粉防己碱调控前炎症因子减轻心肌缺血/再灌注损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分粉防己碱对缺氧/复氧诱导乳鼠心肌细胞损伤及前炎症因子的影响
     实验一新生大鼠心肌细胞培养及缺氧/复氧模型建立
     目的:
     建立新生大鼠心肌细胞培养及缺氧/复氧模型以及研究粉防己碱对离体培养的大鼠心肌细胞在缺氧/复氧条下对心肌酶:乳酸脱氢酶(LDH)、肌酸激酶(CK)的影响。
     方法:
     利用原代培养的SD大鼠乳鼠心肌细胞建立心肌缺氧/复氧(A/R)模型,模拟心肌缺血/再灌注损伤,为研究粉防己碱对大鼠心肌缺血/再灌注损伤影响提供研究平台。心肌细胞的鉴定采用免疫组织化学方法。实验分为正常对照组(CON)和缺氧/复氧组(A/R)。CON组:在培养的心肌细胞中加入适量0.9%盐水,放入培养箱培养26h。A/R组:用氩气饱和后更换使用无糖无血清培养基再灌入高纯度氩气封口,在培养箱中孵育2h,再拆开封口在培养箱中孵育24h。检测心肌细胞在缺氧/复氧这一病理生理过程当中心肌酶LDH、CK的变化。
     结果:
     1.新生大鼠心肌细胞体外培养结果:心肌细胞分离后原代培养2小时绝大多数非心肌细胞(主要为成纤维细胞)已经贴壁,而心肌细胞仍然悬浮,呈圆形或椭圆形。新生大鼠心肌细胞在种植后第2天,可在倒置显微镜下见散在的具有搏动能力的心肌细胞,第3-4天可见散在的心肌细胞相互间连接成合胞体。抗a-Sacromeric actin免疫细胞化学细胞染色显示96%以上的细胞呈现强阳性。心肌细胞体外培养成功。2.缺氧导致培养的心肌细胞中LDH、CK轻度增高:对照组(CON)组与A/R组在缺氧前LDH和CK值未见显著性差异(74.67±3.51 VS 73.08±2.08,P>0.05),表明两组具有可比性。A/R组缺氧2h后LDH和CK分别较缺氧前增加3.50倍(260.99±6.73 VS 74.67±3.51)和2.68倍(4.74±0.45 VS 1.77±0.40);而CON组中在培养2h后,与培养前相比LDH和CK均未见明显变化。3.复氧导致培养的心肌细胞中LDH、CK进一步增高:A/R组缺氧2h和复氧24h后,检测培养心肌细胞中LDH、CK,显示LDH、CK在复氧24h分别较缺氧2h时增加1.93倍(503.72±6.26 VS 260.99±6.73)和1.59倍(7.54±0.66 VS 4.74±0.45);而对照组在培养24h后较培养2h无明显变化。
     实验二粉防己碱对缺氧/复氧乳鼠心肌细胞前炎症因子的影响
     目的:
     研究粉防己碱对离体培养的大鼠心肌细胞在缺氧/复氧条下对心肌酶LDH、CK和前炎症因子:肿瘤坏死因子(TNF-α)、白细胞介素-1(IL-1β)、白细胞介素-6(IL-6)的影响。
     方法:
     乳鼠心肌细胞体外培养心肌细胞成功后,随机分为四组:CON组、A/R组、粉防己碱组(Tet)、辛伐他汀组(Sim)。CON组:不进行A/R处理,正常情况下连续培养26h;A/R组:在高纯度氩气,无糖无血清培养基条件下培养2h,复氧开始时加入0.9%盐水,再复氧培养24h;Tet组:预先给予终浓度为30μmol/l的Tet孵育60min,再在无血清低糖DMEM培养基缺氧孵育2h,然后继续复氧培养24h;Sim组:预先给予终浓度为10μmol/l的Sim孵育60min,再在无血清低糖DMEM培养基缺氧孵育2h,然后继续复氧培养24h;检测各组在复氧24h后的LDH、CK、TNF-α、IL-1β、IL-6的水平。
     结果:
     1.缺氧/复氧24h后A/R组、Tet组、Sim组心肌酶LDH、CK均较CON组显著升高(p<0.01),药物预处理组Tet组和Sim组心肌酶LDH、CK显著低于A/R组(p<0.01)。2.缺氧/复氧24h后A/R组、Tet组、Sim组前炎症因子TNF-α、IL-1β、IL-6均较CON组显著升高(p<0.01),药物预处理组Tet组和Sim组前炎症因子TNF-α、IL-1β、IL-6显著低于A/R组(p<0.01)。3.缺氧/复氧24h后的LDH、CK、TNF-α、IL-1β、IL-6的水平,Tet组和Sim组之间均无显著性差异(p>0.05)。
     第二部分粉防己碱调控前炎症因子减轻大鼠心肌缺血/再灌注损伤
     目的:
     研究粉防己碱通过对心肌缺血/再灌注过程中前炎症因子TNF-α、IL-1β、IL-6的调控减轻心肌缺血/再灌注损伤。
     方法:
     80只健康健康雄性SD大鼠随机分为4组:缺血/再灌注损伤组(I/R)、假手术组(Sham)、粉防己碱治疗组(Tet),辛伐他汀治疗组(Sim)。I/R组结扎大鼠冠状动脉左前降支造成心肌缺血30分钟后再灌注24小时后处死大鼠;Sham组只穿针不结扎,余步骤同I/R组; Tet组在缺血前20分钟腹腔注射Tet,辛伐他汀组(Sim)结扎手术前予以辛伐他汀药物2mg/kg连续灌胃14天,余步骤同I/R组。抽血检测血清中肌酸磷酸激酶(CK),乳酸脱氢酶(LDH)。二维超声评价心脏功能:检测左心室舒张和收缩末期内径LVDd、LVDs、左心室短轴缩短率%FS=〔[(LVDd-LVDs)/LVDd〕×100],射血分数(EF)。每个指标连续测量三个心动周期,取其平均值。24小时后取心肌标本,用酶联免疫吸附法(ELISA)检测血清和心肌组织中IL-1β、IL-6、TNF-α表达水平。检测髓过氧化物酶(MPO)了解心肌组织中性粒细胞的浸润程度。伊文氏兰/氯化四唑(EB/TTC)双染色法测量心肌梗塞面积(MIS)。
     结果:
     1.各组血清心肌酶水平比较:I/R组、Tet组、Sim组水平显著高于Sham组(p<0.01),Tet组与Sim组与I/R组相比显著降低(p<0.01),两药物处理组之间无显著性差异(p>0.05)。2.各组心肌梗死面积比较:心肌梗死面积、梗死面积/左室面积%、梗死面积/缺血面积%三项指标数据显示:Tet组与Sim组显著低于I/R组,而Tet组与Sim组之间无显著性差异(p>0.05)。3.心肌酶CK、LDH与心梗面积/缺血面积%相关性分析:心肌酶CK、LDH与心梗面积/缺血面积%呈密切正相关(r=0.922,0.975, p<0.01)。4.各组再灌注24h后超声检测心功能比较:以假手术组术前心功能数据为正常公共对照组数据。FS%、EF值在I/R组、Tet组、Sim组均较正常组显著减低(p<0.01)。药物预处理的Tet组与Sim组FS%、EF值显著高于I/R组(p<0.01)。E/A比值在I/R组、Tet组、Sim组均较正常组显著减低(p<0.01)。药物预处理的Tet组与Sim组E/A比值显著高于I/R组(p<0.01)。5.各组缺血心肌局部MPO酶活性比较:I/R组、Tet组、Sim组各组显著高于Sham组(p<0.01),药物预处理的Tet组与Sim组E/A比值显著高于I/R组(p<0.01)。Tet组与Sim组之间无显著性差异(p>0.05)。6.各组MPO活性与组织TNF-α表达水平相关性分析:各组MPO活性与TNF-α呈密切正相关关系(r=0.936,p<0.01)。7.各组大鼠血清及心肌组织局部前炎症因子TNF-α、IL-1β、IL-6表达水平比较:I/R组、Tet组、Sim组各组显著高于Sham组(p<0.01),药物预处理的Tet组与Sim组E/A比值显著高于I/R组(p<0.01)。Tet组与Sim组之间无显著性差异(p>0.05)。8.各组心肌组织局部TNF-α表达水平与IL-1β、IL-6表达水平线性相关分析:相关分析结果显示IL-1β、IL-6表达水平与TNF-α表达水平成密切正相关(r=0.928, 0.948; p<0.01)。
