整体煤气化湿空气透平(IGHAT)循环关键部件的特性建模与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
整体煤气化湿空气透平循环(IGHAT)结合了先进煤气化技术(IGCC)和高效的湿空气透平循环(HAT)的优点,是一种高效率、低污染和低比投资的煤炭利用节能发电系统,但同时也应注意到,其特点是系统复杂,相互影响多,耦合程度大,控制复杂,因此,IGHAT循环的研究目前还处于理论研究阶段,为了使这一高效节能清洁的发电技术尽快进入工程试验阶段,则有必要对其稳态和动态性能进行研究。由于IGHAT系统中,蒸汽轮机、余热锅炉、压气机、燃烧室和燃气透平等已经在近年的研究中形成了比较完善的通用模型,在这一背景下,本文的主要目的是利用模块化建模方法对IGHAT关键部件——气化炉和饱和器进行理论建模及稳态和动态仿真研究,搭建饱和器实验系统,通过实验研究讨论其传热传质及气液流动性能,并对本文建立的模型进行实验验证。
     为实现上述研究目的,本文工作从以下几个方面展开:
     针对Shell炉的工艺特点,分析讨论了气化炉中煤气化反应、气侧与渣层间的传热、渣的相变以及液态渣层的流动特性,以质量守恒、动量守恒和能量守恒为基础,建立了气化炉煤气化模型,可用于描述气化温度、气化煤气组分、固态渣层厚度、液态渣层厚度以及炉底排渣流量的稳态和动态特性行为。
     结合Demkolec IGCC示范工程中气化炉相关参数,围绕哥伦比亚煤El Cerrejon,德雷顿煤Drayton,石油焦petroleum Coke和大同煤四种燃料展开了相关稳态和动态仿真研究。其中,稳态仿真研究不仅分析了入炉氧煤比和水蒸汽/煤比对煤气成分、气化温度及冷煤气效率的影响规律,还得到了不同灰渣比热容及灰渣沉积流量下,气化温度和渣层厚度的变化规律。动态仿真得到了气化炉各参数在入炉氧煤比和水蒸气/煤比上发生阶跃扰动时的响应规律,发现各参数均存在较长的惯性响应时间,其中,气侧参数响应时间较短,渣侧参数响应时间相对较长。另外,还横向分析比较了不同煤种及不同灰渣参数下,渣侧参数及气化温度的动态响应规律。发现,灰渣的比热容对气化炉各参数的稳态值影响较大,而灰渣的沉积流量则对各参数的动态响应时间影响较大。
     针对填料式饱和器,分析讨论了饱和器中气侧、水侧以及填料侧的传热传质特性及填料通道中的气水流动特性,根据质量守恒、动量守恒和能量守恒原理,建立了水侧、气侧和填料侧的控制方程。将饱和器沿气相工质流动方向分段并分别进行建模,在Simulink平台上采用显式Runge-Kutta法完成模型的搭建,连接及求解。模型可用于描述饱和器出口以及沿气相工质流动方向工质状态参数、填料段压降以及填料持液量的分布以及稳态和动态特性行为。
     对饱和器模型进行了收敛性及分段数目合理性的分析,并结合瑞典示范机组设计工况,在高参数工况下对饱和器模型展开稳态和动态仿真研究。其中,稳态仿真研究得到了饱和器内部工质状态参数、传热传质通量的轴向分布,结果表明,沿气相工质流动方向,各段控制体内气水传热传质通量是逐渐增大的。同样,也详细分析讨论了不同进口参数对运行参数的影响规律。动态仿真研究得到了饱和器出口工质参数、填料段压降及填料持液量对进口参数上扰动的响应规律。设计仿真工况下,对于进口参数上的阶跃扰动,饱和器各参数需要一定的惯性时间才能达到新的稳定状态,出口工质温度的响应时间最长,在50s左右,压降和持液量所需时间较短。
     设计搭建了填料式饱和器实验系统,实现了对工质温度、湿度、流量及压力的在线测量与采集,并初次提出利用称重和液位测量的间接计算手段得到实验进行过程中饱和器填料持液量数据。对填充了250Y型不锈钢波纹板规整填料的饱和器在实验室条件下进行了相关稳态和动态实验研究。稳态工况的实验结果得到了不同进口参数下,饱和器的传热传质及气液流动参数的变化规律。指出水气比不能作为唯一衡量饱和器传热传质性能的准则,还应综合考虑进口流量的大小,即水气负荷的大小。根据实验得到的干填料及不同进水流量下的压降数据,提出了针对250Y不锈钢波纹板规整填料的压降关联式。动态工况的实验结果得到了饱和器出口工质参数对进口工质参数上发生扰动的响应曲线,在相同工况条件下,将本文建立的饱和器模型计算结果与动态实验结果进行了对比,结果表明二者具有较好的一致性。
The Integrated Gasification Humid Air Turbine Cycle (IGHAT) combines the advantages of advanced coal gasification technology Integrated Coal Gasification Combined Cycle (IGCC) and high performance Humid Air Turbine (HAT) Cycle, which is a high-efficiency, low-consumption and low -specific investment coal-cleaning utilization energy-saving power generation system. Note that the system of IGHAT is complex and difficult to be controlled, therefore, the research of IGHAT is still at theoretical stage. In order to push this high-efficiency clean power generation technology into the engineering test stage, the steady-state and dynamic performance is necessary to be studied. There have been fairly perfect models for steam turbine system, compressor, gas turbine and combustion chamber etc. for IGHAT system. With this background, the purpose of this thesis is to establish theoretical models and carrying out the steady-state and dynamic simulation study on the key components of IGHAT, gasifier and saturator, design and build the saturator experimental system, discuss and analyze the heat transfer and mass transfer performance and gas-liquid flow characteristic, and validating the saturator model with experimental data.
