用户名: 密码: 验证码:
基于关节变量反馈的六足机器人闭环控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六足机器人因其各向性较好,对行走路面的要求很低,能够适应各种不规则路面,并且在运动中具有良好的稳定性,在机器人研究领域具有十分重要的意义。本论文的研究对象就是一种结构典型的六足机器人。
     本文基于深圳市德普施科技有限公司的重载六足机器人平台Nomad HDATS,对其运动结构和三角步态进行了分析,通过“D-H”方法建立起机器人各关节和杆件的运动学模型,写出它们之间的变换矩阵,推导出该六足机器人的正向运动学方程和逆向运动学方程。采用拉格朗日算法(Lagrange)建立了机器人的动力学方程,解决了动力学逆向问题,计算出机器人各关节执行器所需要的驱动力矩。
     机器人的控制一般是闭环控制系统,它能让机器人在运动过程中根据实时信息进行自主决策,实现自主控制。机器人闭环控制系统的条件是机器人能够获取外部环境和机器人自身姿态的信息,外部环境信息一般通过传感器来获得,如视觉、触觉、光电位置检测等传感器;机器人姿态信息则主要通过角度传感器来确定,如水平陀螺仪、指南针传感器等。本文的研究要点就是控制系统如何确定机器人姿态的问题。本论文对这一问题的研究并未使用角度传感器,而是考虑通过机器人各关节变量的值来确定机器人的姿态。经深入研究,发现机器人所使用的普通模拟舵机也能够有效反映出关节变量的实际值。基于以上的思考与分析,本文针对所研究的具有相同的六条三自由度腿的机器人,设计出一套基于关节变量信息反馈的六足机器人闭环控制系统。
     本文所设计的机器人闭环控制系统的基本原理是基于关节变量反馈系统,将采集到的反映各关节舵机输出轴实时位置的模拟信号经过A/D芯片转换成数字信号并传送给单片机,再由单片机根据推导出的转换算法编写的程序将其换算成对应的舵角位置信息或机器人距离地面的高度信息。最后,将此设计方案嵌入到机器人原有的开环控制系统中,控制器能够通过此套反馈系统扫描全部关节舵机的实时位置信息,并以此作为参考依据综合评价出机器人此时的姿态和可能碰到的状况,从而决定其下一步的运动。
     总结之,本文对所研究的六足机器人进行了相关理论的研究,提出了基于关节变量信息反馈的机器人闭环控制系统的设计方案,并对其进行了分组测试,测试结果达到预期,证实了系统的可行性与有效性。系统的设计思路比较新颖,成功解决了普通模拟舵机无法通过实时位置信息获取机器人姿态以实现闭环控制系统设计的问题,为今后机器人控制系统设计领域提供了一定的参考思路和借鉴意义。
Hexapod robot plays very important significance in robot research field for its performance in each direction is so good that there is low demand of pavement and it can adapt to all kinds of irregular road surface. More over, its stabilityis good in moving. The research object of this paper is a kind of hexapod robot with typical structure.
     Based on the hexapod robot Nomad HDATS(Heavy Duty All Terrain System) of Shenzhen Depush technology Co., LTD, this paper analyzes the sports structure and tripod gait. Through the "D-H" method to establish the kinematics model of the robot joints and stems, writing the transformation matrixes between them, deducing the positive kinematics equation and the inverse kinematics equations of the hexapod robot. Using Lagrange algorithm to establish the robot dynamics equation, the paper solves the problem of inverse dynamics, calculating the driving moment needed by each joint actuators of the hexapod robot.
     The control of the robot is usually closed loop control system, its principle is that the robot makes independent decision to realize the independent control according to the real-time information in moving process. Robot closed loop control system requires the robot can obtain external real-time environment and its own posture, the external environment information can be obtained through the sensor in general, such as visual, touch, photoelectric position detection sensors, etc; The robot posture can be determined by angle sensor, such as horizontal gyro, compass sensor, etc. The paper studies that control system how to determine the robot posture. This thesis doesn't use angle sensor on the problem, but considers that we would be able to make sure the posture of the robot through robot joint variables. After further study, we find that common simulating steering gear used by our robot also can effectively reflect the actual value of the joint variables. Based on the above thinking and analysis, this paper designs a set of robot closed-loop control system based on information feedback of joint variables to the hexapod robot we studied which has six equal limbs with3DOF.
