层层自组装方法构建含磷酸胆碱涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以心血管植入材料的表面修饰为背景,利用具有细胞膜仿生特性的磷酸胆碱基团优异的生物相容性及阻抗蛋白质粘附性能,采用层层自组装方法,构建了含有磷酸胆碱基团的多层膜,分析了多层膜的稳定性,并探索了一些参数对组装过程的影响。
     基于Zr4+同磷酸基团的离子络合作用构建含磷酸胆碱的层层自组装多层膜体系
     研究首先用传统的自由基聚合方法成功的合成了含大量磷酸胆碱基团的聚合物聚-2-甲基丙烯酰氧基乙基磷酸胆碱酯(PMPC).利用四价锆离子(Zr4+)同磷酸根或磷酸酯基团间存在离子络合作用作为驱动力,成功地制备了PMPC多层膜——[PMPC/Zr4+]n多层膜。通过椭圆偏振光谱及石英晶体微天平的跟踪PMPC同Zr4+的层层自组装过程表明,多层膜的厚度及质量增长与双层膜数量的增长之间呈线性关系,[PMPC/Zr4+]n多层膜具有一定的可设计性。实验证明了[PMPC/Zr4+]n多层膜在PBS溶液中具有较好的稳定性。PMPC同Zr4+溶液的pH及浓度会对组装过程产生很大影响。[PMPC/Zr4+]n多层膜的抗蛋白质粘附实验证明了该多层膜修饰的表面具有优异的抗污性能。
     基于环氧氨基反应构建含磷酸胆碱的共价层层自组装多层膜
     研究进一步开发了基于环氧氨基反应构建含磷酸胆碱的共价层层自组装多层膜的体系。首先利用传统自由基聚合方法成功地制备了含有环氧基团的甲基丙烯酸环氧丙酯(GMA)及含有磷酸胆碱基团的2-甲基丙烯酰氧基乙基磷酸胆碱酯(MPC)的无规共聚物P(MPC-GMA)(MG),选用聚乙烯亚胺(PEI)(分子中含有大量伯胺基团)作为组装的另一组分同MG进行共价层层自组装。巧妙的利用交替旋涂层层自组装方法制备了[MG/PEI]n多层膜,椭圆偏振光谱及石英晶体微天平的跟踪MG同PEI的交替旋涂层层自组装过程表明,该组装的增长同双层膜膜数的增长呈线性关系,即多层膜具有一定的可设计性。实验证明了基于共价键交联的[MG/PEI]n多层膜在水及PBS溶液中具有长效的稳定性能。多层膜的组装驱动力为环氧氨基间的化学反应,因此还研究了组装在旋涂停止后的多层膜静置时间的影响。由于很多生物大分子都含有活性氨基基团,文章进一步考察了基于这种环氧氨基间的化学反应驱动力在制备生物大分子多层膜上的应用。
Much attention has been paid to the surface-modification of the cardiovascular implant materials. Phosphorylcholine (PC) coatings have been fabricated via two different strategies by layer-by-layer self-assembly method.
     Layer by layer self-assembly of poly[2-(methacryloyloxy) ethyl phosphorylcholine] multilayer via the ionic complexation with zirconium
     Zirconium-phosphonate (Zr-P) ionic complexation chemistry is explored as a new approach to fabricate poly[2-(methacryloyloxy) ethyl phosphorylcholine](PMPC) multilayer film by layer-by-layer self-assembly method. Quartz crystal microbalance with dissipation (QCM-D) and optical ellipsometry measurements demonstrated that PMPC layer can be fully absorbed on each Zr4+layer. The thickness of the multilayer film with a good linear relationship was followed by the ellipsometry in situ adlayer characterization. The influence of pH of the PMPC and Zr4+solutions on the multilayer deposition were investigated by optical ellipsometry. QCM-D results indicated that the multilayer film is stable in a PBS flowing chamber at a high flow rate of5.2×10-3m/s. The ellipsometry data demonstrated that67.2%of the film still remained on the silicon wafer after being strong shaken in PBS at80rpm for12hours. The adsorption of bovine serum albumin (BSA) and fetal bovine serum (FBS) on the PMPC surface was monitored by the QCM-D and spectroscopic ellipsometry, and the results showed the multilayer film have excellent protein resistance.