     In order to achieve the research objective mentioned above, the work is expanded from three aspects:
     According to the processing feature of Shell gasifier, the coal gasification reactions, heat-transfer between gas side and slag side, phase change of slag and flow behavior of fluid slag layer was analyzed and discussed. A coal gasification model was built based on mass conservation, momentum conservation and energy conservation, which can describe the steady-state and dynamic behavior of the outlet variables of gasifier including the gasification temperature, coal gas component contents, thickness of solid slag layer and fluid slag layer.
     Based on the related parameters of the gasifier in Demkolec IGCC demonstration project, the steady-state and dynamic simulation research of El Cerrejon Coal, Drayton Coal, petroleum Coke and Datong Coal was carried out. In steady-state simulation, not only the influence of the oxygen-to-coal ratio and steam-to-coal ratio into furnace on the coal gas component contents, gasification temperature and thickness of slag layer was analyzed, but also the variation characteristics of gasification and slag layer thickness under different slag specific heat and slag deposit flux was obtained. The dynamic response rules of key outlet variables were obtained when the inlet oxygen-to-coal ratio and stem-to-coal ratio undergoes a fundamental step change. It is found that all the outlet variables have long-time inertial elements, in which, the response time of gas side variables are shorter than that of slag side variables. Otherwise the dynamic response rules of gas side variables and gasification temperature under different coals and physical properties of slag were compared, and it is found that the slag specific heat showed obvious influence on steady-state value of the outlet variables, and the slag deposit flux showed obvious influence on dynamic response time.
     According to packed saturator, the heat-transfer and mass-transfer characteristic of air side, water side and packing side and the gas-liquid flow characteristic in packing channels. Based on mass conservation, momentum conservation and energy conservation, the governing equations of air, water and packing are built. The saturator was subdivided into several cells in the air flow direction, and each cell was modeled individually. The model was built, connected and solved on Simulink environment by using Runge-Kutta method, which can describe the steady-state and dynamic behavior of the outlet variables of each cell of saturator including the state-variables of air and liquid fluid, packing pressure drop and packing liquid holdup.