     Based on the joint variable feedback system, the basic principle of the closed-loop control system designed is to convert analog signal reflecting the real-time position of the joint steering gear output shaft into digital signal by A/D chip and send it to the single chip microcomputer. Then according to the programming algorithm, the single chip microcomputer converts the digital signal into servo motor's position information or heigth that the robot is from the ground. Finally, adding the design scheme into original control system, the controller will be able to scan real-time position information of all joint servo motors using the designed feedback system and reference to the real-time position information to judge posture of the robot and the posible situation at that time, and then decide the next movement.
     In general, the paper makes some research and analysis to the theory related to the hexapod robot, puts forward design scheme of the robot closed-loop control system based on the joint variable information feedback, and make group testing, the result of which achieves the expected confirming the feasibility and effectiveness of the system. The designing idea of the system is new, succeeding in solving the problem that common simulation steering gear can not be used for designing the closed-loop control system to get the robot's posture, providing some reference ideas for robot control system design in future.
引文
[1]Sorin, M.O.; Mircea, N.; Viorel, S. Hexapod Robot. Mathematical Support for Modeling and Control[C]. Proceedings of the 15th International Conference on System Theory, Control,and Computing(ICSTCC),Sinaia,Romania.IEEE.2011:1-6.
    [2]Xingjun Tan;Yujun Wang;Xinqiang He. The Gait of a Hexapod Robot and Its Obstacle-surmounting Capability[C].Proceedings of the 8th World Congress on Intelligent Control and Automation, Taipei, Taiwan.2011:303-308.
    [3]申景金.一种新型六足仿生虫的结构设计与动力学分析[D].南京航空航天大学硕士学位论文,2008.
    [4]Porta, J.M.; Enric Celaya. Gait Analysis for Six-Legged Robots[OL].de Robotica i Informatica Industrial Technical Report IRI-DT-9805,1998.http://www.iri.upc.edu/ people/porta/Docs/tr9805.pdf.
    [5]柏龙,葛文杰,陈晓红,张铭.用于行星探测的跳跃机器人研究[J].机器人,2009,31(4):311-319.
    [6]何新强.偏心轮腿六足机器人控制策略研究[D].西南大学硕士学位论文,2011.
    [7]苏军,陈学东,田文罡.六足步行机器人全方位步态的研究[J].机械与电子,2004(3):48-52.
    [8]叶献伟,陈樊,高建华.六足仿生机器人越障步态方法研究[J].浙江理工大学学报,2008,25(5):215-216,316.
    [9]胡夏.六足步行机器人直行关键技术研究[D].浙江大学硕士学位论文,2008.
    [10]张婷婷.基于ARM和CPLD的四足机器人嵌入式控制器硬件平台设计[D].武汉科技大学硕士学位论文,2009.
    [11]McGhee,R.B., Iswandhi,G.I., Adaptive Locomotion of a Multilegged Robot over Rough Terrain[J].IEEE Transactions on Systems,Man,and Cybernetics,1979:176-182.
    [12]Kurisu,M. A Study on Teleoperation System for a Hexapod Robot-Development of a Prototype Platform[C]. Proceedings of the 2011 International Conference on Mechatronics and Automation (ICMA),Beijing,China.IEEE.2011:135-141.
    [13]黄俊军,葛世荣,曹为.多足步行机器人研究状况及展望[J].机床与液压, 2008,36(5):187-191.
    [14]田文罡.多足步行机器人控制系统的研究[D].华中科技大学硕士学位论文,2004.
    [15]D.Voth. Nature's Guide to Robot Design[J]. IEEE Intelligent Systems,2002, 17(6):4-7.
