混沌时间序列的Lyapunov指数和噪声水平估计及其在湍流射流中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湍流射流是气流床气化炉等射流反应器的基本流动形态。本文提出了从混沌时间序列估计Lyapunov指数和噪声水平的方法,并利用提出的方法研究了圆湍流射流和平面湍流射流速度时间序列的性质,发现了两种射流的一些相似规律。具体内容可归纳如下:
     1.提出了一种可以从含有噪声的混沌时间序列中计算Lyapunov指数谱的新方法。该方法利用随机噪声和潜在动力系统相互独立的性质,提出了一种可以消除噪声影响的平均方法。通过这种方法可以从含有噪声的数据中得到潜在动力系统的映射方程,从而可以估计出潜在动力系统的Lyapunov指数谱。对Logistic映射、Henon映射、广义Henon映射和Lorenz系统生成的时间序列进行了仿真计算,结果表明,当噪声水平分别小于15%、20%、10%和7%时,该方法对这四个混沌系统的计算结果都是可靠的。另外,提出的方法对白噪声的分布类型不敏感,而且随着时间序列长度的增加,计算结果变得更加精确。
     2.提出了一种可以从含有噪声的混沌时间序列中同时估计最大Lyapunov(?)指数和噪声水平的新方法。该方法首先研究了噪声对嵌入相空间中两点距离的影响,然后根据最大Lyapunov指数在不同维嵌入相空间中不变的性质,提出了从时间序列同时估计最大Lyapunov指数和噪声水平的方法。仿真计算结果表明,当噪声水平小于10%时,该方法对时间序列的最大Lyapunov指数和噪声水平的估计都是可靠的,而且对白噪声和色噪声均有效。另外,结合非线性降噪方法对该方法作了改进,发现改进的方法可用于含30%噪声的混沌时间序列。
     3.用热线风速仪采集了圆射流和平面射流的速度时间序列,并用提出的混沌时间序列分析方法计算了两种射流的最大Lyapunov指数和其中包含的随机噪声。结果表明,两种射流的最大Lyapunov指数均随射流出口雷诺数的增加而增加,但出口雷诺数相同时,平面射流的最大Lyapunov指数比圆射流的大。在射流近场区,两种射流的最大Lyapunov (?)旨数沿流动方向都是先增加后减小。两种射流的随机噪声均随射流出口雷诺数和离开喷嘴出口的距离的增加而增加。对相同的出口雷诺数和相同的无因次位置,平面射流的随机噪声比圆射流的大。结果还发现,两种射流的最大Lyapunov与湍流积分时间尺度的-1次方成正比,与量纲分析结果一致,并且比例系数相等;另外,两种射流中的随机噪声与湍流的Kolmogorov速度尺度有相同的线性关系。由此可见,湍流可分解为确定性的混沌和随机噪声两部分,其中湍流中大涡的运动遵循混沌运动规律,而湍流中小涡的随机运动构成了湍流的随机噪声。
Turbulent jets are the basic flow patterns in entrained-bed gasifier and other jet reactors. In this paper, the methods for estimating the Lyapunov exponents and noise level from chaotic time series were proposed, and the velocity time series of round turbulent jets and plane turbulent jets with the proposed method were studied and then some similar laws of the two kinds of jets were found. The main contents and results are summarized as follows:
     1. A novel method for estimating the Lyapunov spectrum from a noisy chaotic time series is presented. An averaging method is proposed to cope with this noise based on the property of mutual independence between the random noise and the underlying dynamical system. The mappings equations of the underlying deterministic system can be obtained from the noisy data via the method, and then the Lyapunov spectrum of the underlying deterministic system can be estimated. We demonstrate the performance of our algorithm for the time series of Logistic map, Henon map, the generalize Henon map and Lorenz system. It is found that the proposed method provides a reasonable estimate of Lyapunov spectrum for these four systems when the noise level is less than15%,20%,10%and7%, respectively. Furthermore, our method is not sensitive to the distribution types of the white noise, and the results of our method become more accurate as the length of the time series increasing.
     2. A novel method for estimating simultaneously the largest Lyapunov exponent and noise level from a noisy chaotic time series is presented. The influence of noise on the distance of two points in an embedding phase space is researched, and then our algorithm is proposed based on the invariant of the largest Lyapunov exponent in different dimensional embedding phase spaces. With numerical simulation, we find that the proposed method provides a reasonable estimate of the largest Lyapunov exponent and noise level when the noise level is less than10%of the signal content, and the method is useful not only for the wihte noise but also for the color noise. Furthermore, combining the nonlinear noise reduction, an improved methd is proposed and it can be used for the chaotic time series with30%noise.