     The model convergence and the rationality of cells number were analyzed, and the steady-state and dynamic simulation study was carried out based on the design condition of Swedish demonstration unit. In steady-state simulation, the distribution of the state-variables of air and liquid fluid, heat-transfer and mass-transfer flow in the axial direction was presented, the results show that the heat-transfer and mass-transfer flow in each cell increases in air flow direction. Also the influence rules on outlet variables under different inlet variables were analyzed and discussed in detail. The dynamic response rules of outlet variables of packed saturator caused by the disturbance on inlet variables were obtained in the dynamic simulation study. Under the design condition, when there is a step change on inlet variables, the outlet variables show different inertia time. Find that the outlet temperature takes 50s to stabilize at a new value, which is longer than pressure drop and liquid holdup.
     An experimental system of packed saturator was designed and built, which completed the online measuring and collecting of temperature, humidity, flow and pressure of air and water, and presented an indirect calculating method to get the packing liquid holdup during the condition process by using the weight and liquid level data. The related steady-state and dynamic experiment study of the saturator packed with 250Y metal mellaple packing was carried out under laboratory environment. The steady-state experimental results present the variation rules of heat-transfer, mass-transfer and air-liquid flow variables, which indicate that the water-to-air ratio couldn’t be used as the only criterion on judging the performance of saturator, and the inlet flow should be considered together, viz. the air-liquid load. Based on the pressure drop data of dry packing and with different water inlet flow, a pressure drop correlating equation according to 250Y metal mellaple packing was presented. The dynamic experimental results obtain the response curves of outlet variables of saturator when there is a disturbance on inlet variables, which agree with the simulation result under the same condition well.
引文
[1]倪维斗,陈贞.煤的清洁高效利用是中国低碳经济的关键[J].太原理工大学学报2010, 41(5):454-463.
    [2] C. Kroeze, J. Vlasblomb, J. Gupta, C. Boudri,K. Blok. The power sector in China and India: greenhouse gas emissions reduction potential and scenarios for 1990-2020 [J]. Energy Policy 2004, 32(1):55-76
    [3] Benjamin,C. B. Hsieh. Overview of Clean Technology in the United States [R]. The United States of America, The People Republic of China Experts Report on IGCC. 1996.
    [4]林汝谋,蔡睿贤,肖云汉.整体煤气化联合循环-燃煤联合循环发电技术之一[J].燃气轮机技术1993, 6(4):1-8.
    [5]段立强,林汝谋,金红光.整体煤气化联合循环(IGCC)技术进展[J].燃气轮机技术2003, 13(1):9-17.
    [6] D. G. Osborne, J. M. Graham,L. K. Elliott. New coal utilisation technologies [J]. Minerals Engineering 1996, 9(2):215-233.
    [7] T. Heppenstall. Advanced gas turbine cycles for power generation: a critical review [J]. Applied Thermal Engineering 1998, 18(9-10):837-846.
    [8]焦树建.整体煤气化燃气-蒸汽联合循环(IGCC) [M],北京: 1996.
    [9] M. Assadi,K. B. Johansson. Applying pinch method and exergy analysis to BIO-IGHAT power plant [C]. Budapest: Hungarian Chemical Society, 1999.
    [10]林汝谋,蔡睿贤.跨世纪的HAT热力循环[J].燃气轮机技术1993, 6(2):1-6.
    [11] M. Jonsson,J. Yan. Humidified gas turbines—a review of proposed and implemented cycles [J]. Energy 2005, 30(7):1013-1078.
    [12] D.T.Cook,秦天昌.湿空气透平循环将简化煤电气化发电[J].煤炭综合利用1991, 484-90.
    [13]赵丽凤,刘泽龙,张世铮.整体煤气化湿空气透平(IGHAT)循环的性能分析[J].工程热物理学报2000, 21(4):413-416.
    [14]赵丽凤,张世铮,肖云汉.整体煤气化湿空气透平(IGHAT)循环的参数优化[J].工程热物理学报2001, 22(2):141-144.
    [15]王玉璋,翁史烈.新一代利用煤炭的高效节能发电系统——整体煤气化湿空气透平循环[J].能源工程2007,增刊130-132.
    [16]王震华.整体煤气化联合循环的进一步发展——湿空气透平循环[J].电站系统工程1993, 9(1):26-29.