     Covalently bonded layer-by-layer assembly of polymer multilayer film based on epoxy groups
     The covalent bond multilayer coating which contains PC has been formed based on the reaction of epoxy groups and primary amine groups. The layer by layer self-assembly of P(MPC-GMA)(MG) and PEI was carried out by spin coating method. The growth of the multilayer from MG and PEI was successfully traced by QCM-D and optical ellipsometry measurements. The thickness of the multilayer film with a linear relationship was followed by the ellipsometry in situ adlayer characterization. The multilayer films [MG/PEI]n were stable in PBS and water has been demonstrated by strong shaken in PBS and water at80rpm for80hours. The influence of reaction time of epoxy groups and primary amine groups was also carried out. Biomacromolecules also be used to layer by layer self-assembly with MG.
引文
[1]胡巧玲,张中明,王晓丽,沈家骢.可吸收型甲壳素、壳聚糖生物医用植入材料的研究进展,功能高分子材料,2003,16(2),293-295.
    [2]高炜,朱国英.冠心病介入治疗学.科学出版社,2006.
    [3]林思聪.高分子生物材料分子工程研究进展(上),高分子通报1997,1,1-14.
    [4]Bruck S.D. Materials or biomaterials?. Inter. J. Artificial Organs 1990,13. 469-471.
    [5]高长有,马列.《医用高分子材料》,化学工业出版社,2006.
    [6]Park J.B., Lakes RS. Biomaterials:An introduction; Plenum: NY,1992; P236-239.
    [7]Hubbell J.A. Biomaterials in tissue engineering. Biotechnology,1995,13, 565-576.
    [8]Bruck S.D. Blood compatible synthetic polymer. Charles C Thomas:Springfields, IIIinos,1974,P73-74.
    [9]PavithraD., Doble M. Biofilm formation, bacterial adhesion and host response on Polymeric implants-issues and Prevention.Biomed. Mater,2008,3(3),034003.
    [10]吴刚,万昌秀,段友容.植入用高分子材料表面改性抗细菌粘附的研究进展,生物医学工程学杂志,2000,17(1),84-86.
    [11]计剑,封麟先,沈家骢.白蛋白原位复合生物医用功能材料的研究(I)—材料的合成和表面结构研究,高等学校化学学报,2002,23(11),2196-2201.
    [12]Shen M.C., Martinson L., et al. PEO-like plasma polymerized tetraglyme surface interaetions with leukoeytes and proteins:in vitro and in vivo studies. J. Biomater. Sci. polym. Ed.,2002,13(4),367-390.
    [13]Christensen K., Larsson R., Emanuelsson H., Elgue G, Larsson A. HeParin coating of the stent graft-effects on platelets, coagulation and complement activation. Biomaterials,2001,22(4),349-355.
    [14]Denizli F. K.. Guven O. Competitive adsorption of blood proteins on gamma-irradiated-polycarbonate films. Biomater. Sci. Polym. Ed.2002,13(2), 127-139.
    [15]Tseng Y. C. Muilin W. M., Park K. Albumin grafting on to polypropylene by thermal activation. Biomaterials,1993,14(5),392-400.
    [16]Rollason G., Sefton M. V. Inactivation of thrombin in heparin-PVA coated tubes. J. Biometer. Sci. Polym. Ed.,1989.1(1),31-41.
    [17]Tan Q.G., Ji J., et al. Constructing thrombo resistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. Biomaterials.2003, 2(24).4699-4705.
    [18]Reintjes T., Tessmar J., Gopfefich A. Biomimetic polymers to control cell adhesion. J. Drug Del. Sci. Tech.,2008,18(1),15-24.
    [19]Chen H., Yuan L., Song W., Wu Z., Li D. Biocompatible polymer materials:role of protein-surface interactions. Prog. Polym. Sci.,2008,33(11),1059-1087.