     第三部分粉防己碱调控前炎症因子减轻大鼠心肌缺血/再灌注损伤的分子机制
     目的:
     通过建立大鼠缺血/再灌注模型,观察细胞内前炎症因子TNF-α、IL-1β、IL-6以及相关调控蛋白I-κBα、NF-κB的变化揭示其抗再灌注损伤的细胞分子机制。
     方法:
     80只健康雄性SD大鼠随机分为4组:缺血/再灌注损伤组(I/R)、假手术组(Sham)、粉防己碱治疗组(Tet),辛伐他汀治疗组(Sim)。I/R组结扎大鼠冠状动脉左前降支造成心肌缺血30分钟后再灌注24小时随后处死大鼠;Sham组只穿针不结扎,余步骤同I/R组; Tet组在缺血前20分钟腹腔注射Tet,辛伐他汀组(Sim)结扎手术前予以辛伐他汀药物2mg/kg连续灌胃14天。余步骤同I/R组。24小时后取心肌标本,实时RT-PCR(Real Time RT-PCR )检测TNF-α、IL-1β、IL-6 mRNA表达水平。应用免疫组织化学和蛋白电泳(Western-Blot)方法检测磷酸化IκB-α(P-IκB-α)在心肌细胞胞浆中的表达,凝胶电泳迁移率(EMSA)变化检测NF-κB的活性。
     结果:
     ①实时RT-PCR实验结果显示:手术各组的前炎症因子在经历再灌注后均由显著升高,各组的mRNA转录水平与假手术组比较均显著升高(p<0.01)。粉防己碱组、辛伐他汀组的前炎症因子mRNA拷贝相对值较缺血/再灌注组显著降低(p<0.01)。②免疫组化和蛋白电泳(Western-Blot)实验结果均显示各实验组P-IκBα表达水平与假手术组相比显著增加(p<0.01),粉防己碱组、辛伐他汀预处理组P-IκB-α表达水平显著低于缺血/再灌注组(p<0.01)。③EMSA蛋白凝胶电泳结果:可见缺血/再灌注组心肌细胞核内有核因子NF-κB蛋白表达,表达水平与假手术组、粉防己碱组、辛伐他汀组相比较均显著升高(p<0.01)。而经过药物预处理的粉防己碱组、辛伐他汀组的NF-κB蛋白表达水平在经过再灌注24h后显著低于缺血/再灌注组(p<0.01),并且与假手术组之间无显著性差异(p>0.05)。两药物预处理组之间的NF-κB蛋白表达水平也无显著性差异(p>0.05)。
     结论:
     1.体外分离、培养乳鼠心肌细胞,通过对培养心肌细胞施行缺氧/复氧可成功建立模拟心肌细胞缺血/再灌注损伤模型。
     2.缺血/再灌注可造成心肌细胞损伤;
     3.缺血/再灌注后心肌细胞发生炎症反应和前炎症因子引发的细胞因子级联反应;
     4.前炎症因子参与了心肌缺血/再灌注损伤;
     5.粉防己碱可减少缺血/再灌注损伤后心肌酶的释放,保护膜结构;减少局部中性粒细胞浸润;改善心功能;
     6.粉防己碱可以减少前炎症因子的生成;
     7.粉防己碱可以减少前炎症因子mRNA的生成;
     8.粉防己碱抑制缺血/再灌注局部心肌细胞胞浆内I-κBα的磷酸化;
     9.粉防己碱抑制缺血/再灌注局部心肌细胞胞浆内NF-κB的活化转位进入细胞核;
     10.粉防己碱减轻缺血/再灌注损伤,抑制炎症反应以及细胞因子级联反应,改善心功能,部分机制与其抑制前炎症因子生成,阻断再灌注损伤关键始动因素,打断恶性循环有关,另外与其抑制中心粒细胞浸润、抑制I-κBα的磷酸化、以及其钙通道阻滞的多靶点作用相关。
PARTⅠThe effect of tetrandrine on anoxia/reoxygenation-induced injury and the release of proinflammatory factors in cultured cardiomyocyte of neonate rats
     ExperimentⅠCulturing Neonate Rat Cardiocyte and Establishing Anoxia/Reoxygenation Model
     Objective:
     To establish an anoxia/reoxygenation model of cultured cardiocyte using neonate rat and investigate the level of myocardial enzyme LDH、CK under anoxia/reoxygenation conditions.
     Methods:
     Using primary cultured SD neonate rat’s myocardial cell establishes an anoxia/ reoxygenation model to simulate myocardial ischemia/reperfusion injury. Take this model as a platform to investigate the effect of tatrandrine on rat’s myocardial ischemia/ reperfusion injury. Cardiomyocyte was identified by using immunohistochemistry method. Cultured cardiocytes were divided into 2 groups: control group (CON) and anoxia/ reoxygenation group (A/R). Each group was treated as follow: CON group-0.9% saline was added into culture fluid, and cardiocytes were cultured in normal circumstance 26h. A/R group-O2 and CO2 in the culture plate which carried cultured cardiocytes were blowed out by argon gas, and nutritive medium was replaced by non- saccharide non- serum culture medium, followed 95% argon gases were infused. The culture plated was sealed and cultured in incubator for 2h under anoxia, after that the seal was opened it was incubated in incubator for the next 24h reoxygenation. Lactate dehydrogenase (LDH) and creatine kinase (CK) were detected and compared during the process of cardiocyte anoxia/reoxygenation.