    [17] Q. Z. Ni,A. Williams. A simulation study on the performance of an entrained-flow coal gasifier [J]. Fuel 1995, 74(1):102-110.
    [18] A. P. Watkinsona, J. P. Lucasa,C. J. Lima. A prediction of performance of commercial coal gasifiers [J]. Fuel 1991, 70(4):519-527
    [19]王辅臣,龚欣,代正华,周志杰,于遵宏. Shell粉煤气化炉的分析与模拟[J].华东理工大学学报2003, 29(2):202-205.
    [20] D. Vamvuka, E. T. Woodburn,P. R. Senior. Modelling of an entrained flow coal gasifier. 1. Development of the model and general predictions [J]. Fuel 1995, 74(10):1452-1460.
    [21] D. Vamvuka, E. T. Woodburn,P. R. Senior. Modelling of an entrained flow coal gasifier. 2. Effect of operating conditions on reactor performance [J]. Fuel 1995, 74(10):1461-1465.
    [22] H. Watanabe,M. Otaka. Numerical simulation of coal gasification in entrained flow coal gasifier [J]. Fuel 2006, 85(12-13):1935-1943.
    [23]项友谦.固定床煤气化过程的数学模型[J].煤化工1999, 88(3):8-14.
    [24]吴学成,王勤辉,骆仲泱,方梦祥,岑可法.气化参数影响气流床煤气化的模型研究(Ⅰ)——模型建立及验证[J].浙江大学学报2004, 38(10):1361-1386.
    [25]吴学成,王勤辉,骆仲泱,方梦祥,岑可法.气化参数影响气流床煤气化的模型研究(Ⅱ)——模型预测及分析[J].浙江大学学报2004, 38(11):1483-1489.
    [26]徐越,吴一宁,危师让.基于ASPEN PLUS平台的干煤粉加压气流床气化性能模拟[J].西安交通大学学报2003, 37(7):692-694.
    [27]李政,王天骄,韩志明,郑洪韬,倪维斗. Texaco煤气化炉数学模型的研究——建模部分[J].动力工程2001, 21(2):1161-1168.
    [28]李政,王天骄,韩志明,郑洪韬,倪维斗. Texaco煤气化炉数学模型研究(2)——计算结果及分析[J].动力工程2001, 21(4):1316-1319.
    [29] C. X. Chen, M. Horio,T. Kojima. Numerical simulation of entrained flow coal gasifiers. Part I: modeling of coal gasification in an entrained flow gasifier [J]. Chemical Engineering Science 2000, 55(18):3861-3874.
    [30] T. M. Caixia Chen, Hidehiro Kamiya, Masayuki Horio, Toshinori Kojima. On the Scaling-up of a Two-stage Air Blown Entrained Flow Coal Gasifier [J]. The Canadian Jorunal of Chemical Engineering 2009, 77(4):745-751.
    [31] E. H. Chui, A. J. Majeski, D. Y. Lu, R. Hughes, H. Gao, D. J. McCalden,E. J. Anthony. Simulation of entrained flow coal gasification [J]. Energy Procedia 2009, 1(1):503-509.
    [32]刘向军,朴泰俊.德士古气化炉内煤气化过程的数值研究[J].动力工程2002, 22(5):1932-1935.
    [33]吴玉新,张建胜,岳光溪,吕俊复.水煤浆气化炉三通道喷嘴气相流场的数值模拟[J].清华大学学报2006, 46(5):691-695.
    [34] C. X. Chen, M. Horio,T. Kojima. Numerical simulation of entrained flow coal gasifiers. Part II: effects of operating conditions on gasifier performance [J]. Chemical Engineering Science 2000, 55(18):3875-3883.
    [35]梁万才,赵建涛,吴晋沪,王洋.两段式气流床煤气化炉内气固流动数值模拟研究[J].燃烧化学学报2007, 35(3):359-365.
    [36]贺阿特,冯霄,董绍平,潘晓苇.德士古渣油气化炉的数值模拟[J].贺阿特冯霄董绍平潘晓苇2001, 15(6):526-530.
    [37] M. Seggiani. Modelling and simulation of time varying slag flow in a Prenflo entrained-flow gasifier [J]. Fuel 1998, 77(14):1611-1621.
