三维金属体积成形过程有限元模拟若干关键技术研究与系统开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属体积成形工艺就是将金属材料,在锻压设备及安装在其上的模具作用下发生塑性变形,成形为所需形状和性能工件的工艺过程,金属体积成形工艺主要包括锻造、挤压、轧制、辊锻、楔横轧等。在工业生产中,金属体积成形制造技术是支撑国民经济发展与国防建设的主要技术之一,在汽车、航天航空、装备制造、兵器、能源、造船等行业具有广泛用途。金属体积成形技术具有产品机械性能好、生产效率高、节省原材料等优点,但是同时也具有模具成本高、生产周期长、浪费能源、污染环境等缺点。在全球“低碳经济”和“节能减排”的大形势下,如何扬长避短,适应新的发展形势,成为金属体积塑性加工技术研究新的任务和要求。
     金属体积成形过程是一个受多因素影响的复杂物理过程,材料性能、模具形状、毛坯形状、工艺参数、成形温度等对成形过程都有影响,这使其工艺和模具设计变得非常复杂,传统的经验设计方法,通常会带来设备、材料和时间浪费的弊端。对金属体积成形过程进行准确的数值模拟不但可以节省昂贵的实验费用,而且对合理确定成形工艺、保证模具设计的一次性成功具有重要的理论指导意义和工程实用价值。随着数值计算方法和计算机技术的发展,数值模拟分析方法已经成为解决工程问题的重要方法,其中有限元方法最为成熟,在金属体积成形过程数值模拟中发挥着重要的作用。近年来,随着体积成形工艺的快速发展,目前的体积成形有限元模拟软件存在网格再划分次数多、复杂运动条件加载困难、大型问题分析效率低等问题,已不能满足体积成形有限元分析的需要。为此本文对金属体积成形有限元模拟的理论、算法和具体实现技术进行了研究,并建立了基于刚粘塑性理论的体积成形有限元模拟软件平台。
     对三维有限元网格的划分方法进行了研究,为解决有限元网格模型精度与单元数量的矛盾,提出了自适应网格划分的方法,对常用的六面体网格模型、四面体网格模型的自适应生成方法进行了研究;为了兼顾两种网格模型的优点,研究了四面体、六面体混合网格模型的自适应生成方法;提出了不同网格划分方法的选择原则,建立了三维初次网格划分算法。对三维有限元网格的再划分方法进行了研究,研究了畸变网格几何形状提取和修复的方法,提出了新旧网格物理场量传递的算法。为了提高物理场量的插值精度,提出了基于几何特征和计算物理场量的双重自适应网格再划分方法。为了提高网格再划分的效率,提出了三维有限元网格局部再划分技术,针对干涉网格提出了局部网格加密法;针对畸变网格提出了局部网格优化法和局部网格剖分法。制定了不同网格再划分方法的选择标准和原则。
     分析了目前的体积成形有限元模拟的理论和方法,采用刚粘塑性理论作为体积成形有限元分析的基本理论;研究了基于六面体网格模型、四面体网格模型及四面体、六面体混合网格模型等不同网格模型的刚粘塑性有限元总体刚度方程的建立方法和求解方法。对三维金属体积成形有限元分析计算的关键技术进行了研究,提出了基于STL文件数据重构的模具三维几何形状的描述方法;提出了一种局部坐标系的建立方法,保证了接触模具和对称约束边界条件的正确施加;研究了模具复杂运动的处理方法,确定了模具运动的描述方法,给出了模具速度求解方法和模具位置更新方法;提出了三维动态边界条件的处理方法,采用相对位置法判断节点的触模情况,采用最短距离法处理触模节点的位置调整问题;为了提高分析计算的效率,减少存储空间的消耗,提出了总体刚度方程的压缩存储算法和总体刚度方程的高效求解方法。在关键技术研究的基础上,开发了三维金属体积成形有限元模拟分析计算系统。
     研究了三维温度场有限元分析的基本理论和关键技术,开发了三维温度场有限元分析系统;研究了热力耦合有限元模拟的基本理论及关键技术,如温度场震荡的处理、热热力学参数的处理、速度场和温度场相互影响的处理等关键技术;在理论基础和关键技术研究的基础上,将三维温度场有限元分析系统与三维金属体积成形有限元模拟分析计算系统相结合,应用间接耦合的方法建立了三维金属体积成形热力耦合有限元模拟计算系统。
     基于三维金属体积成形有限元模拟辅助子系统关键技术和实现方法的研究,开发了三维金属体积成形有限元模拟辅助子系统,主要包括:建立有限元模型的前处理系统,分析有限元计算结果的后处理系统,支撑系统运行的数据库系统。将这些辅助子系统与三维金属体积成形有限元计算系统相结合,构建了三维金属体积成形有限元模拟软件平台CASFORM-3D系统。通过典型的体积成形工程实例的模拟,将模拟结果与商业化软件DEFORM-3D的模拟结果进行了比较,二者吻合良好,验证了本文建立的关键技术和相关处理算法的准确性、可行性以及所构建系统的可靠性。
Bulk metal forming technology is a process in which the metallic materials, with the help of forging equipments and corresponding molds mounted upon them, are formed into parts with the desired shapes and properties. Bulk metal forming includes mainly forging, extrusion, rolling, roll forging, cross wedge rolling and so on. In industrial production, bulk metal forming is one of key technologies supporting the development of the national economy and the construction of the national defense. It is widely used in branches such as automobile, aerospace and aviation, equipments manufacturing, weapons, energy, ship building etc. Bulk metal forming process has many advantages, such as high productivity, raw material saving and better mechanical properties of the formed products. It has also certain disadvantages, such as high cost of mold, long production cycle, waste of energy, environmental pollution etc. Under the global tendency of "low carbon economy" and "energy saving & emission reducing", new tasks and requirements in the bulk metal forming technology study are how to make full use of the advantages and avoid disadvantages to acclimatize itself to the new situation of development.