     3. The velocity time series of round jets and plane jets are acquired with the hot-wire anemometer. The largest Lyapunov exponents and the random noise of two kinds of jets are computed with the proposed method of chaotic time series. The results show that the largest Lyapunov exponents of two kinds of jets increase with the exit Reynolds numbers of jets, but the largest Lyapunov exponents of the plane jets are larger than that of round jets at the same exit Reynolds number. In the near field of jet, the largest Lyapunov exponents of two kinds of jets increase first and then decrease along the flow direction. The random noise of the two kinds of jets increase both as the exit Reynolds number and the distance away from the nozzle exit. For the same exit Reynolds number and the same dimensionless position, the random noise of plane jets is larger than that of round jets. The results also show that the largest Lyapunov exponents of two kinds of jet are in direct proportion to the reciprocal of the integral time scale of turbulence and the proportionality coefficients are equal, which is in accordance with the results of the dimensional analysis. In addition, the random noise of the two kinds of jets has the same linear relation with the Kolmogorov velocity scales of turbulence. Consequently, the turbulence is composed of the deterministic chaos and the random noise, where the motion of large eddies in the turbulence follows the rule of chaotic motion and the random noise arises from the random motion of small eddies in the turbulence.
引文
[1]于遵宏,王辅臣.煤炭气化技术[M].北京:化学工业出版社,2010.
    [2]国家统计局能源统计司.中国能源统计年鉴[M].北京:中国统计出版社,2011.
    [3]贺永德.现代煤化工技术手册[M].北京:化学工业出版社,2004.
    [4]于广锁,龚欣,刘海峰等.多喷嘴对置式水煤浆气化技术[J].现代化工,2004,24(10):46-49.
    [5]王辅臣,于广锁,龚欣等.多喷嘴对置煤气化技术的研究与工业示范[J].应用化工,2006,35:119-132.
    [6]王辅臣,李伟锋,代正华等.天然气非催化部分氧化制合成气过程的研究[J].石油化工,2006,35(1):47-51.
    [7]是勋刚.湍流[M].天津:天津大学出版社,1994.
    [8]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2004.
    [9]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [10]韩敏.混沌时间序列预测理论与方法[M].北京:中国水利水电出版社,2007.
    [11]Guegan D, Leroux J. Forecasting chaotic systems:The role of local Lyapunov exponents[J]. Chaos, Solitons & Fractals,2009,41(5):2401-2404.
    [12]Zhang J G, Li X F, Chu Y D, et al. Hopf bifurcations, Lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system[J]. Chaos, Solitons & Fractals,2009,39(5):2150-2168.
    [13]Zhu C. Controlling hyperchaos in hyperchaotic Lorenz system using feedback controllers[J]. Applied Mathematics and Computation,2010,216(10): 3126-3132.
    [14]Tian L, Xu J, Sun M, et al. On a new time-delayed feedback control of chaotic systems[J]. Chaos, Solitons & Fractals,2009,39(2):831-839.
    [15]Rosso O, Larrondo H, Martin M, et al. Distinguishing noise from chaos[J]. Physical Review Letters,2007,99(15):154102.
    [16]Gao J, Hu J, Tung W, et al. Distinguishing chaos from noise by scale-dependent Lyapunov exponent[J]. Physical Review E,2006,74(6):066204.
    [17]Wei H D, Li L P, Guo J X. An efficient method of distinguishing chaos from noise[J]. Chinese Physics B,2010,19(5):050505.
    [18]Eckmann J P, Ruelle D. Ergodic theory of chaos and strange attractors[J]. Reviews of Modern Physics,1985,57(3),617-656.
    [19]Ditto W, Spano M, Savage H, et al. Experimental observation of a strange nonchaotic attractor[J]. Physical Review Letters,1990,65(5):533-536.
    [20]Schreiber T. Interdisciplinary application of nonlinear time series methods[J]. Physics Reports,1999,308(1):1-64.
    [21]Takens F. Detecting strange attractors in turbulence, In Lecture notes in mathematics. Berlin:Springer-Verlag,1981,898:366-381.
    [22]Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series[J]. Physica D,1985,16(3):285-317.
    [23]Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D,1993,65(1): 117-134.
    [24]Aguirre L A. A nonlinear correlation function for selecting the delay time in dynamical reconstructions [J]. Physics Letters A,1995,203(2):88-94.