    [20]George P. A., et al. Self-assembling polystyrene-block-poly(ethylene oxide)copolymer surface coatings: resistance to protein and cell adhesion. Biomaterials,2009,30(13),2449-2456.
    [21]Iwasaki Y.. lshihara K. Phosphorylcholine-containing polymers for biomedical applications. Anal. Bioanal. Chem.,2005,381(3),534-546.
    [22]宫铭,杨珊,张世平,宫永宽.生物医用材料表面仿细胞膜结构改性,化学进展,2008,20(10),1628-1634.
    [23]Lewis A. L. Phosphorylcholine-based polymers and their use in the prevention nofbiofouling. Colloid Surf B:Biointerfaces,2000,18(34),261-275.
    [24]Nakaya T., Li Y. Recent progress of phospholipid polymers. Des. Monomers Polym.,2003,6(4).309-351.
    [25]Georgiev G. S., Karnenska E.B., et al. Self-assembly, anti polyelectrolyte effect, and nonbiofouling properties of polyzwitterions. Biomacromolecules,2006.7(4). 1329-1334.
    [26]Wattendorf U., Merkle H.P. PEGylation as a tool for the biomedical engineering of surface modified microparticles. J. Pharm. Sci.,2008,97(11).4655-4669.
    [27]Lewis A.L., Tolhurst L.A., Stratford P.W. Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre-and post-implantation. Biomaterial. 2002.23(7).1697-1706.
    [28]Roosjen A.. Vander Mei H.C.. et al. Microbial adhesion to poly(ethyleneoxide) brushes:influence of polymer chain length and temperature. Langmuir,2004, 20(25),10949-10955.
    [29]Harris L.G., et al. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials,2004, 25(18),4135-4148.
    [30]Bertal K., et al. Antimicrobial activity of novel biocompatible wound dressings based on triblock copolymer hydrogels. Mater. Sci.,2009,44(23),6233-6246.
    [31]KingshottP., et al. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir,2003,19(17),6912-6921.
    [32]Muller R., et al. Influences of protein films on antibacterial or bacteria-repellent surface coatings in a model system using silicon wafers. Biomaterials,2009, 30(28),4921-4929.
    [33]Allan C. R., Hadwiger L. A. The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp. Mycol.,1979,3.285-287.
    [34]杨冬芝,刘晓非,李治,徐怀玉,管云林,姚康德.壳聚糖抗茵活性的影响因素,应用化学,2000.17(6),598-602.
    [35]袁伟永,付金红,计剑,沈家骢.层层静电自组装构建壳聚糖/肝素抗菌多层膜的研究,高等学校化学学报,2005,26(10),1963-1965.
    [36]Fu J.H., Ji J., Yuan W.Y., Shen J.C. Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan. Biomaterials,2005,26(33),6684-6692.
    [37]Marxer S.M., et al. Preparation of nitric oxide (NO)-releasing sol-gels for biomaterial applications. Chem. Mater.,2003,15(22).4193-4199.
    [38]Gray J.E., et al. Biological efficacy of electroless-deposited silver on plasma activated polyurethane. Biomaterials,2003,24(16),2759-2765.
    [39]Hayward J.A., Chapman D. Biomembrane surfaces as models for polymer design: the potential for haemocompatibility. Biomaterials,1984,5,135-142.
    [40]Smith E.L., et al. Principles of biochemistry:general aspects. In: 7th ed. McGraw-Hill International Editions,1983, Chapter 13.
    [41]Singer S.J., Nicolson Garth L. Fluid mosaic model of the structure of cell membranes. Science 1972,175,720-731.
    [42]Zwaal R. F. A., Comfurius P., et al. Membrane asymmetry and blood coagulation. Nature,1977,268.358-360.
    [43]Bird R. R., Hall B., et al. Material throm belastography:an assessment of phosphorylcholine compounds as models for biomaterials. Thromb. Res.,1988. 51,471-483.
    [44]J. P. Xu, J. Ji, W. D. Chen, D. Z. Fan, Y. F. Sun, J. C. Shen. Phospholipid based polymer as drug release coating for cardiovascular device. Eur. Polym. J.40 (2004)291.