     Bulk metal forming is a complex physical process, which is influenced by many factors, such as the properties of material, the form of mold, the shape of blank, the process parameters and the temperature etc, so the planning of the process and the designing of the corresponding mold for the bulk metal forming process is quiet difficult, which with the traditional method often has certain malpractices like waste of equipments, material and time. An accurate simulation of the bulk metal forming process can not only reduce the high costs in the experiments, but also has significant theoretical guidance and realistic application value meaning for determining the reasonable forming process and ensuring successful mold design at the first time as well. With the development in calculation method and computer technology, numerical simulation and analysis method has become a powerful tool for the solution of engineering problems. Among them the finite element method (FEM) is the most matured and has played an important role in the numerical simulation of bulk metal forming processes. With the rapid development in the bulk metal forming technology in recent years, the existing finite element software for the bulk metal forming simulation has been unable to meet the requirements in finite element analysis for the bulk metal forming process any more, because of problems such as frequently remeshing, difficulty loading for complex motion and low efficiency in the analysis of large problems. In this paper finite element simulation theory and algorithms and the detailed implementation for bulk metal forming are studied and a finite element simulation software platform based on rigid viscoplastic theory is developed for bulk forming.
     The three-dimensional (3D) finite element meshing method has been studied. In order to solve the contradiction between precision and unit numbers of the finite element mesh model, a self-adaptive meshing method is proposed and the commonly used self-adaptive meshing method for hexahedral mesh model and tetrahedral mesh model is studied. In order to take the advantages of the two mesh models, a concept, hybrid mesh model of hexahedron and tetrahedron, is proposed and the adaptive generating method for hybrid meshing model is studied. Principles for choosing of the meshing methods are proposed and a matured algorithm for 3D finite element initial meshing is established. Method for 3D finite element mesh regenerating is studied. The method for geometrical form extraction and restoration in the distortion of mesh is researched and a method for transfer of physical field variables between new and old mesh is studied. In order to improve the interpolation precision of physical field variables, a double self-adaptive remeshing algorithm is proposed based on both geometrical characteristic and physical field variables. In order to improve the efficiency in remeshing, a technology for the local remeshing of the 3D finite element mesh is proposed. In view of the interference mesh a method for refinement of the local mesh is proposed. In view of the distortion mesh a method for optimization of the position of local nodes and a method for regeneration of the local mesh are proposed. Also the methods and principles for choosing remeshing method are recommended, and a systematic method for remeshing of three-dimensional mesh is established.
     The existing theories and methods in finite element simulation have been analyzed and compared and in this study the rigid viscoplastic theory is chosen as the basic theory for analyzing the bulk metal forming with finite element. Based on the rigid viscoplastic theory, the establishing methods and solutions of the whole stiffness equation for different mesh models are researched. The key technology for the finite element simulation in isothermal forming of the 3D bulk metal forming is researched. The description of 3D geometry of the reconstructed mold is presented based on data of STL files. A method to establish of a local coordinate system is proposed to ensure the correct exerting of the boundary conditions and the symmetrical constrained on the contacted mold. The handling methods for complex mold motion, including description method of mold movement, solving methods for mold velocity and location update method of mold, are studied. Handling methods for three-dimensional dynamic boundary conditions are proposed, which include judging of contact of the nodes with mold with the help of relative position method and adjusting of position of the nodes contacted with mold by using the shortest distance method. In order to improve the efficiency of analysis and calculation, reduce storage space consumption, storage compression algorithms and corresponding efficient solutions for the whole stiffness equation are proposed. Based on the research in key technologies, an isothermal simulation system for bulk metal forming with FEM is developed.