     Result:
     1. The result of cutured neonate rat in vitro: myocardial cell was separated and primary cultured 2h, most non-cardiocytes (mainly mechanocyte) were adherence and cardiocytes still floating in cultured flui. The shape of cultured cardiocyte is round or ellipse. At the day after cardiocyte was implanted 2d, some cardiocytes possessing beating ability were seen under inverted microscope. At the day after cardiocyte was implanted 3-4d, some poradic cardiocytes were connected each other to symplasm. These cultured cardioctes were stained by using antiα-Sacromeric immunohistochemistry method; more over 96% cardiocytes were present strong positive result. This result identified this model was established successful. 2. Anoxia lead LDH and CK increased lightly: there were no significant difference between CON group and A/R group before anoxia beginning (74.67±3.51 VS 73.08±2.08, p>0.05).This phenomenon indicates the two groups have comparability. The numerus of LDH and CK in A/R group were increased 3.5 (260.99±6.73 VS 74.67±3.51, p<0.01) and 2.68 (4.74±0.45 VS 1.77±0.40, p<0.01) times respectively after experienced 2h anoxia culture compared with their numerus before anoxia;There was no significant difference on the numerus of LDH and CK in CON group before and after cultured 2h (72.24±2.25 VS 73.08±2.08, p>0.05) (1.78±0.28 VS 1.73±0.12, p>0.05). 3. Reoxygenation lead to the LDH and CK in cultured cardiocyte increased higher: there were obviously increased on LDH and CK compared between anoxia 2h and reoxygenation 24h in A/R group, they were elevated 1.93 (503.72±6.26 VS 260.99±6.73, p<0.01) and 1.59 (7.54±0.66 VS 4.74±0.45, p<0.01) times respectively; but there were no significant difference found in CON group (74.32±2.78 VS 72.24±2.25, p>0.05) (1.93±0.21 VS 1.78±0.28, p>0.05).
     ExperimentⅡEffect of tetrandrine on anoxia/reoxygenation-induced release of proinflammatory factors in cultured cardiocyte of neonate rats
     Objective:
     To investigate the effect of tetrandrine on anoxia/reoxygenation-induced the release of myocardial enzyme LDH, CK and proinflammatory factors: TNF-α, IL-1β, IL-6 in cultured cardiocytes of neonate rates.
     Mthods:
     After cardiocytes were cultured in vitro successfully, it were divided into 4 group: control group (CON), anoxia/reoxygenation group (A/R), tetrandrine group (Tet), simvastatin (Sim) in random. Each group was treated as follow: CON group-not treated anoxia/reoxygenation, continuous incubated 26h under normal circumstance. A/R group- first anoxia incubate carried, cells were incubated on the non- saccharide non- serum culture medium, which saturate by 95% argon gases 2h, reoxygenation incubate followed, cells were incubated in normal circumstance 24h.0.9% saline were added into culture fluid before the beginning of reoxygenation. Tet group and Sim group–the procedure of anoxia/reoxygenation was same to A/R group, the difference of these two groups was they added Tet (30μmol/L) or Sim (10μmol/L) respectively into culture fluid and incubated 60min before anoxia beginning. LDH, CK, TNF-α, IL-1β, IL-6 were detected after reoxygenation 24h.
     Conclusion:
     The LDH and CK were increased significantly in A/R, Tet, and Sim groups compared with CON group (p<0.01). The LDH and CK in Tet and Sim group were lower significant than A/R group (p<0.01). 2. The proinflammatory factors TNF-α, IL-1βand IL-6 were increased significantly in A/R, Tet, and Sim groups compared with CON group (p<0.01). And it were lower significant than A/R group (p<0.01). 3. The level of LDH, CK, TNF-α, IL-1β, IL-6 were no significant difference between Tet group and Sim group (p>0.05).
     PARTⅡTetrandrine regulate proinflammatory factors to attenuate rat myocardial ischemia/reperfusion injury
     Objective:
     To investigate how tetrandrine through regulate the pro-inflammation factors TNF-α、IL-1β、IL-6 to attenuate rat ischemic/reperfusion injury.
     Methods:
     80 male Sprague-Dawley(SD) rats were randomly divided into 4 group: Sham group, ischemia/reperfusion (I/R) group, Tetrandrine group (Tet) and simvastatin group (Sim).The SD rat underwent 30 min of left anterior descending (LAD) coronary occlusion and 24h reperfusion to make ischemia/reperfusion (I/R) injury model in vivo. Sham group were not subjected to occlusion of artery. Tet group were injected tetrandrine to abdominal cavity 20min before ischemia starting. The rat in Sim group was administrated simvastatin 2mgkg/L intragastricly every day, administrating drugs lasted 14 days. The other procedures were same to the I/R group. Samples were collected after 24h reperfusion. The expression level of TNF-α、IL-1β、IL-6 protein in serum and myocardial tissue was detected by ELISA. LDH and CK were detected too. The neutrophil infiltration degree in myocardium was determined by using measuring the activity of myeloperoxidase (MPO) method. Cardiac function which includes FS%, EF and E/A was measured by using ultrasound. EB/TTC (Azovan Blue/2,3,5-Tripheny-2H-Tetrazoliam Chloride) dyeing method was used to measure the infraction size.
     Result:
     1. The effect of Tet on the release of myocardial enzyme during ischema/reperfusion: the LDH and CK were significantly higher in I/R, Tet and Sim groups compared with Sham group (p<0.01), but it were much lower in Tet and Sim groups compared with I/R group. 2. The effect of Tet on the cardiac function and infraction size: the cardiac function of systolic and dilator in experimental group was decreased significantly compared with normal heart’s function. In Tet and Sim group, which was experienced pharmacological preconditioning their cardiac function were significant higher than I./Rgroup(p<0.01),but no significant difference between Tet and Sim on EF and E/A. intense There were intense liner correlation between myocardium(CK,LDH) and tumor necrosis factor alpha(TNF-α) (r=0.922,0.975, p<0.01). 3.The effect of Tet on the neutrophil infiltration: the activity of MPO was significantly increased after reperfusion, its activity in experimental groups were much higher than Sham group(p<0.01), notwithstanding its activity in Tet nad Sim groups were significantly lower than I/R group(p<0.01). No significant difference was found between Tet and Sim group. There were intense liner correlation between MPO and TNF-α(r=0.936, p<0.01) 4. The effect of Tet on the release of proinflammatory factors(TNF-α、IL-1β、IL-6): The similar results were obtained after measuring the serum and tissue concentration of TNF-α、IL-1βand IL-6,that was in Tet and Sim group the expression of proinflammatory factors(TNF-α、IL-1β、IL-6) were significant lower compared with I/R group(p<0.01) and significant higher than shame group(P<0.01). The expression level of IL-1βand IL-6 has intense liner correlation with TNF-α(r=0.928, 0.948, p<0.01).
     PARTⅢThe molecule mechanism of tetrandrine attenuate myocardial ischemia/reperfusion injury
     Objective:
     Observing the mRNA change of proinflammatory factors(TNF-α,IL-1β,IL-6) and modulating protein I-κBα,NF-κB during ischemia/reperfusion to reveal the molecular mechanism of tetrandrine attenuating myocardial ischemia/reperfusion injury.