    [25]Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A,1986,33(2):1134.
    [26]陈帝伊,柳烨,马孝义.基于径向基函数神经网络的混沌时间序列相空间重构双参数联合估计[J].物理学报,2012,61(10):100501.
    [27]Buzug T, Pfister G. Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors[J]. Physical Review A,1992,45(10):7073-7084.
    [28]Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A,1992,45(6):3403.
    [29]Ramdani S, Casties J F, Bouchara F, et al. Influence of noise on the averaged false neighbors method for analyzing time series[J]. Physica D,2006,223(2): 229-241.
    [30]Cao L. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D,1997,110(1):43-50.
    [31]Kaplan D T, Glass L. Direct test for determinism in a time series[J]. Physical Review Letters,1992,68(4):427-430.
    [32]Salvino L W, Cawley R. Smoothness implies determinism:A method to detect it in time series[J]. Physical Review Letters,1994,73(8):1091-1094.
    [33]Mees A I, Rapp P E, Jennings L S. Singular-value decomposition and embedding dimension[J]. Physical Review A,1987,36(1):340.
    [34]Meng Q F, Peng Y H, Xue P J. A new method of determining the optimal embedding dimension based on nonlinear prediction[J]. Chinese Physics,2007, 16(5):1252-1257.
    [35]Molkov Y I, Mukhin D, Loskutov E, et al. Using the minimum description length principle for global reconstruction of dynamic systems from noisy time series[J]. Physical Review E,2009,80(4):046207.
    [36]Broomhead D, King G P. Extracting qualitative dynamics from experimental data[J]. Physica D,1986,20(2):217-236.
    [37]Kugiumtzis D. State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length[J]. Physica D,1996,95(1): 13-28.
    [38]Kim H S, Eykholt R, Salas J. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D,1999,127(1):48-60.
    [39]Kantz H, Schreiber T. Nonlinear time series analysis[M]. Cambridge:Cambridge University Press,2003.
    [40]Liu H F, Dai Z H, Li W F, et al. Noise robust estimates of the largest Lyapunov exponent[J]. Physics Letters A,2005,341(1):119-127.
    [41]Lim T P, Puthusserypady S. Chaotic time series prediction and additive white gaussian noise[J]. Physics Letters A,2007,365(4):309-314.
    [42]Wang W, Van Gelder P H A J M, Vrijling J K. The effects of dynamical noise on the identification of chaotic systems:With application to streamflow processes[C]. Proceeding -4th International Conference on Natural Computation, 2008,4:685-691.
    [43]Serletis A, Shahmoradi A, Serletis D. Effect of noise on estimation of Lyapunov exponents from a time series[J]. Chaos, Solitons & Fractals,2007,32(2): 883-887.
    [44]Schouten J C, Takens F, van den Bleek C M. Estimation of the dimension of a noisy attractor[J]. Physical Review E,1994,50(3):1851-1861.
    [45]Schreiber T. Influence of gaussian noise on the correlation exponent[J]. Physical Review E,1997,56(1):274-277.
    [46]Casdagli M, Eubank S, Farmer J D, et al. State space reconstruction in the presence of noise[J]. Physica D,1991,51(1):52-98.
    [47]Ma J H, Wang Z Q, Chen Y. Prediction techniques of chaotic time series and its applications at low noise level[J]. Applied Mathematics and Mechanics,2006, 27(1):7-14.
    [48]Hammel S M. A noise reduction method for chaotic systems[J]. Physics Letters A, 1990,148(8):421-428.
    [49]Marteau P, Abarbanel H D I. Noise reduction in chaotic time series using scaled probabilistic methods[J]. Journal of Nonlinear Science,1991,1(3):313-343.
    [50]游荣义,陈忠,徐慎初等.基于小波变换的混沌信号相空间重构研究[J].物理学报,2005,53(9):2882-2888.
    [51]Medina C, Alcaim A, Apolinario Jr J. Wavelet denoising of speech using neural networks for[J]. Electronics Letters,2003,39(25):1869-1871.
    [52]Zhang L, Bao P, Pan Q. Threshold analysis in wavelet-based denoising[J]. Electronics Letters,2001,37(24):1485-1486.
    [53]Donoho D L. De-noising by so ft-thresholding[J]. IEEE Transactions on Information Theory,1995,41(3):613-627.