    [38]周俊虎,匡建平,周志军,刘建忠,岑可法.粉煤气化炉喷嘴受热分析和渣层模型的数值模拟[J].中国电机工程学报2007, 27(26):23-29.
    [39]韩志明,李政,倪维斗. Shell气化炉的动态建模和仿真[J].清华大学学报1999, 39(3):111-114.
    [40] A.D. Rao, V. J. Francuz, J. C. Shen,E. W. West. A comparison of humid air turbine (HAT) cycle and combined-cycle power plants [R]. Palo Alto, CA (USA). EPRI. 1991.
    [41] J. D. Ruyck, S. Bram,G. Allard. Humid air cycle development based on exergy analysis and composite curve theory [C]. ASME, 95-CTP-39, 1995.
    [42] A. Cohn. Power plant cycles featuring air humidification [J]. EPRI Journal 1993, 18(7):43-37.
    [43] A. D. Rao, V. J. Francuz, F. J. Mulato, B. Sng, E. W. West, J. Kana, G. Perkins,D. Podolski. A feasibility and assessment study for FT 4000 humid air turbine (HAT) [R]. Palo Alto, CA. EPRI. 1993.
    [44] S. S. Stecco, U. Desideri, B. Facchini,N. Bettagli. The Humid Air Cycle: Some Thermodynamic Considerations [C]. Cincinnati, OH, USA.: ASME 93-GT-77, 1993.
    [45] S. S. Stecco, U. Desideri, B. Facchini,N. Bettagli. Humid Air Gas Turbine Cycle: a Possible Optimization [C]. Cincinnati, OH, USA.: ASME, 93-GT-178, 1993.
    [46] P. Rosen. Evaporative cycles in theory and in practice [D]. Lund University, Lund, Sweden, 2000.
    [47] P. v. Heiroth, J.-O. Gustafsson,T. Lindquist. A model of an evaporative cycle for heat and power production [J]. Energy Conversion and Management 1999, 40(15-16):1701-1711.
    [48] E. Mesbahi, M. Assadi, T. Torisson,T. Lindquist. A Unique Correction Technique for Evaporative Gas Turbine(EvGT) Parameters [C]. New Orleans, USA: Proceedings of ASME TURBO EXPO, 2001-GT-0008, 2001.
    [49] J. O. S. Parente, A. Traverso,A. F. Massardo. Saturator term analysis for an evaporative gas turbine cycle [J]. Applied Thermal Engineering 2003, 23(10):1275-1293.
    [50] H. Shigeo, A. Hidefumi,H. Shin'ichi. An evaluation of advanced humid air turbine system with water recovery [C]. ASME, GT2004-54337, 2004.
    [51] A. Hidenfutni, H. Shin'ichi, M. Shinya,H. Shigeo. Design study of a humidification tower for the advanced humid air turbine system [C]. ASME, GT2005-68671, 2005.
    [52] W. L. R. Gallo. A comparison between the hat cycle and other gas-turbine based cycles:Efficiency, specific power and water consumption [J]. Energy Conversion and Management 1997, 38(15-17):1595-1604.
    [53] A. Traverso,A. F. Massardo. Thermoeconomic analysis of mixed gas-steam cycles [J]. Applied Thermal Engineering 2002, 22(1):1-21.
    [54] A. A. Pedemonte, A. Traverso,A. F. Massardo. Experimental analysis of pressurised humidification tower for humid air gas turbine cycles. Part B: Correlation of previous termexperimental data [J]. Applied Thermal Engineering 2007, 28(13):1623-1629.
    [55] A. A. Pedemonte, A. Traverso,A. F. Massardo. Experimental analysis of pressurised humidification tower for humid air gas turbinecycles. Part A: Experimental campaign [J]. Applied Thermal Engineering 2006, 28(14-15):1711-1725.
    [56]林汝谋,方钢,蔡睿贤,张娜,金洪光. HAT循环性能分析研究[J].工程热物理学报1993, 2(14):129-132.