     Methods:
     80 male SD rats were randomly divided into 4 groups: Sham group, ischemia/reperfusion (I/R) group, Tet group and Sim group. The SD rats underwent 30 min of left anterior descending (LAD) coronary occlusion and 24 hours reperfusion to make ischemia/ reperfusion (I/R) injury model in vivo. Sham group were not subjected to occlusion of artery. Tet group were injected tetrandrine to abdominal cavity 20 minute before ischemia starting. The rat in Sim group was administrated simvastatin 2mg/kg intragastricly every day, administrating drugs lasted 14 days. The other procedures were same to the I/R group. Samples were collected after 24h reperfusion. TNF-αmRNA, IL-1βmRNA, IL-6mRNA was detected by real time RT-PCR. Western-Blot and immunohistochemistry were used to detect the expression of phosphorylation I-κBα(P- I-κBα) in the kytoplasm of cardiocyte. Electrophoretic mobility shift assay (EMSA) was used to detect the expression NF-κB in the nuclear of cardiocyte.
     Recult:
     1. The result of real time of RT-PCR: after reperfusion the mRNA expression of proinflammatory factors increased significantly in experimental groups (p<0.01). The copies of mRNA in Tet and Sim group was decreased significantly compared with I/R group (p<0.01). 2. The result of Western-Blot and immunohistochemistry were proved that the expression of P- I-κBαincreased significantly in experimental groups (p<0.01) and the expression of P- I-κBαin Tet and Sim group was much lower than I/R group (p<0.01).3. There was the expression of NF-κB in I/R group and it was much higher compared with Sham, Tet, Sim group (p<0.01). Comparing the expression of NF-κB among Sham, Tet, Sim groups, there was no significant difference found (p>0.05). 3. The expression of P- I-κBαin cytoplasm had intense liner correlation with NF-κB(r=0.751, p<0.01).
     Conclusion:
     1.Neonate rat cardiocytes were separated and cultured in vitro, through the procduce of anoxia/reoxygenation establishing myocardial cell ischemia/reperfusion injury model.
     2. Ischemia/reperfusion can cause to cardiocyte damage.
     3. Inflammation raction of cardiocyte and cascade of cytokine induced by proinflammatory factors were emerge after ischemia/reperfusion.
     4. Proinflammatory factors participate ischemia/reperfusion injury.
     5. Tetrandrine can decrease the release of myocardial enzyme induced by ischemia/ reperfusion injuryr, diminish the infiliation of neutrophil; improve cardiac founction.
     6. Tetrandrine could rduce the production of proinflammatory factors.
     7. Tetrandrine can rduce the mRNA production of proinflammatory factors.
     8. Tetrandrine inhibite the phosphorylation of I-κBαin cytoplasm at local myocardium.
     9. Tetrandrine inhibite the activation of NF-κB, and inhibite its translocation into nuclear.
     10. The mechanism of tetrandrine inhibiting inflammation reaction, inturpting the cascade of cytokine, improving cardiac founction part releated to the founction of inhibiting the priduction of proinflammatory factors and blocking the key point of initiaiting agents inturping the vicious circule part releated to its multitarget founction such as: reducing the infilation of leukocytes, inhibiting the phosphorylation, blocking calcium channel.
引文
1.赵素萍,毛嘉文,胡建平.我国部分城市和农村人口死亡率及死亡原因分析.中国健康统计,1999;16:23-25
    2. Pedoe TH, Kuulasmaa K, et al. Contribution of survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO-MONICA project populations. Lancet, 1999; 353:1547-1557.
    3. Thoravaldsen P, Kuulasmaa K, Rajakangas A M, et al. Stroke trends in the WHO-MONICA project. Stroke, 1997; 28(3):500-506.
    4. Raggi P.Coronary-calcium screening to improve risk stratification in primary prevention. J La State Med Soc. 2002; 154(6):314-318.
    5. Sekikawa A, Horiuchi BY, Edmundowicz D, et al. A "natural experiment" in cardiovascular epidemiology in the early 21st century. Heart.2003; 89(3):255-257.
    6. Maxwell SR, Lip GY. Reperfusion injury: a review of the pathophysiology, linical manifestationsand therapeutic options.Int J Cardiol. 1997; 31; 58(2):95-117.
    7.王保和.心肌缺血再灌注损伤机制研究及中药治疗进展. 2004;23(2):103-106
    1.章静波.组织和细胞培养技术.人民卫生出版社,2002,第1版,1-8.
    2. Rui T, Kvietys PR. NFkappaB and AP-1 differentially contribute to the induction of Mn-SOD and eNOS during the development of oxidant tolerance. FASEB J. 2005; 19(13):1908-1910.
    3. Gu X, Feng Y, Shi C, et al. Antiapoptotic mechanism of insulin in reoxygenation- induced injury in cultured cardiomyocytes of neonatal rats. J Huazhong Univ Sci Technolog Med Sci. 2005; 25(6):632-635.
    4. Yue TL, Wang C, GU JL, et al. Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res. 2000 31; 86(6): 692-699.
    5. Simpson P, Savion S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ Res. 1982; 50(1):101-116.
    6. Xu FF, Liu XH, Cai LR. Role of hypoxia-inducible factor-1alpha in the prevention of cardiomyocyte injury induced by hypoxic preconditioning Sheng Li Xue Bao. 2004 25; 56(5):609-614.
    7. Harary L, Farley B. In vitro studies of single isolated beating heart cells. Science, 1960, 131:1674-1675.
    8. Van Der Laarse A, Hollaar L, Van Der Valk LJ. Release of alpha hydroxybutyrate fromneonatal rat heart cell cultures exposedto anoxia and reoxygenation: comparison with impairment of structure and function of damaged cardiac cells. Cardiovasc Res. 1979; 13(6):345-353.
    9. Thandroyen FT, Bellotto D, Katayama A, et al. Subcellular electrolyte alterations during progressive hypoxia and following reoxygenation in isolated neonatal rat ventricular myocytes. Circ Res. 1992; 71(1):106-119.
    10. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991; 83(6):1849-65.
    11. Miki N, Hamamori Y, Hirata K, Suematsu M, et al. Transforming growth factor-beta 1 potentiated alpha 1-adrenergic and stretch-induced c-fos mRNA expression in rat myocardial cells.Circ Res. 1994;75(1):8-14.
    12. LumH,Barr DA,Shafer JR. Rexygenation of endothelial cells increases permeability by oxidant-dependent mechanisms. Circ ReS,1992;70(5): 991-998
    1. Wolff AA, Rotmensch HH, Stanley WC, et al. Metabolic approaches to the treatment of ischemic heart disease: the clinicians' perspective. Heart Fail Rev. 2002 Apr; 7(2): 187-203.
    2. Ambrosio G, Tritto I. Reperfusion injury: experimental evidence and clinical implications. Am Herrt J, 1999, 138(2Pt 2) S69-75.
    3. Sandhu R, Diaz RJ, Mao GD, Wilson GJ. Ischemic preconditioning: differences in protection and susceptibility to blockade with singlecycle versus multicycle transient ischemia. Circulation 1997;96:984-995
    4. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev2003;83:1113-1165
    5. Frangogiannis NG,Smith CW,Entman M. The Inflammatory response in myocardial infarction. Cardiovasc Res,2002:53(1):31一47
    6. Kushner I. Regulation of the acute phase response by cytokines. Perspect Biol Med 1993:36:611-622
    7. Wigmore SJ, Fearon KCH, Maingay JP etal. Interleukine-8 can mediate acute-phase protein production by isolated human hepatocytes. Am J Physiol 1997:273:E720-726?