    [54]Vautard R, Yiou P, Ghil M. Singular-spectrum analysis:A toolkit for short, noisy chaotic signals[J]. Physica D,1992,58(1):95-126.
    [55]Shin K, Hammond J, White P. Iterative svd method for noise reduction of low-dimensional chaotic time series[J]. Mechanical Systems and Signal Processing,1999,13(1):115-124.
    [56]Schreiber T. Extremely simple nonlinear noise-reduction method[J]. Physical Review E,1993,47:2401-2404.
    [57]侯威,廉毅,封国林.基于搜索平均法的气象观测数据的非线性去噪[J].物理学报,2007,56(1):589-596.
    [58]Cawley R, Hsu G H. Local-geometric-projection method for noise reduction in chaotic maps and flows[J]. Physical Review A,1992,46(6):3057-3082.
    [59]Hegger R, Kantz H, Matassini L. Noise reduction for human speech signals by local projections in embedding spaces[J]. IEEE Transactions on Circuits and Systems,2001,48(12):1454-1461.
    [60]Grassberger P, Hegger R, Kantz H, et al. On noise reduction methods for chaotic data[J]. Chaos,1993,3(2):127-141.
    [61]Schreiber T, Richter M. Fast nonlinear projective filtering in a data stream[J]. International Journal of Bifurcation and Chaos,1999,9(10):2039-2045.
    [62]Leontitsis A, Bountis T, Pagge J. An adaptive way for improving noise reduction using local geometric projection[J]. Chaos,2004,14(1):106-110.
    [63]Sun J, Zhao Y, Zhang J, et al. Reducing colored noise for chaotic time series in the local phase space[J]. Physical Review E,2007,76(2):026211.
    [64]Schreiber T. Determination of the noise level of chaotic time series[J]. Physical Review E,1993,48(1):13-16.
    [65]Leontitsis A, Pange J, Bountis T. Large noise level estimation[J]. International Journal of Bifurcation and Chaos,2003,13(08):2309-2313.
    [66]Coban G, Buyuklu A H, Das A. A linearization based non-iterative approach to measure the gaussian noise level for chaotic time series[J]. Chaos, Solitons & Fractals,2012,45(3):266-278.
    [67]Yu D, Small M, Harrison R G, et al. Efficient implementation of the gaussian kernel algorithm in estimating invariants and noise level from noisy time series data[J]. Physical Review E,2000,61(4):3750-3756.
    [68]Diks C. Estimating invariants of noisy attractors[J]. Physical Review E,1996, 53(5):4263-4266.
    [69]Jayawardena A, Xu P, Li W. A method of estimating the noise level in a chaotic time series[J]. Chaos,2008,18(2):023115.
    [70]Nolte G, Ziehe A, Muller K R. Noise robust estimates of correlation dimension and k2 entropy[J]. Physical Review E,2001,64(1):016112.
    [71]Urbanowicz K, Holyst J A. Noise-level estimation of time series using coarse-grained entropy[J]. Physical Review E,2003,67(4):046218.
    [72]Kaminski T, Wendeker M, Urbanowicz K, et al. Comoustion process in a spark ignition engine:Dynamics and noise level estimation[J]. Chaos,2004,14(2): 461-466.
    [73]Urbanowicz K, Holyst J A. Investment strategy due to the minimization of portfolio noise level by observations of coarse-grained entropy[J]. Physica A, 2004,344(1):284-288.
    [74]Litak G, Taccani R, Radu R, et al. Estimation of a noise level using coarse-grained entropy of experimental time series of internal pressure in a combustion engine[J]. Chaos, Solitons & Fractals,2005,23(5):1695-1701.
    [75]Urbanowicz K, JANUSZ A H. Noise estimation by use of neighboring distances in takens space and its applications to stock market data[J]. International Journal of Bifurcation and Chaos,2006,16(06):1865-1869.
    [76]Strumik M, Macek W M, Redaelli S. Discriminating additive from dynamical noise for chaotic time series[J]. Physical Review E,2005,72(3):036219.
    [77]Moriya N. Noise-level determination for discrete spectra with gaussian or lorentzian probability density functions[J]. Nuclear Instruments and Methods in Physics Research Section A,2010,618(1):306-314.
    [78]Hu J, Gao J, White K. Estimating measurement noise in a time series by exploiting nonstationarity[J]. Chaos, Solitons & Fractals,2004,22(4):807-819.
    [79]Kugiumtzis D, Lillekjendlie B, Christopher sen N. Chaotic time series. Part Ⅰ. Estimation of some invariant properties in state space[J]. Modeling Identification and Control,1994,15(4):205-228.