     Based on the isothermal simulation system with FEM, a thermal mechanical coupling simulation system for bulk metal forming with FEM is developed. The basic theory of FEM for 3D temperature field is studied and a system of FEM for 3D temperature field is developed. The basic theory and key technologies of a thermal mechanical coupling simulation with FEM are studied, such as treatment of temperature shock, thermal coupling boundary conditions, and treatment of thermodynamic parameters. In theory and key technologies research, based on the system of 3D temperature field simulation with FEM and the system of 3D isothermal simulation with FEM, the system of 3D thermal mechanical coupling simulation with FEM is developed by indirect coupling method.
     Based on key technologies and implementation method, supporting subsystems of 3D bulk metal forming simulation system with FEM is developed, including:the pre-treatment system of building finite element model, post-processing system of analysis finite element results, database system of supporting system. The combination of these auxiliary subsystems with the three-dimensional rigid viscoplastic finite element analysis system builds a software platform CASFORM-3D system of the 3D FEM for bulk metal forming. Through simulating with typical parts in practice, and comparing of the simulation results with those results with commercial software DEFORM-3D simulation, it shows a high identity between these two methods, therefore verifies the reliability of the key technologies and feasibility of the associated processing algorithms proposed in this paper.
引文
[1]Hrenikoff A. Solution of problems in elasticity by the framework method[J]. Journal of Applied Mechanics,1941,A8:169-175.
    [2]Courant R. Variation methods for the solution of problems of equilibrium and vibration[J]. Bulletin of the American Mathematical Society,1943,49:1-23.
    [3]Turner M J, Clough R W, Martin H C, Topp L J. Stiffness and deflection analysis of complex structures [J]. Journal of Aerosol Science,1956,23:805-823.
    [4]Clough R W. The finite element in plan stress analysis[C]. Proceedings of the 2nd ASCE Conference on Electronic Computation, Pittsburgh, PA,1960.
    [5]胡海昌.弹性力学广义变分原理在求近似解中的正确应用[J].中国科学(A辑),1989,(11):1159-1166.
    [6]冯康.基于变分原理的差分格式[J].应用数学与计算数学,1965,2(4):237-261.
    [7]Marcal P V, King I P. Elastic-plastic Analysis of Two-dimensional Stress Systems by the Finite Element Method[J]. International Journal of Mechanical Sciences,1967,9:143-150.
    [8]Yamada Y, Yoshimura N, Sakurai T. Plastic Stress-strain Matrix and Its Application for the Solution of Elastic-plastic Problems by the Finite Element Method [J]. International Journal of Mechanical Sciences, 1968,10:343-348.
    [9]Hibbit H D, Marcal P V, Rice J R. A Finite Element Formulation for Problems of Large Strain and Large Displacement[J]. International Journal of Solids and Structures,1970,6:1069-1070.
    [10]Mcmeeking R M, Rice J R. Finite Element Formulation for Problems of Large Elastic-Plastic Deformation [J]. International Journal of Solids and Structures,1975,11:601-606.
    [11]Lee C H, Kobayashi S. New Solutions to Rigid-plastic Deformation Problems Using a Matrix Method[J]. Journal of Engineer for Industry,1973,95:865-873.
    [12]Zienkiewicz O C, Godbole P N. A Penalty Function Approach to Problems of Plastic Flow of Metals with Large Surface Deformations[J]. Journal of Strain Analysis,1975,10:180-196.
    [13]Zienkiewicz O C, Godbole P N. Flow of Plastic and Viscoplastic Solids with Special Reference to Extrusion and Forming Process[J]. International Journal for Numerical Methods in Engineering,1974, 8:3-15.
    [14]Kobayashi S, Oh S I, Altan T. Metal Forming and the Finite Element Method [D]. Oxford University Press, London,1989.
    [15]冯锺越.用于静力分析的航空结构分析系统Ⅰ型(HAJIF-I)[J].航空学报,1980,(1):16-26.
    [16]袁明武,陈璞,郑东,张会杰.微机结构通用分析程序SAP84[J].计算结构力学及其应用,1995,12(3):298-300.
    [17]李明瑞.FEAP-84一种独特的非线性动力有限元程序系统[J].北京农业机械化学院学报,1985,(1):100-105.
    [18]Hu P, Liu H P, Liu Y Q. Numerical Study on Flanging and Spring back of Stamped Thick Metal Plate[J]. Acta Mechanica Solida Sinica,2001,14(4):290-298.
    [19]刘瑞祥,周建兴,魏华胜,林汉同.开发中国自主版权的铸造CAE实用软件[J].铸造,2001,50(11):692-695.