    8. Maroko PR, Carpenter CB, Chiariello M et al. Reduction by cobravenm factor of myocardial necrosis after coronary artery occlusion. J Clin Invest 1978; 3:661-670.
    9. Shappell SB, Taylor AA, Hughes H et al. Comparison of antioxidant and nonantioxidant lipoxygenase inhibitors on neutrophil function: Implications for pathogenesis of myocardial reperfusion injury. J Pharmacol Exp Ther 1990; 2:531-538.
    10. Romson JL, Hook BG, Kunkel SL et al. Reduction of ischemic myocardial injury byneutrophil depletion in the dog. Circulation 1985; 5:1016-1023.
    11. Engler RL, Dahlgren MD, Morris DD et al. Role of leukocytes in response to acute myocardial ischemic and reflow in dogs. Am J Physiol 1986; H314-323.
    12. Sergej Belosjorow, Ines Bolle, Alexej Duschin et al. TNF-αantibodies are effective as ischemic preconditioning in reducing infarct size in rabbits. Am J Physiol 2003; 234:H927-930.
    13.关怀敏,刘瑞云,黄振文等.粉防已碱对实验性心肌再灌注损伤影响的研究.临床心血管杂志,1998,3(4):233
    14.张磊,马虹,黄守坚,等。补体耗竭对心肌缺血再灌注的保护作用及其机制[J].中华心血管病杂志,2001,29(6):365-368
    15. Mitsos SE, Askew TE, Fantone JC, et al. Protective effects of N-2-mercaptopropionyl glycine against myocardial reperfusion injury after neutrophil depletion in the dog: evidence for the role of intracellular-derived free radicals. Circulation 1986; 73:1077-1086.
    16. Duilio C, Ambrosio G, Kuppusamy P, et al. Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia. Am J Physiol (Heart Circ Physiol) 2001; 280:H2649-2657.
    17. Jahob VJ. Involvement of Neutrophils in the Pathogenesis of Lethal Myocardial Reperfusion Injury. Cardio Re 2004; 61:481-497.
    18. Frangogiannis NG, Lindsey ML, Michael LH, et al. Resident cardiac mast cells degranulate and release preformed TNF-α, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 1998; 98:699-710.
    19. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infraction. Cardiovasc Res 2002:53:31-47.
    20. Haigney MC, Miyata H, Lakatta EG, Stern MD, et al. Dependence of hypoxic cellular calium loading on Na+-Ca2+ exchange. Circ Res, 1992; 71(3):547-557.
    21. Sitegmund B, Ladilov YV, Piper HM. Imoportance for the recovery of calcium control in reoxygenated cardiomyocytes. Am J Physiol, 1994; 267(2Pt2):H506-513.
    22. Ralenkotter L, Dales C, Delcamp TJ. et al. Cytosolic [Ca2+], [Na+], and PH in guineapig ventricular myocytes exposed to anoxia and reoxygenation. Am J Physiol, 1997; 272(6Pt2) H2679-2685.
    23. Tani M, Neely JR. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts, Possible involvement of H+- Na+ and Na+- Ca2+ exchange. Circ Rec, 1989; 65(4):1045-1056.
    24. Saida K, Umeda M, Itakura A. Improvement of ischemic myocardial dysfounction by nisoldipine. Cardiovasc Drugs Ther, 1994; 8(2):365-370.
    1. Ivery CL, Willams FM, Collind PD, et al. Neutrophil chemoattractants generated in two phases during reperfusion in rabbit. J Clin Invest, 1995, 95(6):2720-2728
    2. Meldrum DR, Partrick DA, Cleveland JC Jr, et al. On-pump coronary artery bypass surgery activates human myocardial NF-κB and increases TNF-αin the heart. J Surg Res 2003; 112(2):175–179
    3. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340(6):448–454
    4. Nose, P. S. Cytokines and reperfusion injury. J. Card. Surg. 1993; 8(2 Suppl):305-308.
    5.关怀敏,刘瑞云,黄振文等.粉防已碱对实验性心肌再灌注损伤影响的研究.临床心血管杂志[J],1998,3(4):233-236
    6. TS Blackwell, TR Blackwell, EP Holden, et al. In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation [J]. Immunol. 1996; 157(4): 1630–1637
    7.汪谦现代医学实验方法北京人民卫生出版社第一版1997:106-108
    8. Richard J.Gumina, Jo EL Schultz, Zhenhai Yao, et al. Antibody to platelet/endothelial Cell Adhension Molecule-1 Reduces Myocardial Infarct Size in a Rat Model of Ischemia-Reperfusion Injury. Circulation, 1996; 94(12):3327-3333.
    9. Edward A. Gill, Yinong, Lawrence D. Horwitz. An Oligosaccharide Sialy-Lewis Analogue Does Not Reduce Myocardial Infract Size After Ischemia and Reperfusion in Dogs. Circulation, 1996; 94(3):542-546.
    10.罗武生,郭兆贵。用髓过氧化物酶法定量测定心肌组织中中性白细胞。中国药理学通报[J],1990;264-266。
    11. I Ferrari R. Ceconi C, Curello S, et al. Role if oxygen free redicals in ischemic and reperfusion myocardium. Am J Clin Nutr, 1991; 53(1 Supply); 215S-222S.
    12. Lum H, Barr DA, Shafer JR. Reoxygenation if endothelial cells increase permeability by oxidant-dependent mechanisms. Circ Res, 1992; 70(5); 991-998.
    13. Hillis LD, Braunwald E. Myocardial ischemic (second of three parts). New Rngl Med. 1997; 296:1014-1019.
    14. Sarudlin R, Diaz RJ, Wilson GL. Comparison of ischemic preconditioning in blood perfusion and buffer perfused isolated heart models. Cardiovasc Res, 1993; 27(4):602-607.
    15. Vivaldi MT, Kloner RA, Schoen FJ. Triphneyltetrazolium staining of irreversible ischemic injury following coronary artery occulusion in rats. Am J Pathol, 1985; 121(3):522-530.
    16. Nagashima M, Shin'oka T, Nollert G, et al. Effects of a monoclonal antibody to P-selectin on recovery of neonatal lamb hearts after cold cardioplegic ischemia. Circulation. 1998 10;98(19 Suppl):II391-397
    17. James E. Jordan, Zhi-Qing Zhao, Jakob Vinten-Johnsen. The role of neutrophils in myocardial ischemia-reperfusion injury. Cardio Res, 1999; 43(4):860-878.
    18. HM Piper, D Garcia-Dorado, and M Ovize. A fresh look at reperfusion injury. Cardiovasc Res, 1998; 38(2): 291-300.
    19. NG Frangogiannis, CW Smith, and ML Entman .The inflammatory response in myocardial infarction. Cardiovasc Res, 2002; 53(1): 31-47.
    20. NancyH.Ruddle and Byron H. Waksman Cytotoxic Effect of Lymphocyte-Antigen Interaction in Delayed Hypersensitivity. Science, 1967; 157: 1060 - 1062.
    21. S Kapadia, J Lee, G Torre-Amione, HH Birdsall, TS Ma, et al.Tumor necrosis factor-alpha gene and protein expression in adult feline myocardium after endotoxin administration. J. Clin. Invest. 1995; 96(2): 1042-1052.