    [57]林汝谋,蔡睿贤,张娜.跨世纪的HAT热力循环[J].燃气轮机技术1993, 6(2):1-6.
    [58]肖云汉,林汝谋,蔡睿贤. HAT循环的系统优化[J].工程热物理学报1994, 15(2):133-136.
    [59]肖云汉,蔡睿贤,林汝谋. HAT循环的模化与热力学评价[J].工程热物理学报1995, 17(3):257-260.
    [60]焦树建. HAT循环的热力学分析[J].燃气轮机技术1995, 8(2):1-11.
    [61]焦树建,段志鹏. HAT循环热力参数的优化选择[J].燃气轮机技术1995, 8(2):25-30.
    [62]王永青,严家騄.一种新的热力循环性能的估算方法和HAT循环的性能估算公式[J].热力动力工程1998, 13(5):345-347.
    [63]黄欧,邹介棠,吴铭岚. STIG循环和HAT循环的佣分析比较[J].燃气轮机技术1996, 9(1):27-30.
    [64]靳海明. HAT循环的一种改型——CHAT循环[J].热能动力工程1996, 11(1):37-39.
    [65]孙晓红,王永泓,翁史烈.湿空气透平循环流程优化分析[J].上海交通大学学报1999, 33(3):309-312.
    [66]靳海明,蔡颐年,蔡睿贤,林汝谋. HAT循环中关键部件——饱和器实验台的研制[J].热能动力工程1995, 10(1):8-12.
    [67]王新军,靳海明.利用马尔文粒度分析仪对饱和器特性的实验研究[J].热力发电1999, 143-45.
    [68]赵丽凤,张世铮,王逊. HAT循环关键部件——空气湿化器的初步实验性能[J].工程热物理学报1999, 20(6):677-680.
    [69]徐震. HAT循环空气湿化过程研究[D].中国科学院工程热物理研究所,北京, 2006.
    [70]王玉璋.湿空气透平(HAT)循环饱和器内传热传质机理实验和数值研究[D].上海交通大学,上海, 2005.
    [71]张会生,苏明,翁史烈.基于回热循环的燃气轮机发电系统技术分析[J].热力透平2004, 33(3):137-141.
    [72]王玉璋,王永泓,翁史烈.逆流式空气湿化器实验系统的研制[J].燃气轮机技术2004, 17(2):41-45.
    [73]王玉璋,翁史烈,李一兴.逆流式空气湿化器加湿性能的实验研究[J].中国电机工程学报2004, 24(8):152-156.
    [74]李一兴,王玉璋,翁史烈,王永泓.逆流式空气湿化器热力性能的佣效率分析[J].动力工程2006, 26(1):112-115.
    [75]王玉璋,李一兴,翁史烈,王永泓.逆流喷雾式饱和器内两相速度场的实验研究[J].中国动力工程学报2005, 25(2):188-192.
    [76]王玉璋,王永泓.利用相位多普勒分析仪对饱和器冷态液相的实验研究[J].流体力学实验与测量2003, 17(3):13-17.
    [77]孙绍芹,宋华芬,刘春琪.工作压力对湿空气透平循环饱和器性能的影响[J].能源技术2009, 30(3):145-148.
    [78]惠宇,张坤,王玉璋,翁史烈.新型加压填料饱和器及其关键结构研究[J].燃气轮机技术2009, 22(4):4-7.
    [79]杨文滨,苏明. HAT循环系统动态仿真的研究[J].系统仿真学报2005, 17(9):2269-2272.
    [80]邱超,宋华芬,王龙文. HAT循环中加填料饱和器的实验研究[J].动力工程2007, 27(1):90-93.
    [81]苏明.汽轮机系统仿真中一种容积环节仿真模型及其解[J].动力工程1998, 18(2):75-78.
    [82]苏明,陈德来.一种燃气轮机模块化非线性仿真模型[J].热能动力工程1998, 13(6):435-437.
    [83]谢志武,苏明.燃气轮机系统仿真集成概念及其分布对象实现[J].航空动力学报2000, 15(3):307-310.
    [84]刘永文,张会生,苏明.舰船柴油机的模块化建模与仿真[J].船舶工程2002, (1):14-17.