    [16]雷静桃,高峰,崔莹.多足步行机器人的研究现状及展望[J].机械设计.2006,23(9):1-3.
    [17]Nelson,G.M.;Quinn,R.D.;Bachmann,R.J.;Flannigan,W.C.;Ritzmann,R.E.; Watson, J.T. Design and Simulation of a Cockroach-like Hexapod Robot [C]. Proceedings of the 1997 International Conference on Robotics and Automation. Albuquerque,New Mexico,1997:1106-1111.
    [18]Fred Delcomyn,Mark E Nelson. Architectures for a Biomimetic Hexapod Robot[J]. Robotics and Autonomous Systems,2000,30(1):5-15.
    [19]杨秀清.机电液耦合的搬运机械手虚拟样机研究[D].中国科学技术大学博士学位论文,2008.
    [20]美宇航局开发6腿12眼机器人[OL].http://tech.enorth.com.cn/system/2012/02 /06/008594205.shtml.
    [21]唐杰,原培章,修道喜,李小凡,归彤.海底六足步行机器人[J].光学机械,1990(3):47-50.
    [22]范海龙.新型仿生步行机器人运动控制的设计与实现[D].东南大学硕士学位论文,2010.
    [23]Shu-Hung Liu;Yi-Ting Chen;Jia-Yush Yen. Sensor fusion in a Six-legged Bio-mimicking Robot[C].Proceedings of the 17th World Congress, the International Federation of Automatic Control, Seoul, Korea,2008:15624.
    [24]雷静桃,高峰,崔莹.多足步行机器人的研究现状及展望[J].机械设计,2006,23(9):1-4.
    [25]祝捷,曹志奎,马培荪.SMA驱动的微型双三足步行机器人作全方位运动的研究[J].传动技术,2002(4):11-14.
    [26]哈工程大学研制出六足万向仿生机器人[OL].http://news.sina.com.cn/c/2005-06-07/09046101263s.shtml.
    [27]数码舵机的有点[OL]. http://blog.sina.com.cn/s/blog_5350aa7501 OObyuw.html.
    [28]深圳市春天模型电子有限公司.SR518机器人舵机用户手册[OL].
    [29]CrustCrawler Inc. Nomad HDATS v1.0[OL].www.crustcrawler.com.
    [30]胡相利,宋爱国.跳跑式微型弹跳机器人的设计与实现[J].测控技术,2009,28(8):58-61.
    [31]L. Huang; B. Han; Q. Luo; J. Xu. Experimental Study on Hexapod Biomimetic Robot's Gait Planning[J].Huazhong Univ. of Sci.& Tech. (Nature Science Edition)., 2007,35(12):72-75.
    [32]吕原君,陈琼.四足机器人的步态仿真研究[J]. CAD/CAM与制造业信息化,2009(5):59-62.
    [33]闰尚彬,韩宝玲,罗庆生.仿生六足步行机器人步态轨迹的研究与仿真[J].计算机仿真.2007,24(10):156-160.
    [34]王刚,张立勋,王立权.八足仿蟹机器人步态规划方法[J].哈尔滨工程大学学报,2011,32(4):486-491.
    [35]王倩.六足仿生机器人步态规划与控制系统研制[D].哈尔滨工业大学硕士学位论文,2007.
    [36]蒋德军,宁立伟.仿六足机器人的机构设计与研究[J].机械传动,2009,33(2):42-43.
    [37]漆向军,陈霖,刘明丹.控制六足仿生机器人三角步态的研究[J].计算机仿真,2007,24(4):158-161.
    [38]徐小云,颜国正,丁国清.微型六足仿生机器人及其三角步态的研究[J].光学精密工程,2002,10(9):392-396.
    [39]宋一然,颜国正,徐小云.微型六足仿生机器人的研究[J].华东交通大学学报,2005,22(2):127-131.
    [40]储忠,阮坚实.仿生机器人步态规划与控制系统设计[J].合肥工业大学学报(自然科学版),2008,31(5):740-743.
    [41]孙付春.步行机器人的行走控制[D].成都理工大学硕士学位论文,2006.