    22. GTorre-Amione, S Kapadia, C Benedict, H Oral, JB Young, et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J. Am. Coll. Cardiol. 1996; 27(5): 1201– 1206.
    23. Guillermo Torre-Amione, Samir Kapadia, Joseph Lee, et al. Expression and Functional Significance of Tumor Necrosis Factor Receptors in Human Myocardium. Circulation. 1995; 92(6): 1487 - 1493.
    24. Guillermo Torre-Amione, Samir Kapadia, Joseph Lee, et al. Tumor Necrosis Factor-αand Tumor Necrosis Factor Receptors in the Failing Human Heart. Circulation.1996; 93(4): 704– 711.
    25. A Herskowitz, S Choi, AA Ansari, and S Wesselingh .Cytokine mRNA expression in postischemic/reperfused myocardium. Am. J. Pathol. 1995; 146: 419.
    26. Daniel R. Meldrum. Tumor necrosis factor in the heart. J. Am. Coll. Cardiol. 2000; 35: 537– 544.
    27. A Herskowitz, S Choi, AA Ansari, and S Wesselingh .Cytokine mRNA expression in postischemic/reperfused myocardium. Am. J. Pathol. 1995; 146(2): 419-428.
    28. Stylianou E, Saklatvala J. Interleukin-1. Int J Biochem Cell Biol.1998; 30(10):1075-1079.
    29. WB Smith, JR Gamble, I Clark-Lewis, and et al. Interleukin-8 induce neutrophil transendothelial migration. Immunology, 1991; 72(1): 65-72.
    30.傅广,赵小平。心力衰竭患者TNF-α和IL-6的变化及氯沙坦的影响[J].中国循环杂志,2001;16(4):243-245。
    1. Douglas L. Mann. MD, James B Young. Basic mechanisms in congestive heart failure: recognizing the role of proinflammatory cytokines. Chest. 1994; 105(3):897-904.
    2.印莉萍主编《分子生物学实验技术》2001年01月第1版
    3.刘辉主编《临床免疫学和免疫检验实验指导》2003年06月第2版
    4.赵亚华《生物化学与分子生物学实验技术教程》2005年09月第1版高等教育出版社
    5.汪永义,薛松,刘沙等.阿斯匹林抑制NF-κB激活减轻心肌缺血再灌注损伤.医学研究生学报,2003,16(2):101-104
    6. Barnes PJ.Adcock IM. NF-κB: a pivotal role in asthma and a new target for therapy [J].Trends-Pharmacol-Sci, 1997; 18(2): 46-50.
    7. Thieblemont N, Haeffner-Cavaillon N, Haeffner A, et al. J Immunol. Triggering of complement receptors CR1 (CD35) and CR3 (CD11b/CD18) induces nuclear translocation of NF-kappa B (p50/p65) in human monocytes and enhances viral replication in HIV-infected monocytic cells. 1995; 155(10):4861-4867.
    8. Elizabeth N, Morgan MD, Edward M, et al. An essential role of NF-kB in the cardioadaptive response to ischemia [J].Ann Thorac Surg, 1999; 68(2): B377-382.
    9. Osborn L, Kunkel S, NabelG J.Tumor necrosis factor and interleukin 1stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kB [J]. Proc Natl Acad Sci USA.1989; 86(7):B2336-2240.
    10. Chen F, Castranova V, Shi X, Demers LM. New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem. 1999; 45(1):7-17.
    11. Neurath MF, Becker C, Barbulescu K.Role of NF-kappaB in immune and inflammatory responses in the gut. Gut. 1998; 43(6):856-60.
    12.冉掌力心肌缺血预处理延迟保护作用的实验研究[J].心肺血管病杂志,1999;18(1):59-62.
    13. Hall G, Hasday JD, Rogers TB. Regulating the regulator: NF-kappaB signaling in heart. J Mol Cell Cardiol. 2006; 41(4):580-591.
    14. Peter J, Barnes D.M., et al. Nuclear factor-кB-a pivotal transcription factor in chronic inflammatory diseases. [J].N Engl J Med. 1997, 336(15)1066-1071.
    15. Baeuerle PA, Baltimore D. NF-kappa B: ten years after. Cell. 1996; 87(1):13-20
    16. Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol. 2006; 290(4):L622-L645.
    17. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002; 53(1):31-47.
    18. Feldman AM, Combes A, Wagner D, et al. The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol. 2000; 35(3):537-544.
    19. Vandenabeele P, Declercq W, Beyaert R, et al. Two tumour necrosis factor receptors:structure and function. Trends Cell Biol. 1995; 5(10):392-399.
    20. Saraste A, Pulkki K, Kallajoki M, et al.Apoptosis in human acute myocardial infarction.Circulation. 1997; 95(2):320-323.
    21. Daniel R. Meldrum. Tumor necrosis factor in the heart. Am J Physiol Regul Integr Comp Physiol 1998 274: R577-R595.
    22. Old LJ.Science. Tumor necrosis factor 1985; 230(4726):630-632.
    23. Le J, Vilcek J. Tumor necrosis factor and interleukin 1: cytokines with multiple overlapping. Lab Invest. 1987; 56(3):234-248.
    24. Sehgal PB. Regulation of IL6 gene expression.Res Immunol. 1992; 143(7):724-734.
    25. Bates PW, Miyamoto S. Expanded nuclear roles for IkappaBs. Sci STKE. 2004(254): pe48.
    26. Huang TT, Kudo N, Yoshida M, Miyamoto S. A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes.Proc Natl Acad Sci U S A. 2000; 97(3): 1014- 1019.
    27. Arenzana-Seisdedos F, Turpin P, Rodriguez M, et al. Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm.J Cell Sci. 1997;110 ( Pt 3):369-78.
    28. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights.Annu Rev Immunol. 1996; 14:649-683.
    29. Collins T, Read MA, Neish AS, et al.Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers.FASEB J. 1995; 9(10):899-909.
    30. Onai Y, Suzuki J, Kakuta T, et al. Inhibition of IkappaB phosphorylation in cardiomyocytes attenuates myocardial ischemia/reperfusion injury. Cardiovasc Res. 2004 1; 63(1):51-59.
    31. Baeuerle, P. A., and D. Baltimore. NF-kB: ten years after. Cell 1996;87(1): 13–20
    32.吕国菊,白智峰,李大强等.抑制转录因子核因子保护大鼠心肌缺血的研究.临床心血管病杂志,2002,8(18):389-392.
    33.何凤慈,唐汝愚,姚丹帆.粉防已碱对急性炎症血管通透性和嗜中性白细胞功能的影响.中国药理学报,1989,10(3):249-252.
    34. Christoph Thiemermann. Inhibition of the activation of nuclear factor kappa B to reduce myocardial reperfusion injury and infarct size,[J]. Cardiovascular research, 2004; 63(1):8-10.
    1.郭治彬.抗心律失常生物碱的研究进展[J].中国药理学通报,1995,11(4):276-280.
    2.蒋桔泉,曾秋棠,曹林生,等.粉防己碱抗氯化艳诱发家兔在体心肌早期后除极化及心律失常的作用。心肺血管病杂志,2002,21(4):239-241.
    3.李大强,冯义伯,张家明,等。粉防己碱防止家兔快速心房起博间博连接蛋白40降解[J]第四军医大学学报,2004,25(2):150-152.
