine, but also for the other machine tool products. And it also can be extended to research, design and develop other mechanical system with complicated structure. So the research method and the consequence in this paper have the significant practical value.
引文
[1] 盛伯浩.数控机床的现状与发展.制造技术与机床,2004,1:23—25
    [2] 刘伟达,刘剑雄,严波.基于虚拟样机技术的数控机床现代设计方法.机电产品开发与创新,2005,18(1):119—121
    [3] 杨晓京,刘剑雄.基于虚拟样机技术的数控机床现代设计方法.机械设计,2005,22(2):16—18
    [4] 潘海寿.复杂机械的虚拟样机技术:[硕士学位论文].南京:南京理工大学,2001
    [5] 张卫,吴慧中.虚拟样机概念及体系结构研究.组合机床与自动化加工技术,2002,10:12—14
    [6] 王刚,杨莺,刘少军.虚拟样机技术在工程机械领域的应用.工程机械,2003,34(8):11—13
    [7] 李亚军,黄浩.虚拟样机技术及其应用.航空制造技术,2002(2):36—38
    [8] 游骏.虚拟样机在产品设计中的应用.起重运输机械,2002(6):21—23
    [9] 柴旭东,李伯虎.复杂产品虚拟样机工程.计算机集成制造系统-CIMS,2002,8(9):678—683
    [10] 李佳.数控机床及应用.北京:清华大学出版社,2001
    [11] 罗学科,谢富春.数控原理与数控机床.北京:化学工业出版社,2004
    [12] www.huazhongcnc.com
    [13] 王庆林.UG铣制造过程实用指导.北京:清华大学出版社,2003
    [14] 曹东兴.XB7710型多面加工中心虚拟仿真及可行性研究:[硕士学位论文].北京:北京机械工业学院,2003
    [15] UGS公司.UG CAST Online Library, 2004
    [16] 丁玉兰.人机工程学[M].北京:北京理工大学出版社,2002
    [17] 周美玉.工业设计应用人机工程学[M].北京:中国轻工业出版社,2001
    [18] UGS公司.UG Help Document. 2004
    [19] 张策.机床试验原理和方法.北京:机械工业出版社,1989
    [20] 廖伯瑜.机床动力学Ⅰ.北京:机械工业出版社,1983
    [21] 廖伯瑜.机床动力学Ⅱ.北京:机械工业出版社,1983
    [22] 王国强.实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学 出版社,1999
    [23] 刘国庆,杨庆东.ANSYS应用教程机械篇.北京:中国铁道出版社,2003
    [24] ANSYS公司.ANSYS Help. 2004
    [25] 林述温.机电装备设计.北京:机械工业出版社,2002
    [26] 付智永.高速车削加工中心关键技术的若干研究:[硕士学位论文].沈阳:东北大学,2003
    [27] 徐东鸣.数控加工的仿真技术与实现方法.工具技术,2004,38(9):52—54
    [28] 高国利.虚拟制造的机械加工过程.仿真组合机床与自动化加工技术,1999(12)
    [29] 廖效果.数控技术.武汉:湖北科学技术出版社,2000
    [30] 王秀利.基于Linux平台的数控加工仿真系统研究与开发.计算机仿真,2003,20(5)
    [31] 李军锋.数控机床加工仿真应用.计算机仿真,2003,20(4)
    [32] 童时中..工作系统人机工程设计基本要求.人类工效学,1999,6(5)
    [33] 相清清.人机工程学简析.江苏陶瓷.1995,(2)37
    [34] 金属切削机床设计编写组.金属切削机床设计[M].上海:上海科学技术出版社,1979
    [35] 毕承恩.现代数控机床.北京:机械工业出版社,1993
    [36] 熊光楞,柴旭东.虚拟样机技术.系统仿真学报,2001(1):128—131
    [37] 马秋成,韩利芬等.UG实用教程CAD篇.北京:机械工业出版社,2001
    [38] 王飞月.机床的动态特性分析.河北工业科技,2001,18(4):27—29
    [39] 方民.三维动态模拟在机床设计中的应用.组合机床与自动化加工技术,2000(9):24—26
    [40] 何耀熊.任意结构数控机床机构运动学建模与求解.机械工程学报,2002,38(10):32—35
    [41] 王立权.基于虚拟样机的控制系统仿真研究.哈尔滨工程大学学报,2000,21(6):26—29
    [42] 陶洪祥.机电产品虚拟样机.船电通讯,2000(6)
    [43] 李晓燕,钱炜,韩红俊.平面磨床床身的三维有限元分析.机械设计与制造工程,2002,31(2):26—28
    [44] 张旭.机械系统虚拟样机技术的研究与开发.中国农业大学学报,1999,4(2):94—98
    [45] 蒙艳玫.适用于丘陵地带的甘蔗收获机械虚拟样机的研制.制造业自动化,2002,24(2):52—54
    [46] 林有希.大型机床动态特性的整机有限元分析.福州大学学报,2003,31(1)
    [47] 卢熹.CK1416型数控车床床身结构动态优化.机床与液压,2003(2):22—24
    [48] www.icax.cn
    [49] www.caxhome.com
    [50] www.mouldbbs.com
    [51] www.ugcn.com
    [52] www.yccad.com
    [53] www.ugs.com
    [54] www.ansys.com
    [55] www.ugs.com.cn
    [56] Ron Mecoy. Virtual Prototyping: The Practical Solution. Inventor' Digest, May/June 1998
    [57] RICHARD Z. New and developing areas in modeling and simulation from a European perspective. System Simulation and Scientific Computing, 1999, 10(19—21): 10~14
    [58] AEIGLERB P, etc. TheDEVS environment for high-performance modeling and simulation. IEEE, C S&, 1997, 4(3): 61~71
    [59] Wiens G J. An overview of virtual manufacturing. In: Virtual Manufacturing—Processing of 2nd Agile Manufacturing Conference(AMC'95),New Mexico, USA 1995. ERI Press: pp. 233—24318
    [60] Kimura F. Product and Process Modeling as a Kernal for Virtual Manufacturing Enviroment. Annual of the GRIP, 1993, 42(1):85—93
    [61] A New Parallel Mechanism Machine Tool Capable of Five—Face Milling. J Kim, F. C. Park, J. M. Lee: IEEE TRANSCATION ON ROBITICS AND AUTOMATION, VOL. 17, NO. 4, AUGUST 2001
    [62] Masahiko Onosato, Kazuiki Iwata. Development of a Virtual Manufacturing System by Integrating Product Models and Factory models, Analysis of GRIP VOL. 42/1/1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700