    [45]S. I. Yusa, K. Fukuda, T. Yamamoto, K. Ishihara. Y. Morishima. Synthesis of Well-Defined Amphiphilic Block Copolymers Having Phospholipid Polymer Sequences as a Novel Biocompatible Polymer Micelle Reagent. Biomacromolecules.2005.6.663.
    [46]Yu B., Lowe A. B., Ishihara K., RAFT synthesis and stimulus-induced self-assembly in water of copolymers based on the biocompatible monomer 2-(methacryloyloxy)ethyl phosphorylcholine. Biomacromolecules,2009,10. 950.
    [47]Feng W., Zhu S. P., Ishihara K., Brash J. L., Adsorption of Fibrinogen and Lysozyme on Silicon Grafted with Poly(2-methacryloyloxyethyl Phosphorylcholine) via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir,2005.21.5980.
    [48]Chen S. F., Liu L. Y., Jiang S. Y., Strong Resistance of Oligo(phosphorylcholine) Self-Assembled Monolayers to Protein Adsorption. Langmuir,2006.22.2418.
    [49]Feng W.,.Brash J. L, Zhu S. P., Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces. J. Polym. Sci., Part A:Polym. Chem.,2004.42.2931.
    [50]Cumberland D., et al. Biomimicry 1:PC. Semin Interv Cardiol 1998,3.149-150.
    [51]Whelan D., et al. Biocompatibility of phosphorylcholine coated stents in normal porcine coronary arteries. Heart Drug,2000,83.338-345.
    [52]New G, et al. Estrogen-eluting, phosphorylcholine-coated stent implantation is associated with reduced neointimal formation but no delay in vascular repair in a porcine coronary model, Catheter. Cardiovasc. Interv.,2002,57,266-271.
    [53]Lewis A.L., et al. Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre-and post-implantation. Biomaterials,2002,23,1697-1706.
    [54]Lewis A.L., et al. Phosphorylcholine-based polymer coatings for stent drug delivery. JMS:Materials in Medicine,2001,12,865-870.
    [55]Schatz R.A. A view of vascular stents. Circulation 1989,79,445-457.
    [56]Mani G., Feldman MD, et al. Coronary stents:A materials perspective. Biomaterials 2007,28,1689-1710.
    [57]沈家骢,孙俊奇.超分子科学研究进展.中国科学院院刊2004,19,420-424.
    [58]Her R.K. Multilayers of Colloidal Particles. J. Colloid Interface Sci.,1966,21, 569.
    [59]Decher G. Fuzzy nanoassemblies:Toward layered polymeric multicomposites. Science.1997,277,1232-1237.
    [60]Schlenoff J.B., Dubas S.T. Mechanism of polyelectrolyte multilayer growth: Charge overcome pensation and distribution. Macromolecules,2001,34, 592-598.
    [61]Sukhishvili S.A., Granick S. Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly. Macromolecules,2002,35,301-310.
    [62]Wang LY, Wang ZQ, et al. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol. Rapid Commun.,1997,18,509-514.
    [63]Shimazaki Y.. et al. Alternate adsorption of polymers on a gold surface through the charge-transfer interaction. Macromolecules,1999,32,8220-8223.
    [64]Anzai J., Kobayashi Y. Construction of multilayer thin films of enzymes by means of sugar-lectin interactions. Langmuir,2000,16,2851-2856.
    [65]Tang T.J., et al. Molecular layer-by-layer self-assembly of water-soluble perylene diimide through pi-pi and electrostatic interactions. Langmuir,2006,22,26-28.
    [66]Lee H.. Kepley L. J., Hong H. G., Mallouk T. E., Inorganic Analogues of Langmuir-Blodgett Films:Adsorption of Ordered Zirconium 1,10-Decanebisphosphonate Multilayers on Silicon Surfaces. J. Am. Chem. Soc., 1988,110,618.
    [67]Schutte M., et al. Metallosupramolecular thin polyelectrolyte films. Angewandte Chemi-International Edition.1998,37(20),2891-2893.