    4.关怀敏,刘瑞云,黄振文等.粉防已碱对实验性心肌再灌注损伤影响的研究.临床心血管病杂志,1998,14(5):296-299.
    5.李庆平,杨解人,饶曼人.预先给予粉防已碱对老鼠工作心脏缺血-再灌注损伤的保护作用.中国药理学与毒理学杂志,1994,8(2):114-118.
    6.邓柯玉,王大元,邱萍.粉防已碱对离体大鼠心脏钙反常的保护作用.药学学报,1993,28(12):886.
    7.徐延敏,黄体钢,李广平,等。维拉帕米对心肌缺血再灌注乳头肌电生理的保护作用[J]。中国心血管杂志,1998;4(3):229-232。
    8.夏国瑾,姚伟星,刘燕等.粉防已碱对离体大鼠心脏缺血-再灌注损伤心肌的保护作用.同济医科大学学报,1994,23(6):446-449.
    9.漆松涛,朱诚,卢亦成等.粉防已碱对脑缺血的保护作用.中国药理学通报,1992,8(1):63-66.
    10.李新芳,唐汝愚.白细胞在炎症渗出和组织损伤中作用与药物防治.见周金黄.抗炎免疫药理学进展.第一版.中国科技出版社,65-68.
    11. Seow WK, Ying LS, Thong YH. Inhibitory effects of tetrandrine on human neutrophil and monocyte adherence. [J]. Immunol Lett, 1986; 13(1-2):83-88.
    12. Seow WK, Ferrante A, Li SY, et al. Antiphagocytic and antioxidant properties of plant alkaloid tetrandrine.Int Arch Allergy Appl Immunol. 1988; 85(4):404-409.
    13. Pang L, Hoult JR. Cytotoxicity to macrophages of tetrandrine, an antisilicosis alkaloid, accompanied by an overproduction of prostaglandins.Biochem Pharmacol. 1997; 53(6):773-782.
    14.何凤慈,唐汝愚,姚丹帆.粉防已碱对急性炎症血管通透性和嗜中性白细胞功能的影响.中国药理学报,1989,10(3):249-252.
    15.房祥,郭兆贵.血小板活化因子和组织缺血-再灌注损伤.基础医学与临床,1993,13(1):21-24.
    16.熊一力,张露,姚伟星.粉防已碱对抑制血管平滑肌细胞增殖及癌基因表达的影响.中国组织化学与细胞化学杂志,1998,7(2):198-202.
    17. Dubey RK,Overbeck HW.Culture of rat mensenteric aeteriolar amooth muscle cells:effects of platel-derived growth factor,angiotensin,and nitric oxide on growth.Cell Tissue Res,1994,275(1):133-141.
    18.李为民,陈文彬,吴兆锋等.汉防已甲素对缺血性肺动脉高压大鼠肺组织钙调素活性的影响.中华结核和呼吸杂志,1996,19(2):75-77.
    19.张磊,马虹,黄守坚,等。补体耗竭对心肌缺血再灌注的保护作用及机制[J].中华心血管病杂志,2001,29(6):365-368。
    20. Seow WK, Ferrante A, Summors A, et al.Comparative effects of tetrandrine and berbamine on production of the inflammatory cytokines interleukin-1 and tumornecrosis factor. Life Sci. 1992; 50(8):PL53-58.
    21. Wong CW, Seow WK, O'Callaghan JW, Thong YH. Comparative effects of tetrandrine and berbamine on subcutaneous air pouch inflammation induced by interleukin-1, tumour necrosis factor and platelet-activating factor. Agents Actions. 1992; 36(1-2):112-118.
    22. Teh BS, Seow WK, Chalmers AH, Playford S, et al. Inhibition of histamine release from rat mast cells by the plant alkaloid tetrandrine. Int Arch Allergy Appl Immunol. 1988; 86(2):220-224.
    23. Kim HS, Zhang YH, Oh KW,et al. Vasodilating and hypotensive effects of fangchinoline and tetrandrine on the rat aorta and the stroke-prone spontaneously hypertensive rat.J Ethnopharmacol. 1997; 58(2):117-123.
    24.开丽,薛春生,周歧新.粉防己碱、钩藤碱和维拉帕米对兔主动脉平滑肌细胞内外钙转运的作用中国药理学与毒理学杂志1995,9(3):180一183.
    25. Huang YT, Cheng YR, Lin HC, et al. Haemodynamic effects of chronic tetrandrine treatment in portal hypertensive rats. J Gastroenterol Hepatol. 1997; 12(8):585-589.
    26. Intengan HD, Thibault G, Li JS, et al. Resistance artery mechanics, structure, and extracellular components in spontaneously hypertensive rats: effects of angiotensin receptor antagonism and converting enzyme inhibition. Circulation. 1999; 100(22):2267-2275.
    27. Nicholas A,Jeannie H,Daniel HL.Regulation of human HSP70 promoter by p53. Science, 1993, 259(5091):84-91.
    28.熊一力,张露,姚伟星.粉防已碱对自发性高血压大鼠血管平滑肌细胞增殖及对PDGF-B,vFGF和相关癌基因表达的影响.中国药理学与毒理学杂志,1998,12(2):109
    29. Dzau VJ,Gibbons GH,Kobilka BK,et al.Genetic models of human vascular dzsease.Circulation,1995,91(2):521-531.
    30.李为民,陈文彬,吴兆锋等.汉防已甲素对缺血性肺动脉高压大鼠肺组织钙调素活性的影响.华西医科大学学报,1997,19(2):73-76.
    31.李为民,陈文彬,张尚福等,汉防已甲素对缺氧性肺动脉高压大鼠肺血管形态学改变的影响.华西医科大学学报,1997,28(4):388-391.
    32.康健,于润江,王怀良.汉防已甲素降低阻塞性肺疾病肺动脉高压的临床观察.中华结核和呼吸杂志,1993,16(2):93-97.
    33.莫晓能,陈文彬,程德云等.汉防已甲素对慢性缺氧大鼠肺胶原的影响.中华结核和呼吸杂志,1998,21(10):595-597.
    34. Wang HL, Zhang XH, Jin X, Xing J, et al. Tetrandrine inhibited chronic "inflammatory" pulmonary hypertension in rats.Zhongguo Yao Li Xue Bao. 1997; 18(5):401-404.
    35.张道荣,王怀良,刘小兵等,粉防已碱对野百合碱致大鼠肺动脉构形重建的逆转作用.中国医科大学学报,1997,26(2):123-125.
    36.王文英,李祥华。粉防己碱的心血管药理研究进展[J]时珍国医国药2005;16(10):1039-1041.
    37. Xu Y , Rao MR . Effects of tetrandrine on left ventricle hypertrophy in deoxycorticosterone acetate-salt hypertensive rats.Eur J Pharmacol,1995,278(1):1-7.
    38.徐玉,饶曼人。粉防已碱对DOCA盐性高血压心肌肥厚大鼠心脏血流动力学的影响。药学学报,1995,30(2):86-91.
    39.金洪,田英麟,姚汉德等.汉防已甲素阻断平阳霉素所致肺间质纤维化的实验研究.中华结核和呼吸杂志,1991,14(6):359-363.