    [20]Duggirala R. Design of forging Moulds for forming Flashless Ring Gear Blanks Using Finite Element Methods [J]. Journal of Material Shaping Technology,1989,17:33-47.
    [21]Kim N Y, Kobayashi S. Preform Design in H-Shaped Cross Sectional Axiaymmetric Forging by the Finite Element Method [J]. International Journal of Machine Tools & Manufacture,1990, 30(2):243-268.
    [22]Kang B S, Kim N, Kobayashi S. Computer-aided Preform Design in Forging of an Airfoil Section Blade [J]. International Journal of Machine Tools & Manufacture,1990,30(1):43-52.
    [23]陈军.虚拟模具制造及其金属成形过程三维仿真技术研究[D].上海:上海交通大学博士学位论文,1996.
    [24]赵国群.锻造过程的正反向数值模拟[D].上海:上海交通大学博士学位论文,1991.
    [25]赵国群,阮雪榆,张鸿光,关廷栋.链轨节锻造过程的有限元分析[J].模具技术,1991,(4):1-9.
    [26]赵国群,阮雪榆.多工位连续锻造过程有限元模拟[J].锻压技术,1992,(2):2-5.
    [27]王忠金.模锻过程的三维模拟及连杆终锻成形规律的研究[D].吉林:吉林工业大学博士学位论文,1995.
    [28]袁文生,史宝军,杜朝蓬,杜宪伟.多楔楔横轧轧件金属流动数值模拟[J].固体力学学报,2008,29(S1):70-75.
    [29]WANG M, YANG H, SUN Z C, GUO L G. Dynamic explicit FE modeling of hot ring rolling process[J]. Transactions of Nonferrous Metals Society of China,2006,16(6):1275-1280.
    [30]王华君,夏巨谌,胡国安,王新云.前轴成型辊锻工艺及三维有限元模拟[J].华中科技大学学报(自然科学版),2005,33(7):84-86.
    [31]王玉凤,李付国,谢汉芳,刘趁意,付静波.钼金属径向精锻工艺的数值模拟[J].稀有金属材料与工程,2009,33(12),2136-2140.
    [32]冀东生,夏巨谌,王新云,金俊松.节套体多向精锻工艺的模拟分析及实验研究[J].华中科技大学学报(自然科学版),2005,37(6):117-120.
    [33]李峰,林俊峰,初冠南.铝合金锻件成形工艺及三维有限元分析[J].中国有色金属学报,2009,19(7):1197-1202.
    [34]于彦东,周浩.MB15合金等通道转角挤压组织模拟和实验分析[J].中国有色金属学报,2011,21(2):296-302.
    [35]万自永,于巍,杨瑞.TC11钛合金异形锻件锻造过程三维有限元模拟[J].中国有色金属学报,2010,20(1):775-779.
    [36]崔振山,陈文,陈飞,张效迅.大锻件控性锻造过程的计算机模拟技术[J].机械工程学报,2010,46(11):2-8.
    [37]易幼平,刘超,黄始全.基于DEFORM-3D的7050铝合金动态再结晶元胞自动机模拟[J].中南大学学 报(自然科学版).2010,41(5):1814-1820.
    [38]Xiao L L, Miao Q L. FE simulation for the forging process of TC6 alloy disc utilising a microstructural model[J], Materials Characterization 2005,55(4-5):362-370.
    [39]Nahed E M, Farouk A S, Mohamed A H, Mohamed I A.3D FEM simulations for the homogeneity of plastic Deformation in Al-Cu alloys during ECAP[J]. Materials Science and Engineering A 2010,527(6):1404-1410.
    [40]Badrinarayanan S, Zabaras N. A Sensitivity Analysis for the Optimal Design of Metal forming Process[J]. Journal of Materials Processing Technology,1994,129:83-104.
    [41]Badrinarayanan S, Zabaras N. Preform Design in Metal Forming [C]. Proceedings, NUMIFORM95, S-F. Shen and P. Dawson, Ed., Ithaca, NY,1995:533-538.
    [42]Zhao G Q, Wright E et al. Preform Mould Shape Design in Metal Forming Using an Optimization Method[J]. International Journal for Numerical Methods in Engineering,1997,40:1213-1230.
    [43]Zhao G Q, Wright E et al. Preform Sensitivity Analysis Based Preform Mould Shape Design for Net-Shape Forging[J]. International Journal of Machine Tools & Manufacture,1997, 37:1251-1271.
    [44]Zhao G Q, Huff R et al. Sensitivity Analysis Based Preform Mould Shape Design Using the Finite Element Method[J]. Journal of Materials Engineering and Performance,1997,6:303-310.
    [45]Zhao G Q, Wright E et al. Sensitivity Analysis and Preform Mould Shape Design in Metal Forming[C]. Proceeding of the ASME International Mechanical Engineering Congress, Atlanta, Georgia, USA, 1996:123-124.