    [80]Zeng X, Eykholt R, Pielke R. Estimating the Lyapunov-exponent spectrum from short time series of low precision[J]. Physical Review Letters,1991,66(25): 3229-3232.
    [81]Awrejcewicz J, Kudra G. Stability analysis and Lyapunov exponents of a multi-body mechanical system with rigid unilateral constraints[J]. Nonlinear Analysis,2005,63(5):909-918.
    [82]Dechert W, Gencay R. Lyapunov exponents as a nonparametric diagnostic for stability analysis[J]. Journal of Applied Econometrics,1992,7(1):41-60.
    [83]Yang C, Wu Q. On stability analysis via Lyapunov exponents calculated from a time series using nonlinear mapping—a case study[J]. Nonlinear dynamics,2010, 59(1):239-257.
    [84]Zhang J, Lam K, Yan W, et al. Time series prediction using Lyapunov exponents in embedding phase space[J]. Computers & Electrical Engineering,2004,30(1): 1-15.
    [85]Ding R, Li J. Nonlinear finite-time Lyapunov exponent and predictability[J]. Physics Letters A,2007,364(5):396-400.
    [86]赵艳艳,李留仁,刘海峰等.水平管中气固两相流的混沌特征分析[J].华东理工大学学报,2004,30(5):510-513.
    [87]谢林生,马玉录.双转子连续混炼机中的混沌混合行为研究[J].中国塑料,2009,23(4):104-108.
    [88]胡立舜,王亦飞,周志杰等.浆态床反应器压力信号混沌分析及预测[J].煤炭学报,2005,30(5):647-651.
    [89]刘东林,帅典勋,吴晓江.基于相空间重构的计算机网络的动力学特性分析[J].计算机工程与应用,2001,37(21):57-59.
    [90]Banbrook M, Ushaw G, McLaughlin S. Lyapunov exponents from a time series: A noise-robust extraction algorithm[J]. Chaos, Solitons & Fractals,1996,7(7): 973-976.
    [91]Lara L. Heuristic determination of the local Lyapunov exponents[J]. Chaos, Solitons & Fractals,2008,37(4):1208-1213.
    [92]McCue L, Troesch A. A combined numerical-empirical method to calculate finite-time Lyapunov exponents from experimental time series with application to vessel capsizing[J]. Ocean engineering,2006,33(13):1796-1813.
    [93]Okushima T. New method for computing finite-time Lyapunov exponents[J]. Physical Review Letters,2003,91(25):254101.
    [94]Abarbanel H D I, Brown R, Kennel M B. Local Lyapunov exponents computed from observed data[J]. Journal of Nonlinear Science,1992,2(3):343-365.
    [95]Shin K, Hammond J. The instantaneous Lyapunov exponent and its application to chaotic dynamical systems[J]. Journal of sound and vibration,1998,218(3): 389-403.
    [96]Eckmann J P, Kamphorst S O, Ruelle D, et al. Liapunov exponents from time series[J]. Physical Review A,1986,34(6):4971-4979.
    [97]Brown R, Bryant P, Abarbanel H D I. Computing the Lyapunov spectrum of a dynamical system from an observed time series[J]. Physical Review A,1991, 43(6):2787-2806.
    [98]Abarbanel H D I, Brown R, Kennel M B. Variation of Lyapunov exponents on a strange attractor[J]. Journal of Nonlinear Science,1991,1(2):175-199.
    [99]Parker T S, Chua L O. Practical numerical algorithms for chaotic systems[M]. New York:Springer-verlag,1989.
    [100]Kim M C, Hsu C. Computation of the largest Lyapunov exponent by the generalized cell mapping[J]. Journal of statistical physics,1986,45(1):49-61.
    [101]Froyland G, Judd K, Mees A I. Estimation of Lyapunov exponents of dynamical systems using a spatial average[J]. Physical Review E,1995,51(4):2844-2855.
    [102]Aston P J, Dellnitz M. Computation of the dominant Lyapunov exponent via spatial integration using matrix norms[J]. Proceedings of the Royal Society of London,2003,459(2040):2933-2955.
    [103]刘海峰,赵艳艳,代正华等.利用小波分析计算离散动力系统的最大Lyapunov指数[J].物理学报,2001,50(12):2311-2317.
    [104]Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series[J]. Physics Letters A,1994,185(1):77-87.
    [105]Sano M, Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series[J]. Physical Review Letters,1985,55(10):1082-1085.