    40.石晟怡,曾国钱,赵云涛等.肿瘤坏死因子刺激牛脑微血管内皮细胞释放内皮素-1及粉防已碱的拮抗作用.中国药理学通报,1997,13(5):442-443.
    41.梁晓光,张文娟,曾定尹等.汉防已甲素对高血压病患者血内Lpo、hSOD-1、6-keto-PGFla及TXB2水平影响的探讨.中国医科大学学报,1994,23(5):453-455.
    42.王裕勤,段世英,孙胜斌等.粉防己碱对电刺激去甲肾上腺素释放及代谢的影响.临床心血管病杂志,2006;22(2):100-102.
    43.张敏,张乐之,吕金胜.粉防已碱对兔血小板聚集和血小板活化因子生成的影响.中国药理学报,1995,16(3):209-212.
    44. Kwan CY,Ma FM,Hui SCG.Inhibition of endothelium-dependent vascular relaxation by tetrandrine.Life Sci,1999,64(25):2391-2400.
    45.徐毅,饶曼人。粉防己碱对DOCA盐性高血压心肌肥厚大鼠心脏血液动力学的影响。药学学报1995:30(2):86-92.
    1. Entman ML, Smith CW. Postreperfusion inflammation: a model for reaction to injury in cardiovascular disease. Cardiovasc Res. 1994; 28(9):1301-11.
    2. Frangogiannis NG, Youker KA, Rossen RD,et al.Cytokines and the microcirculation in ischemia and reperfusion.J Mol Cell Cardiol. 1998; 30(12):2567-2576.
    3. Frangogiannis NG, Entman ML. Role of inflammation following myocardial ischemic and reperfusion. In: Becker RC, editor, Text book of coronary thrombosis and thrombolysis, Dordrecht Kluwer Academic, 1997, pp.569-584.
    4. Mehta JL, Li DY.Inflammation in ischemic heart disease: response to tissue injury or a pathogenetic villain? Cardiovasc Res. 1999; 43(2):291-299
    5. Kim CB, Braunwald E.Potential benefits of late reperfusion of infarcted myocardium. The open arteryhypothesis. Circulation. 1993; 88(5 Pt 1):2426-2436.
    6. Boyle MP, Weisman HF. Limitation of infarct expansion and ventricular remodeling by late reperfusion. Study of time course and mechanism in a rat model. Circulation. 1993;88(6):2872-83.
    7. Entman ML, Smith CW. Postreperfusion inflammation: a model for reaction to injury in cardiovascular disease.Cardiovasc Res. 1994; 28(9):1301-1311.
    8. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction.Cardiovasc Res. 2002 Jan; 53(1):31-47.
    9. Mann DL, Young JB. Basic mechanisms in congestive heart failure. Recognizing the role of proinflammatory cytokines.Chest. 1994; 105(3):897-904.
    10. Abbas AK, Lichtman JH. Pober JS. Cytokines. In: Abbas AK. Lichtman AH. Pober JS, eds. Cellular and Molecular Immunology. Philadelphia: WB Saunders, 1991; 225-243.
    11. Giroir BP, Johnson JH, Brown T, et al. The tissue distribution of tumor necrosis factor biosynthesis during endotoxemia.J Clin Invest. 1992; 90(3):693-698.
    12. Foxwell BM, Barrett K, Feldmann M. Cytokine receptors: structure and signal transduction.Clin Exp Immunol. 1992 Nov; 90(2):161-169.
    13. Taga T, KIshimoto T. Cytokine receptors and signal transduction. FASEB J. 1993; 7:3387-3396.
    14. Olsson I, Lantz M, Nilsson E, et al. Isolation and characterization of a tumor necrosisfactor binding protein from urine.Eur J Haematol. 1989; 42(3):270-275.
    15. Engelmann H, Novick D, Wallach D. Two tumor necrosis factor-binding proteins purified from human urine. Evidence for immunological cross-reactivity with cell surface tumor necrosis factor receptors. J Biol Chem. 1990; 265(3):1531-1536.
    16. Brakebusch C, Nophar Y, Kemper O, et al.Cytoplasmic truncation of the p55 tumour necrosis factor (TNF) receptor abolishes signalling, but not induced shedding of the receptor.EMBO J. 1992;11(3):943-950.
    17. Cain BS, Meldrum DR, Dinarello CA, et al. Adenosine reduces cardiac TNF-alpha production and human myocardial injury following ischemia-reperfusion.J Surg Res. 1998; 76(2):117-123.
    18. Oral H, Dorn GW 2nd, Mann DL. Sphingosine mediates the immediate negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian cardiac myocyte.J Biol Chem. 1997; 272(8):4836-4842.
    19. Fullerton DA, McIntyre RC Jr, et al. NO prevents neutrophil-mediated pulmonary vasom.otor dysfunction in acute lung injury.Friese RS, J Surg Res. 1996; 63(1):23-28.
    20. Furutani Y, Notake M, Yamayoshi M, et al. Cloning and characterization of the cDNAs for human and rabbit interleukin-1 precursor.Nucleic Acids Res. 1985 26; 13(16):5869-5882.
    21. Telford JL, Macchia G, Massone A, et al. The murine interleukin 1 beta gene: structure and evolution. Nucleic Acids Res. 1986 22; 14(24):9955-9963.
    22. Yamasaki Y, Matsuura N, Shozuhara H,et al.Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats.Stroke. 1995; 26(4):676-80; discussion 681.
    23. Dinarello CA, Interleukin-1. In: Thompson A, ed, The cytokine Handbook.Boston: Academic Press, 1991; 47-82.
    24. Stylianou E, O'Neill LA, Rawlinson L,et al. Interleukin 1 induces NF-kappa B through its type I but not its type II receptor in lymphocytes. J Biol Chem. 1992 5; 267(22):15836-41.
    25. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996; 87(6): 2095-147.
    26. Colotta F, Re F, Muzio M, Bertini R, et al. Interleukin-1 type II receptor: a decoy targetfor IL-1 that is regulated by IL-4. Science. 1993; 261(5120):472-475.
    27. Finkel MS, Hoffman RA, Shen L, et al. Interleukin-6 (IL-6) as a mediator of stunned myocardium.Am J Cardiol. 1993; 71(13):1231-2.
    28. Hirano Interleukin-6. In: Thompson A, Ed, The cytokine Handbook.Boston: Academic Press, 1991; 169-190.
    29. Hansen PR. Role of neutrophils in myocardial ischemia and reperfusion. Circulation. 1995 Mar 15; 91(6):1872-1885.
    30.赵新闻.急性心肌梗死病人溶栓时IL-6浓度的动态变化及临床意义「J].齐鲁医学杂志,1999;14(4):255-257.
    31. Sakamoto T, Yasue H, Ogawa H, et al. Association of patency of the infarct-related coronary artery with plasma levels of plasminogen activator inhibitor activity in acute myocardial infarction.Am J Cardiol. 1992; 70(3):271-6.
    32. Kinugawa K, Takahashi T, Kohmoto O,et al.Nitric oxide-mediated effects of interleukin-6 on [Ca2+]i and cell contraction in cultured chick ventricular myocytes.Circ Res. 1994;75(2):285-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700