    [42]刘连蕊.六足机器人横向行走步态规划及稳定性研究[D].浙江理工大学硕士学位论文,2010.
    [43]郑帆.基于MATLAB的四足机器人运动规划的研究[D].云南大学硕士学位论 文,2008.
    [44]孙建军.关于单片机技术应用的几点思考[J].科技致富向导,2011(3):42.
    [45]金浩.分布式控制系统在线升级技术的研究与实现[D].合肥工业大学硕士学位论文,2006.
    [46]Atmel Inc.AT89S52数据手册[OL]. http://www.atmel.com/Images/doc1919.pdf.
    [47]王海峰.基于AT89S52单片机的通用数据采集系统[D].中国石油大学硕士学位论文,2006.
    [48]Parallax Inc. PropServoControllerUSB-v1.0[OL].
    [49]Saeed B. Niku(著),孙富春,朱纪鸿,刘国栋(译).机器人学导论-分析、系统及应用[M].北京:电子工业出版社,2004:60-63.
    [50]Denavit,J.; Hartenberg, R.S. A kinematic notation for lower pair mechanisms based on matrices[J].ASME Journal of Applied Mechanics, vol.6, pp.215-221,1955.
    [51]方海燕,刘小勇.机器人运动学模型中的参数选取[J].机械设计,2011,28(2):46-48.
    [52]刘湘晨,蔡晓君,蒋力培,方徐应.机器人运动学分析与求解方法的探讨[J].机床与液压,2009,37(8):184-188.
    [53]尹爱勇,张玉华,刘诗道,袁猷,乔英娜.基于闭环矢量法的六足机器人关节位姿研究[J].南昌工程学院学报,2009,28(4):4-7.
    [54]吴文静,刘广瑞.机器人运动学旋转变换通式研究[J].华北水利水电学院学报,2010,31(4):92-94.
    [55]毛明艳,何岭松.六足机器甲虫定点转弯步态研究[J].计算机与数字工程,2011,19(5):1-6.
    [56]Sorin, M. O.; Mircea, N.; Hexapod Robot. Virtual Models for Preliminary Studies[C].Proceedings of the 2011 International Conference on System Theory, Control,and Computing (ICSTCC),Sinaia,Romania.IEEE.2011:1-6.
    [57]闫成新.大型喷浆机器人的运动学正解研究[J].组合机床与自动化加工技术,2010(8):3-6.
    [58]袁鹏,孟庆鑫,王沫楠,瞿晓蓉,于艳爽.两栖仿生机器蟹的单足路径规划和生成[J].哈尔滨工程大学学报,2003,24(3):296-301.
    [59]DUAN Xingji;CHEN Weihai;YU Shouqian. Tripod gaits planning and kine- matics analysis of a hexapod robot[C]. Proceedings of the 2009 International Conference on Control and Automation,Christchurch,New Zealand.IEEE.2009:1850-1855.
    [60]朱胜缘.非驱动关节机器人控制规律的研究[D].哈尔滨工程大学硕士学位论文,2004.
    [61]王磊.具有非驱动臂的机器人控制方法研究[D].哈尔滨工程大学硕士学位论文,2003.
    [62]孙树栋.工业机器人技术基础[M].西安:西北工业大学出版社,2006.
    [63]张锦荣,王润孝.四足机器人的动力学分析与仿真[J].西安工程大学学报,2009,23(3):80-84.
    [64]徐轶群,黄茂林.机器人动力学分析新方法-Kane方法[J].四川轻化工学院学报,995,8(4):28-33.
    [65]赖锡煌,殷际英,高勇.多关节机器人运动学和动力学分析[J].机器人技术,2005(6):34-35.
    [66]方琛玮.基于ADAMS的机器人动力学仿真研究[D].北京邮电大学硕士学位论文,2009.
    [67]王祥好.模糊PID控制算法在智能小车中的研究与应用[D].合肥工业大学硕士学位论文,2009.
    [68]杜洋.A/D转换芯片ADC08323的应用[J].电子制作,2006(1):44-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700