    [46]Zhao G Q, Wright E et al. Control of Deformation in Forging Through Preform Shape Design[C]. Proceeding of the ASME International Mechanical Engineering Congress, Atlanta, Georgia, USA, 1996:125-126.
    [47]赵国群,王广春等.材料塑性成形过程最优化设计-Ⅰ:有限元灵敏度分析方法[J].塑性工程学报,1999,6(2):1-7.
    [48]赵国群,王广春等.材料塑性成形过程最优化设计-Ⅱ:灵敏度分析方法在模具设计中的应用[J].塑性工程学报,1999,6(3):1-6.
    [49]赵国群,马新武等.锻造过程最优化预成形设计系统的开发研究[J].锻压机械.1999,(4):13-16.
    [50]赵国群,赵振铎等.有限元灵敏度分析与预锻模具形状优化设计[J].应用力学学报,1999,16(4):68-72.
    [51]赵国群,贾玉玺等.圆盘锻件纯形状锻造模具优化设计[J].机械工程学报,1999,35(4):81-84.
    [52]Joun M S, Hwang S M. Mould Shape Optimal Design in Three-Dimensional Shape Metal Shape Metal Extrusion by the Finite Element Method[J]. International Journal for Numerical Methods in Engineering,1998,41:311-335.
    [53]Joun M S, Hwang S M. Optimal Process Design in Steady-State Metal Forming by Finite Element Method-I:Theortical Considerations[J] International Journal of Machine Tools & Manufacture, 1993,33(1):51-61.
    [54]Joun M S, Hwang S M. Optimal Process Design in Steady-State Metal Forming by Finite Element Method-Ⅱ: Application to Mould Profile Design in Extrusion[J]. International Journal of Machine Tools & Manufacture,1993,33(1):63-70.
    [55]Byon M S, Hwang S M. Process Optimal Design in Non-Isothermal, Steady-State Metal Forming By the Finite Element Method[J]. International Journal for Numerical Methods in Engineering,1999, 46:1075-1100.
    [56]Gao Z Y, Grandhi R V. Sensitivity Analysis and Shape Optimization for Preform Design in thermo-Mechanical Couple Analysis[J]. International Journal for Numerical Methods in Engineering,1999,45:1349-1373.
    [57]Gao Z Y, Grandhi R V. Microstructure Optimization in Design of Forging Processes[J]. International Journal of Machine Tools & Manufacture,2000,40:691-711.
    [58]Kusak J, E.G. Thompson. Optimization Techniques for Extrusion Mould Shape Design [C]. Proc. 3rd Int. Conf. On Numer. Methods in Ind. Forming Processes, Fort Collins. CO.,1989:569-574.
    [59]段新建,聂绍珉.圆柱体平板镦粗工艺参数的优化研究[J].塑性工程学报,1998,5(4):79-84.
    [60]聂绍珉,段新建等.基于刚塑性有限元和非线性规划算法的锻造毛坯形状优化[C]。全国塑性力学及其应用学术研讨会论文集,1997:247-252.
    [61]Roy S, Ghoshi S et al. a New Approach to Optimal Design of Multi-Stage Metal Forming Processes with Micro Genetic Algorithms[J]. International Journal of Machine Tools & Manufacture,1997, 37:29-44.
    [62]罗仁平.锻造过程预成形计算机辅助优化设计研究[D].上海:上海交通大学博士学位论文,1999.
    [63]罗仁平,姚华等.预锻模形状设计优化的新方法-微观遗传算法[J].中国机械工程,2001,12(2):202-204.
    [64]罗仁平,姚华等.微观遗传算法在预锻模优化设计中的应用[J].锻压技术,2000,(1):52-54.
    [65]Chung J S, Hwang S M. Application of a Genetic Algorithm to Process Optimal Design in Non-Isothermal Metal Forming [J]. Journal of Materials Processing Technology,1998, 8:136-143.
    [66]马新武,赵国群.体积成形有限元模拟软件CASFORM的开发研究[J].锻压技术,2003,(1):9-14.
    [67]赵国群,马新武.全自动自适应四边形有限元网格生成/再生成方法与软件ATUOMESH-2D/PC金属成形工艺,2003,12(2),2003:42-46.
    [68]王广春.环形件摆动辗压变形的三维刚塑性有限元分析[D].哈尔滨:哈尔滨工业大学博士学位论文,1996.
    [69]蒋浩民.锻造成形过程三维数值模拟系统H-FORGE3D的开发与应用[D].哈尔滨工业大学博士学位论文,1998.
    [70]左旭.集成于CAD系统的汽车工件多工位体积成形三维CAE仿真[D].上海:上海交通大学博士学位论文,1998.