    [106]Oiwa N, Fiedler-Ferrara N. Lyapunov spectrum from time series using moving boxes[J]. Physical Review E,2002,65(3):036702.
    [107]Dechert W D, Gencay R. Is the largest Lyapunov exponent preserved in embedded dynamics[J]. Physics Letters A,2000,276(1):59-64.
    [108]Tempkin J A, Yorke J A. Spurious Lyapunov exponents computed from data[J]. SIAM Journal on Applied Dynamical Systems,2007,6(2):457-474.
    [109]Schmidt F, Lamarque C H. On the numerical value of finite-time pseudo-Lyapunov exponents[J]. Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems,2009,6(1):13-23.
    [110]Sauer T D, Tempkin J A, Yorke J A. Spurious Lyapunov exponents in attractor reconstruction[J]. Physical Review Letters,1998,81(20):4341-4344.
    [111]Gencay R, Dechert W D. The identification of spurious Lyapunov exponents in jacobian algorithms[J]. Studies in Nonlinear Dynamics and Econometrics,1996, 1(3):145-154.
    [112]Parlitz U. Identification of true and spurious Lyapunov exponents from time series[J]. International Journal of Bifurcation and Chaos,1992,2(1):155-165.
    [113]Banbrook M, Ushaw G, McLaughlin S. How to extract Lyapunov exponents from short and noisy time series[J]. IEEE Transactions on Signal Processing, 1997,45(5):1378-1382.
    [114]Sauer T D, Yorke J A. Reconstructing the jacobian from data with observational noise[J]. Physical Review Letters,1999,83(7):1331-1334.
    [115]Yonemoto K, Yanagawa T. Estimating the Lyapunov exponent from chaotic time series with dynamic noise[J]. Statistical Methodology,2007,4(4):461-480.
    [116]Liu H F, Yang Y Z, Dai Z H, et al. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application[J]. Chaos,2003,13(3): 839-844.
    [117]Yang C, Wu C Q. A robust method on estimation of Lyapunov exponents from a noisy time series[J]. Nonlinear dynamics,2011,64(3):279-292.
    [118]Hunt J, Sandham N, Vassilicos J, et al. Developments in turbulence research:A review based on the 1999 programme of the isaac newton institute, Cambridge[J]. Journal of Fluid Mechanics,2001,436:353-391.
    [119]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2005.
    [120]邱翔,刘宇陆.湍流的相干结构[J].自然杂志,2005,26(4):187-193.
    [121]Eckhardt B, Schneider T M, Hof B, et al. Turbulence transition in pipe flow[J]. Annual Review of Fluid Mechanics,2007,39:447-468.
    [122]Hof B, Juel A, Mullin T. Scaling of the turbulence transition threshold in a pipe[J]. Physical Review Letters,2003,91(24):244502.
    [123]Mullin T. Experimental studies of transition to turbulence in a pipe[J]. Annual Review of Fluid Mechanics,2011,43:1-24.
    [124]Schneider T M, Eckhardt B. Lifetime statistics in transitional pipe flow[J]. Physical Review E,2008,78(4):046310.
    [125]Lemoult G, Aider J L, Wesfreid J E. Experimental scaling law for the subcritical transition to turbulence in plane poiseuille flow[J]. Physical Review E,2012, 85(2):025303.
    [126]Eckhardt B, Mersmann A. Transition to turbulence in a shear flow[J]. Physical Review E,1999,60(1):509-517.
    [127]Tsuji Y. High-Reynolds-number experiments:The challenge of understanding universality in turbulence[J]. Fluid Dynamics Research,2009,41(6):064003.
    [128]Kolmogorov A N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[J]. Journal of Fluid Mechanics,1962,13(1):82-85.
    [129]Benzi R, Ciliberto S, Baudet C, et al. On the scaling of 3-dimensional homogeneous and isotropic turbulence[J]. Physica D,1994,80(4):385-398.
    [130]Benzi R, Biferale L, Ciliberto S, et al. Generalized scaling in fully developed turbulence[J]. Physica D,1996,96(1):162-181.
    [131]She Z S, Leveque E. Universal scaling laws in fully developed turbulence[J]. Physical Review Letters,1994,72(3):336-339.
    [132]She Z S, Zhang Z X. Universal hierarchical symmetry for turbulence and general multi-scale fluctuation systems[J]. Acta Mechanica Sinica,2009,25(3): 279-294.