    [68]Chen J Y, Huang L, et al. Self-Assembly Ultrathin Films Based on Diazoresins. Langmuir,1999,15,7208-7212.
    [69]Li Q, Ouyang J H, Chen J Y, Zhao X S, Cao W X. Photosensitive. Self-Assembled Ultrathin Film s Based on Diazoresin and Phosphate-Containing Polyanions. Journal of Polymer Science:Part A:Polymer Chemistry,2002.40. 222-228.
    [70]Zhang Y J, Cao W X. Stable Self-Assembled Multilayer Films of Diazo Resin and Poly(maleic anhydride-co-styrene) Based on Charge-Transfer Interaction. Langmuir,2001,17,5021-5024.
    [71]lierry L., Ameur N. B., et al. Influence of Cu(I)-Alkyneπ-Complex Charge on the Step-by-Step Film Buildup through Sharpless Click Reaction. Macromolecules,2010,43,3994-3997.
    [72]Leung M.K.M., Such G.K., et al. Assembly and Degradation of Low-Fouling Click-Functionalized Poly(ethylene glycol)-Based Multilayer Films and Capsules. Small,2011,7,1075-1085.
    [73]Kinnane C.R., Such G.K., Caruso F. Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsules. Macromolecules,2011, 44.1194-1202.
    [74]Seo J.H., Schattling P., et al. Covalently Bonded Layer-by-Layer Assembly of Multifunctional Thin Films Based on Activated Esters. Langmuir.2010.26(3). 1830-1836.
    [75]Zhou C.Z., Walker A.V. Formation of Multilayer Ultrathin Assemblies Using Chemical Lithography. Langmuir,2010,26(11),8441-8449.
    [1]Hayward J. A., Chapman D., Biomembrane surfaces as models for polymer design: the potential for haemocompatibility. Biomaterials,5 (1984) 135.
    [2]K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, N. J. Nakabayashi, Why do phospholipid polymers reduce protein adsorption? Biomed. Mater. Res.39 (1998)323.
    [3]Y. Iwasaki, K. Ishihara, Anal. Phosphorylcholine-containing polymers for biomedical applications. Bioanal. Chem.381 (2005) 534.
    [4]T. Moro, Y. Takatori, K. Ishihara. T. Konno, Y. Takigawa, T. Matsushita, U. Chung, K. Nakamura, H. Kawaguchi, Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat. Mater.3 (2004) 829.
    [5]J. P. Xu, J. Ji. W. D. Chen, D. Z. Fan, Y. F. Sun, J. C. Shen. Phospholipid based polymer as drug release coating for cardiovascular device. Eur. Polym. J.40 (2004) 291.
    [6]S.1. Yusa. K. Fukuda. T. Yamamoto. K. Ishihara, Y. Morishima, Synthesis of Well-Defined Amphiphilic Block Copolymers Having Phospholipid Polymer Sequences as a Novel Biocompatible Polymer Micelle Reagent. Biomacromolecules.6 (2005) 663.
    [7]B. Yu, A. B. Lowe, K. Ishihara, RAFT synthesis and stimulus-induced self-assembly in water of copolymers based on the biocompatible monomer 2-(methacryloyloxy)ethyl phosphorylcholine. Biomacromolecules 10 (2009) 950.
    [8]魏雨,纪璎,肖琳琳,计剑.具有内皮细胞选择性的细胞膜仿生支架材料的研究,高分子学报,11 (2010)1407.
    [9]W. Feng, J. L.Brash, S. P. Zhu. Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces. J. Polym. Sci., Part A: Polym. Chem.42 (2004) 2931.
    [10]W. Feng, S. P. Zhu, K. Ishihara, J. L. Brash, Adsorption of Fibrinogen and Lysozyme on Silicon Grafted with Poly(2-methacryloyloxyethyl Phosphorylcholine) via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir,21 (2005)5980.
    [11]S. F. Chen, L. Y. Liu, S. Y. Jiang, Strong Resistance of Oligo(phosphorylcholine) Self-Assembled Monolayers to Protein Adsorption. Langmuir,22 (2006) 2418.