    [71]江雄心,万平荣,林治平,扶名福.金属体积成形过程三维刚塑性有限元模拟系统[J].南昌大学学报(工科版),2002,24(2):5-8.
    [72]詹梅,杨合,刘郁丽.金属塑性成形三维有限元模拟软件3D_PFS的开发[J].材料科学与工艺,2005,13(4):402-405.
    [73]蔡旺,刘郁丽,杨合,李从心.叶片精锻三维刚粘塑性热力耦合有限元模拟系统[J].上海交通大学学报,2005,39(1):1-5.
    [74]肖宏,谢红飙,张国民.PC轧机轧制过程耦合数值模拟研究[J].工程力学,2005,22(3):216-219.
    [75]许志强.钢管减径三维热力耦合有限元虚拟仿真集成系统[D].秦皇岛:燕山大学,2003.
    [76]Price M A, Armstrong C G, Sabin M A. Hexahedral mesh generation by medial surface subdivision: Part Ⅰ. Solids with convex edges [J]. International Journal for Numerical Methods in Engineering,1995, 38(19):3335-3359.
    [77]Price M A, Armstrong C G. Hexahedral mesh generation by medial surface subdivision:Part Ⅱ. Solids with flat and concave edges [J]. International Journal for Numerical Methods in Engineering,1997, 40(1):111-136.
    [78]Antonopoulos C D, Blagojevic F, Chernikov A N, et al. Algorithm, software, and hardware optimizations for Delaunay mesh generation on simultaneous multithreaded architectures [J]. Journal of Parallel and Distributed Computing,2009,69(7):601-612.
    [79]Si H. Constrained Delaunay tetrahedral mesh generation and refinement [J]. Finite Elements in Analysis and Design,2010,46(1-2):33-46.
    [80]Hoshiko R, Kawahara M.3-dimensional mesh generation using the Delaunay method [M]// Underground Spaces:Design, Engineering and Environmental Aspects.2008:91-97.
    [81]Thacker W C, Gonzalez A, Putland G E. A method for automating the construction of irregular computational grids for storm surge forecast models [J]. Journal of Computational Physics,1980, 37(3):371-387.
    [82]Saxena M, Perucchio R. Element extraction for automatic meshing based on recursive spatial decompositions [J]. Computers and Structures,1990,36(3):513-529.
    [83]Joe B. Construction of three-dimensional Delaunay triangulations using local transformations [J]. Computer Aided Geometric Design,1991,8(2):123-142.
    [84]Guan Z Q, Shan J L, Zheng Y, et al. An extended advancing front technique for closed surfaces mesh generation [J]. International Journal for Numerical Methods in Engineering,2008,74(4):642-667.
    [85]Staten M L, Kerr R A, Owen S J, et al. Unconstrained plastering-Hexahedral mesh generation via advancing-front geometry decomposition [J]. International Journal for Numerical Methods in Engineering,2010,81 (2):135-171.
    [86]Yerry M A, Shephard M S. A modified quadtree approach to fnite element mesh generation. [J]. IEEE Computer Graphics and Applications,1983,3(1):39-46.
    [87]Shephard M S, Georges M K. Automatic three-dimensional mesh generation by the finite octree technique [J]. International Journal for Numerical Methods in Engineering,1991,32(4):709-749.
    [88]Shpitalni M, Bar-Yoseph P, Yitzchak K. Finite element mesh generation via switching function representation [J]. Finite Elements in Analysis and Design,1989,5(2):119-130.
    [89]Schroeder W J, Shephard M S. A combined octree/delaunay method for fully automatic 3-D mesh generation [J]. International Journal for Numerical Methods in Engineering,1990,29(1):37-55.
    [90]McMorris H, Kallinderis Y. Octree-advancing front method for generation of unstructured surface and volume meshes [J]. AIAA Journal,1997,35(6):976-984.
    [91]Schneiders R, Aachen R. Automatic generation of hexahedral finite element meshes [J]. Computer Aided Geometric Design,1995,12(7):693-707.
    [92]Schneiders R, Aachen R. Refining quadrilateral and hexahedral element meshes [C]. Proceedings of the 5th International Conference on Numerical Grid Generation in Computational Field Simmulations, Mississippi State,1996:679-688.
    [93]Saxena M, Perucchio R. Element extraction for automatic meshing based on recursive spatial decompositions [J]. Computers and Structures,1990,36(3):513-529.
    [94]Lohner R, Cebral J R. Parallel advancing front grid generation [C]. Proceedings of the 8th International Meshing Roundtable, South Lake Tahoe, CA,1999:67-74.
    [95]Luo H, Chen G, Lohner R. A Hybrid Grid Generation Method for Complex Geometries [C]. Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,2008.