    [133]Crow S C, Champagne F. Orderly structure in jet turbulence[J]. Journal of Fluid Mechanics,1971,48(3):547-591.
    [134]Kim H T, Kline S, Reynolds W. The production of turbulence near a smooth wall in a turbulent boundary layer[J]. Journal of Fluid Mechanics,1971,50(1): 133-160.
    [135]Van Dyke M. An album of fluid motion[M]. California:Parabolic Press,1982.
    [136]林建忠.湍流的拟序结构[M].北京:机械工业出版社,1995.
    [137]Hussain A. Coherent structures and turbulence[J]. Journal of Fluid Mechanics, 1986,173:303-356.
    [138]Hussain A K M F. Coherent structures—reality and myth[J]. Physics of Fluids, 1983,26(10):2816-2850.
    [139]卢志明,刘宇陆.湍流相干结构机理研究(Ⅲ)—湍流拟序结构的统计及动力模型及其对传热影响研究[J].应用数学和力学,1998,19(8):659-665.
    [140]Schneider T M, Eckhardt B, Vollmer J. Statistical analysis of coherent structures in transitional pipe flow[J]. Physical Review E,2007,75(6):066313.
    [141]Carstensen S, Sumer B M, Freds(?)e J. Coherent structures in wave boundary layers. Part 1. Oscillatory motion[J]. Journal of Fluid Mechanics,2010,646(1): 169-206.
    [142]范全林,张会强,郭印诚等.平面自由湍射流拟序结构的大涡模拟研究[J].清华大学学报(自然科学版),2001,41(11):31-34.
    [143]Kawahara G. Theoretical interpretation of coherent structures in near-wall turbulence[J]. Fluid Dynamics Research,2009,41(6):064001.
    [144]李伟锋,刘海峰,龚欣等.平面射流拟序结构的离散涡模拟[J].华东理工大学学报(自然科学版),2005,31(3):319-322.
    [145]Haller G, Yuan G. Lagrangian coherent structures and mixing in two-dimensional turbulence[J]. Physica D,2000,147(3):352-370.
    [146]Bos W J T, Futatani S, Benkadda S, et al. The role of coherent vorticity in turbulent transport in resistive drift-wave turbulence[J]. Physics of Plasmas,2008: 072305.
    [147]李万平,许正,赵伟.湍流多尺度相干结构间歇性的PIV实验研究[J].华中科技大学学报(自然科学版),2007,35(12):76-79.
    [148]Fellouah H, Ball C, Pollard A. Reynolds number effects within the development region of a turbulent round free jet[J]. International Journal of Heat and Mass Transfer,2009,52(17):3943-3954.
    [149]Brandstater A, Swift J, Swinney H L, et al. Low-dimensional chaos in a hydrodynamic system[J]. Physical Review Letters,1983,51(16):1442-1445.
    [150]Brandstater A, Swinney H L. Strange attractors in weakly turbulent couette-taylor flow[J]. Physical Review A,1987,35(5):2207-2220.
    [151]Mullin T. Finite-dimensional dynamics and chaos in fluid flows[J]. New Approaches and Concepts in Turbulence,1993:207-219.
    [152]Sreenivasan K. Transition and turbulence in fluid flows and low-dimensional chaos[J]. Frontiers in Fluid Mechanics,1985:41-67.
    [153]钱俭.混沌动力学和湍流的统计理论[J].中国科学技术大学学报,1993,23(1):91-96.
    [154]Zhang J, Liu N S, Lu X Y. Route to a chaotic state in fluid flow past an inclined flat plate[J]. Physical Review E,2009,79(4):045306.
    [155]Gallego M, Garcia J, Cancillo M. Characterization of atmospheric turbulence by dynamical systems techniques[J]. Boundary-layer meteorology,2001,100(3): 375-392.
    [156]Daw C S, Lawkins W F, Downing D J, et al. Chaotic characteristics of a complex gas-solids flow[J]. Physical Review, A,1990,41(2):1179-1181.
    [157]Sirovich L. Chaotic dynamics of coherent structures[J]. Physica D,1989,37(1): 126-145.
    [158]Rajaee M, Karlsson S K F, Sirovich L. Low-dimensional description of free-shear-flow coherent structures and their dynamical behaviour[J]. Journal of Fluid Mechanics,1994,258:1-29.
    [159]Moehlis J, Faisst H, Eckhardt B. Periodic orbits and chaotic sets in a low-dimensional model for shear flows[J]. SIAM Journal on Applied Dynamical Systems,2005,4(2):352-376.