    [12]K. Yoshimoto, T. Hirase, J. Madsen, S. P. Armes, Y. Nagasaki, Non-Fouling Character of Poly[2-(methacryloyloxy)ethyl Phosphorylcholine]-Modified Gold Surfaces Fabricated by the "Grafting to' Method: Comparison of its Protein Resistance with Poly(ethylene glycol)-Modified Gold Surfaces. Macrmol. Rapid Commun.30(2009)2136.
    [13]H. Lee, L. J. Kepley, H. G. Hong, T. E. Mallouk, Inorganic Analogues of Langmuir-Blodgett Films:Adsorption of Ordered Zirconium 1,10-Decanebisphosphonate Multilayers on Silicon Surfaces. J. Am. Chem. Soc. 110(1988)618.
    [14]M. E. Thompson. Use of Layered Metal Phosphonates for the Design and Construction of Molecular Materials. Chem. Mater.6 (1994) 1168.
    [15]H. E. Katz, Multilayer Deposition of Novel Organophosphonates with Zirconium(IV). Chem. Mater.6 (1994) 2227.
    [16]F. Wang. D. Li, G. P. Li. X. Q. Liu. S. J. Dong, Electrodissolution of Inorganic Ions/DNA Multilayer Film for Tunable DNA Release. Biomacromolecules.9 (2008) 2645.
    [17]F. Wang, X. Q. Liu. G. P. Li, D. Li. S. J. Dong. Selective electrodissolution of inorganic ions/DNA multilayer film for tunable DNA release. J. Mater. Chem.19 (2009) 286.
    [18]J. Wang, F. Wang, Z. Xu, Y. Wang, S. J. Dong, Surface plasmon resonance and electrochemistry characterization of layer-by-layer self-assembled DNA and Zr4+ thin films, and their interaction with cytochrome c. Talanta,74 (2007) 104.
    [19]B. P. Oberts, G. J. Blanchard, Formation of Air-Stable Supported Lipid Monolayers and Bilayers. Langmuir,25 (2009) 2962.
    [20]B. P. Oberts, G. J. Blanchard, Ionic Binding of Phospholipids to Interfaces: Dependence on Metal Ion Identity. Langmuir,25 (2009) 13025.
    [21]S. C. Burgle, O. Gillaume-Gentil, L. M. Zheng, J. Voros, M. Bally, Zirconium Ion Mediated Formation of Liposome Multilayers. Langmuir,26 (2010) 10995.
    [22]K. Ishihara, T. Ueda, N. Nakabayashi, Preparation of phospho- lipid polymers and their properties as hydrogel sheet. Polym. J.,22 (1990) 355.
    [23]A. Reisch, et al. Anti-fouling phosphorylcholine bearing polyelectrolyte multilayers:Cell adhesion resistance at rest and under stretching. Soft Matter,6 (2010) 1503.
    [24]A. Reisch, et al. Polyelectrolyte Multilayers Capped with Polyelectrolytes Bearing Phosphorylcholine and Triethylene Glycol Groups:Parameters Influencing Antifouling Properties. Langmuir,25 (2009) 3610.
    [1]Chen J Y, Huang L. et al. Self-Assembly Ultrathin Films Based on Diazoresins. Langmuir,1999,15,7208-7212.
    [2]Cao T B, Yang S M, et al. Nanoassembly Film of Carboxylic Polyaniline with Photosensitive Diazoresin and Its Photoelectric Conversion Properties. J. Phys. Chem. B.,2001,105,11941-11944.
    [3]Li Q, Ouyang J H, Chen J Y, Zhao X S, Cao W X. Photosensitive, Self-Assembled Ultrathin Films Based on Diazoresin and Phosphate-Containing Polyanions. Journal of Polymer Science:Part A:Polymer Chemistry,2002.40.222-228.
    [4]Zhong H. Wang J F, et al. Fabrication of CovalentlyAttached Ultrathin Films Based onDendrimers viaH-Bonding Attractionand Subsequent UVlrradiation. Macromol.Rapid Commun.,2001,22.583-586.