    [85]谢志武,苏明.可扩展的燃气轮机仿真对象模型[J].航空动力学报1999, 14(2):143-147.
    [86]马文通,王岳人.自然循环余热锅炉动态仿真研究[J].系统仿真学报2007, 19(17):4055-4060.
    [87]金晓航,刘永文,苏明.带中间冷却和回热的燃气轮机动态性能的研究[J].动力工程2006, 26(3):326-328.
    [88]张会生,刘永文,苏明,翁史烈.燃气轮机速度调节过程的仿真研究[J].计算机仿真2002, 19(1):79-81.
    [89]金晓航,张方伟,刘永文.逆流板翅式换热器动态性能的建模与仿真[J].能源技术2006, 27(3):96-98.
    [90]倪维斗,徐向东,李政,任挺进.热动力系统建模与控制的若干问题[M],科学出版社, 1996.
    [91]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M],清华大学出版社, 2002.
    [92]沈辉.精通SIMULINK系统仿真与控制[M],北京大学出版社, 2003.
    [93]王同章,魏敦菘,魏琪,修同斌,刘祖荣.煤碳气化原理与设备[M],北京:机械工业出版社, 2001.
    [94]焦树建.对目前世界上五座IGCC电站技术的评估[J].燃气轮机技术1999, 12(2):1-15.
    [95]周留霞. Shell气化炉的结构特点及操作维修[J].煤化工2008, 438-41.
    [96]郑振安. Shell煤气化技术(SCGP)的特点[J].煤化工2003, 27-11.
    [97]余廷芳,蔡宁生.部分煤气化炉的热力学数学模型[J].动力工程2004, 24(4):560-566.
    [98]邓世敏,危师让,林万超. IGCC系统专用单元模型研究[J].中国电机工程学报2001, 21(3):34-36.
    [99] G. Kovacika, M. Ogu?zt?reli, A. Chambersa,B. ?züma. Equilibrium calculations in coal gasification [J]. International Journal of Hydrogen Energy 1990, 15(2):125-131.
    [100]向银花,王洋,张建民,黄戒介,赵建涛.煤气化动力学模型研究[J].燃料化学学报2002, 30(1):21-26.
    [101]徐越,吴一宁,危师让.二段式干煤粉气流床气化技术的模拟研究与分析[J].中国电机工程学报2003, 23(10):186-190.
    [102] J. M. Smith. Introduction to chemical engineering thermodynamics [M],世界图书出版公司北京公司重印, 1995.
    [103] Smoot, L. Douglas,D. T. Pratt. Pulverized-coal combustion and gasification : theory and applications for continuous flow processes [M], New York: Plenum Press 1979.
    [104] P. Ruprechta, W. Sch?fer,P. Wallace. A computer model of entrained coal gasification [J]. Fuel 1988, 67(6):739-742.
    [105] K. C. Millsa,J. M. Rhine*. The measurement and estimation of the physical properties of slags formed during coal gasification: 2. Properties relevant to heat transfer [J]. Fuel 1989, 68(7):904-910
    [106] W. T. Reid,P. Cohen. Factors affecting the thickness of coal-ash slag on furnace-wall tubes [M], 1944. 685-690.
    [107] W. T. Reid. External Corrosion and Deposits-Boilers and Gas Turbines [M], New York: Elsevier, 1971.
    [108] R. B. Bird, W. E. Stewart,E. N. Lightfoot. Transport phenomena,2nd Edition [M], Wiley, 2001.
    [109]杨文滨.复合工质新型动力系统-湿空气透平循环动态仿真的研究[D].上海交通大学,上海, 2005.
    [110]阎维平(翻译). ASME PTC 4-1998锅炉性能试验规程[M],北京:中国电力出版社, 2004.
    [111]比勒特(著),魏建华(译),.填料塔[M],北京:化学工业出版社, 1998.
    [112]刘乃鸿.工业塔新型填料应用手册[M],天津:天津大学出版社, 1993. 46-48.
    [113]曾斌,李世强,张学,黄洁.规整填料的压降计算[J].化工设计2000, 10(3):17-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700