    [160]肖楠,金宁德.基于混沌吸引子形态特性的两相流流型分类方法研究[J].物理学报,2007,56(9):5149-5157.
    [161]Guan S, Wei G, Lai C H. Controllability of flow turbulence[J]. Physical Review E,2004,69(6):066214.
    [162]Tel T, Lai Y C. Chaotic transients in spatially extended systems[J]. Physics Reports,2008,460(6):245-275.
    [163]Ouellette N T, Gollub J P. Curvature fields, topology, and the dynamics of spatiotemporal chaos[J]. Physical Review Letters,2007,99(19):194502.
    [164]Rempel E L, Chian A C L. Origin of transient and intermittent dynamics in spatiotemporal chaotic systems[J]. Physical Review Letters,2007,98(1): 014101.
    [165]Shadden S C, Lekien F, Marsden J E. Definition and properties of lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows[J]. Physica D,2005,212(3):271-304.
    [166]Aurell E, Boffetta G, Crisanti A, et al. Predictability in the large:An extension of the concept of Lyapunov exponent[J]. Journal of Physics A,1997,30(1):1-26.
    [167]Bec J, Biferale L, Boffetta G, et al. Lyapunov exponents of heavy particles in turbulence[J]. Physics of Fluids,2006,18:091702.
    [168]Fouxon I, Horvai P. Separation of heavy particles in turbulence[J]. Physical Review Letters,2008,100(4):040601.
    [169]胡非.湍流、间歇性与大气边界层[M].北京:科学出版社,1995.
    [170]李伟锋,刘海峰,龚欣.工程流体力学[M].上海:华东理工大学出版社,2009.
    [171]Landa P S, McClintock P V E. Development of turbulence in subsonic submerged jets[J]. Physics Reports,2004,397(1):1-62.
    [172]Zhang F H, Liu H F, Xu J C, et al. Experimental investigation on cavitation noise of water jet and its chaotic behaviour[J]. Applied Mechanics and Materials, 2012,121:3919-3924.
    [173]Broze G, Hussain F. Nonlinear dynamics of forced transitional jets:Periodic and chaotic attractors[J]. Journal of Fluid Mechanics,1994,263(1):93-132.
    [174]Bellazzini J, Menconi G, Ignaccolo M, et al. Vortex dynamics in evolutive flows: A weakly chaotic phenomenon [J]. Physical Review E,2003,68(2):026126.
    [175]夏宁茂.新编概率论与数理统计[M].上海:华东理工大学出版社,2006.
    [176]Henon M. A two-dimensional mapping with a strange attractor[J]. Communications in Mathematical Physics,1976,50(1):69-77.
    [177]Baier G, Klein M. Maximum hyperchaos in generalized henon maps[J]. Physics Letters A,1990,151(6):281-284.
    [178]Lorenz E N. Deterministic nonperiodic flow[J]. Journal of the atmospheric sciences,1963,20(2):130-141.
    [179]李伟锋,周志杰,刘海峰等.1/fα噪声对计算混沌动力系统最大Lyapunov指数的影响[J].华东理工大学学报(自然科学版),2006,32(9):1067-1071.
    [180]Gomez J, Relano A, Retamosa J, et al.1/fα noise in spectral fluctuations of quantum systems[J]. Physical Review Letters,2005,94(8):84101.
    [181]王海燕,卢山.非线性时间序列分析及其应用[M].北京:科学出版社,2006.
    [182]Meng Y, Liu B, Liu Y. A comprehensive nonlinear analysis of electromyogram [C]. Proceedings of the 23rd Annual EMBS International Conference,2001, 2:1078-1081.
    [183]杜诚,徐敏义,米建春.雷诺数对圆形渐缩喷嘴湍流射流的影响[J].物理学报,2010,59(9):6331-6338.
    [184]Kwon S J, Seo I W. Reynolds number effects on the behavior of a non-buoyant round jet[J]. Experiments in fluids,2005,38(6):801-812.
    [185]Pope S B. Turbulent flows[M]. Cambridge:Cambridge university press,2000.
    [186]米建春,冯宝平.平面射流沿轴线的特征尺度及其对测量信号过滤程度的依赖[J].物理学报,2010,59(7):4748-4755.
    [187]刘海峰,吴韬,王辅臣等.应用小波分析研究湍流相干结构(I):小波分析辨识相干结构的能量最大准则[J].化工学报,2000,51(6):761-765.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700