    [5]Zhang Y J, Cao W X. Stable Self-Assembled Multilayer Films of Diazo Resin and Poly(maleicanhydride-co-styrene) Based on Charge-Transfer Interaction. Langmuir,2001,17.5021-5024.
    [6]Cao T B, Chen J Y, Yang C H, Cao W X. Fabrication of a Stable Layer-by-LayerThin Film Based on Diazoresinand Phenolic Hydroxy-Cont aining Polymers viaH-Bonding. Macromol. Rapid Commun.,2001,22,181-184.
    [7]Wang J F, Jia X R, et al. Self-Assembled Multilayer Films Based on Dendrimers with Covalent Interlayer Linkage. Chem. Mater.,2002,14,2854-2858.
    [8]Jierry L, Ameur N B, et al. Influence of Cu(I)-Alkyneπ-Complex Charge on the Step-by-Step Film Buildup through Sharpless Click Reaction. Macromolecules, 2010,43,3994-3997.
    [9]Kinnane C R, Such G K, Caruso F. Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsules. Macromolecules,2011, 44,1194-1202.
    [10]Leung M K M, Such G K, et al. Assembly and Degradation of Low-Fouling Click-Functionalized Poly(ethylene glycol)-Based Multilayer Films and Capsules, small,2011,7,1075-1085.
    [11]Ochs C J, Such G K, et al. Biodegradable Click Capsules with Engineered Drug-Loaded Multilayers. ASC Nano,2010,4,1653-1663.
    [12]Zhou C Z, Walker A V. Formation of Multilayer Ultrathin Assemblies Using Chemical Lithography. Langmuir,2010.26(11).8441-8449.
    [13]Seo J H. Schattling P, et al. Covalently Bonded Layer-by-Layer Assembly of Multifunctional Thin Films Based on Activated Esters. Langmuir2010,26(3), 1830-1836.
    [14]He T, Chan V. Covalent layer-by-layer assembly of polyethyleneimine multilayer for antibacterial applications. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH A,2010,95,454-464.
    [15]Meteo C, et al. Multifunctional Epoxy Supports:A New Tool To Improve the Covalent Immobilization of Proteins. The Promotion of Physical Adsorptions of Proteins on the Supports before Their Covalent Linkage. Biomacromolecules. 2000.1,739-745.
    [16]Meteo C, Abian O, Fernandez-Lafuente R, Guisan J M. Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzyme and Microbial Technology,2000,26,509-515.
    [17]Abad J M, Velez M, et al. Immobilization of Peroxidase Glycoprotein on Gold Electrodes Modified with Mixed Epoxy-Boronic Acid Monolayers. J. AM. CHEM. SOC.,2002,124,12845-12853
    [18]Meteo C, et al. Epoxy-Amino Groups:A New Tool for Improved Immobilization of Proteins by the Epoxy Method. Biomacromolecules 2003,4,772-777.
    [19]Pessela B. C. C., Meteo C, et al. One-Step Purification, Covalent Immobilization, and Additional Stabilization of a Thermophilic Poly-His-Tagged β-Galactosidase from Thermussp. Strain T2 by using Novel Heterofunctional Chelate -Epoxy Sepabeads. Biomacromolecules,2003,4,107-113.
    [20]Meteo C, et al. One-Step Purification, Covalent Immobilization, and Additional Stabilization of Poly-His-Tagged Proteins Using Novel Heterofunctional Chelate-Epoxy Supports. BIOTECHNOLOGY AND BIOENGINEERING,2001. 76,269-276.
    [21]Barringer J. E., et al. Immobilization of Biomolecules on Poly(vinyldimethylazlactone) Containing Surface Scaffolds. Langmuir,2009,25, 262-268.
    [22]Ishihara K., Ueda T., Nakabayashi N. Preparation of phospho-lipid polymers and their properties as hydrogel sheet. Polym. J.,1990,22,355-359.
    [23]Elzbieciak M., Zapotoczny S., et al. Influence of pH on the Structure of Multilayer Films Composed of Strong and Weak Polyelectrolytes. Langmuir, 2009,25,3255-3259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700