    [96]Frey P J. About Surface Remeshing [C]. Proceedings of the 9th International Meshing Roundtable, Sandia National Laboratories, New Orleans, LA,2000:123-136.
    [97]Quadros W R, Shimada K, Owen S J. Skeleton-based Computational Method for Generation of 3D Finite Element Mesh Sizing Function [C]. Proceedings of the 4th Symposium on Trends in Unstructured Mesh Generation, Albuquerque, NM,2003.
    [98]Tchon K F, Hirsch C, Schneiders R. Octree-based Hexahedral Mesh Generator for Viscous Flow Simulations [C]. Proceedings of the 13th AIAA Computational Fluid Dynamics Conference. No. AIAA-97-1980, Snowmass. CO,1997
    [99]Tchon K F, Khachan M, Guibault F, Camarero R. Constructing Anisotropic Geometric Metrics Using Octrees and Skeletons [C]. Proceedings of the 12th International Meshing Roundtable,2003: 293-304.
    [100]陈军,张向,阮雪榆.金属三维挤压成形过程数值模拟的若干关键技术[J].中国有色金属学报,2002,12(6):1119-1122.
    [101]陈军,张向,阮雪榆.基于曲面偏置的六面体有限元网格再划分算法[J].上海交通大学学报,2002,36(4):449-451.
    [102]江雄心,万平荣,游步东.三维有限元模拟中的网格重划[J].金属成形工艺,2002,20(2):21-24.
    [103]Fernandes JLM, Martins PAR All-hexahedral remeshing for the finite element analysis of metal forming processes [J]. Journal of Finite Elements in Analysis and Design,2007,43:666-679.
    [104]Diez P,Calderon G. Remeshing criteria and proper error representationsfor goal oriented h-adaptivity[J]. Computer methods in applied mechanics and engneering,2007,196:719-733.
    [105]Boussetta R,Coupez T.Fourment L. Adaptive remeshing based on a posteriori error estimation for forging simulation[J].Computer methods in applied mechanics and engneering,2006,195:6626-6645.
    [106]Kwak D Y,Im Y. Remeshing for Metal Forming Simulation-Part Ⅱ:Three-dimensional Hexahedral Mesh Generation [J].International Journal for Numerical Methods in Engineering,2002,53:2501-2528.
    [107]Kwak D Y, Im Y. Hexahedral mesh generation for remeshing in three-dimensional metal forming analyses [J]. Journal of Materials Processing Technology,2003,138:531-537.
    [108]Oh S I. Finite Element Analysis of Metal Forming Processes with Arbitrarily Shaped Moulds[J].International Journal of Mechanical Sciences,1982,24(8):479-488.
    [109]詹梅,刘郁丽,杨合,李明奇.金属塑性成形三维有限元模拟过程中修正触模节点位置的一种新方法[J].塑性工程学报,2000,7(2):62-65.
    [110]虞松,王广春,赵国群.金属塑性成形三维有限元模拟过程中动态边界调整新方法[J].山东大学学报(工学版),2003,33(4):349-352.
    [111]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999.
    [112]鲍益东,杜国康,陈文亮,王志国.冲压成形模拟中有限元方程组求解算法[J].南京航空航天大学学报,2009,41(5):606-610.
    [113]姚松,田红旗.有限元刚度矩阵的压缩存贮及组集[J].中南大学学报(自然科学版).2006,37(4):826-830.
    [114]Oden J T, Bhandari D R. A New Approach to the Finite Element Formulation and Solution of a Class of Problems in Coupled Thermoelasto visco-plasticity of Crystalline Solids[J]. Nuclear Engineering and Design,1973,24:420-435.
    [115]詹艳然,王仲仁.塑性成形数值模拟中温度边界条件的处理[J].塑性工程学报,2001,8(1):4-7.
    [116]詹艳然.金属体积成形过程中的温度场的分析[J].塑性工程学报,2001,8(4):13-16.
    [117]张晓敏,彭向和,张培源.热力藕合问题的交替算法[J].爆炸与冲击,2006,26(4):309-314.
    [118]张晓敏,彭向和.热力耦合问题的本构方程[J].重庆大学学报(自然科学版)2006,29(6):111-113.
    [119]虞松,赵国群,王广春.刚塑性有限元模拟中体积变化问题处理方法[J].塑性工程学报,2003,10(3):1-5.
    [120]詹艳然.刚塑性有限元模拟中罚因子的取值[J].锻压技术,2000,(1):7-9.
    [121]李尚健.金属塑性成形过程模拟[M].北京:机械工业出版设,1999.
    [122]Benzley S E, Perry E. A Comparison of All-Hexahedral and All-Tetrahedral Finite Element Meshes for Elastic and Elastic-Plastic Analysis [C]. Proceedings of the 4th international Meshing Roundtable, 1995:179-191.
    [123]Zhang H M, Zhao G Q, Ma X W. Adaptive generation of hexahedral element mesh using an improved grid-based method [J]. Computer-Aided Design,2007,39(10):914-928.
    [124]张洪梅.三维六面体网格自适应生成算法研究及其应用[D].济南:山东大学,2007.
    [125]黄丽丽,赵国群,马新武,张洪梅.栅格法三维六面体网格自动生成算法与优化[J].塑性工程学报, 2009,16(3):187-191.
    [126]Su Y, Lee K H, Kumar A S. Automatic hexahedral mesh generation for multi-domain composite models using a hybrid projective grid-based method [J].Computer-Aided Design,2004,36(3):203-215.
    [127]Ito Y, Shih A M, Soni B K. Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates [J]. International Journal for Numerical Methods in Engineering,2009, 77(13):1809-1833.
    [128]黄丽丽.有限元三维六面体网格自动生成与再生成算法研究及其应用[D].济南:山东大学,2010.
    [129]黄丽丽,赵国群.基于栅格法的三维六面体网格质量优化[J].中国机械工程,2009,20(21):2603-2608.
    [130]孟宪海,蔡强,李吉刚,杨钦等.面向四面体网格生成的曲面Delaunay三角化算法[J].工程图学学报,2008,(1):76-83.
    [131]何鑫,王李管.一种基于八叉树的地质体三维网格剖分方法[J].金属矿山,2008,(1):66-70.
    [132]单菊林,关振群,宋超.一个高效可靠的三维AFT四面体网格生成算法[J].计算机学报,2007,30(11):1989-1997.
    [133]黄丽丽,赵国群,王忠雷.六面体网格再划分过程中畸变和干涉单元的处理方法[J].计算力学学报,2011,28(4),504-509.
    [134]Zienkiewic O C, Zhu J Z. A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis [J]. International Journal for Numerical Methods in Engineering,1987,24:337-357.
    [135]程联军.汽车转向节锻造智能设计系统的研究与开发[D].济南:山东大学,2008.
    [136]张永杰.大型稀疏方程组预处理迭代快速求解技术研究[D].西安:西北工业大学航空学院,2006.
    [137]刘艳芳,施法中,徐向阳.板料冲压成形数值模拟中有限元方程求解算法的研究[J].塑性工程学报,2006,13(4):15-19.
    [138]李静,陈健,云周晶.改进的SSOR-PCG迭代法在接触问题研究中应用[J].大连理工大学学报.2006,46(4):533-537.
    [139]包劲青,杨强,陈英儒,张小寒.对称超松弛预处理共轭梯度法在高拱坝整体大规模弹塑性有限元分析中的应用[J],水利学报.2009,40(5):589-594.
    [140]林绍忠.对称逐步超松弛预处理共轭梯度法的改进迭代格式[J].数值计算与计算机应用,1997,(4):266-270.
    [141]路平.三维金属体积成形过程无网格伽辽金方法及其关键技术研究[D].济南:山东大学,2008.
    [142]王芳,闵慧娜,齐广霞.TA11钛合金叶片预锻过程三维热力耦合数值模拟[J].锻压技术,2010,35(5):164-168.
    [143]赵恒章,杨美丽,吴金平,赵彬等.Ti-26合金反挤压的热力耦合模拟[J].中国有色金属学报,2010,20(1S):533-537.
    [144]刘声宏,潘良明,张丁非.精轧区带钢热轧热力耦合有限元仿真[J].机械设计与研究,2010, 26(4):98-101.
    [145]马光亭,汤化胜,赵培林,朱国明等.热轧带钢轧制全程三维热力耦合仿真分析[J].轧钢,2009,26(4):7-10.
    [146]丁韡,杨翠苹,张康生,胡正寰.楔横轧等内径空心轴的热力耦合数值模拟[J].北京科技大学学报,2010,32(4):525-529.
    [147]管靖.锻造成形过程微观组织优化设计方法研究[D].济南:山东大学,2008.
    [148]孔样谦.有限单元法在传热学中的应用(第三版)[M],北京:科学出版社,1998.
    [149]张存生,赵国群,虞松,高军.三维有限元网格图形的剖切及场变量可视化[J].塑性工程学报2005,12(49):50~53.
    [150]赵卫东,卫刚,李启炎.在OpenGL下面消隐和线消隐的实现[J].计算机工程.2002,28(6):233~234.
    [151]成建梅,陈崇希.三角网格等值线自动生成方法及程序实现[J].水利学报.1998,(10):23~26.
    [152]江雄心,万平荣等.三维场量的等值线生成算法[J].金属成形工艺.2001,19(6):8-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700