曙红B、CdTe@谷胱甘肽量子点与HSA的相互作用及检测没食子酸的酸度敏感探针研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人血清白蛋白(HSA)是人体内重要的运输蛋白质,能与许多内源及外源物质相结合,起到存储和转运的作用。研究HSA与小分子配体的相互作用过程及相互作用机理对临床、药理学和毒理学的研究具有重要意义。量子点因其独特的性质(尤其是光学性质)越来越受到科学工作者们的青睐,已在荧光探针、生物标记和细胞成像等方面表现出强大的应用前景。基于以上研究背景,在前人研究工作的基础上,本论文运用分子对接及各种光谱技术分别研究了染料曙红B、谷胱甘肽(GSH)修饰的CdTe量子点与HSA间的相互作用;合成了检测没食子酸的酸度敏感荧光探针-CdTe@巯基乙酸量子点,并建立了检测没食子酸的新方法。论文分为以下几个部分:
     第一章:介绍了人血清白蛋白(HSA)和量子点的结构、功能、性质(尤其是其光谱特性)等;总结了用于研究小分子与HSA相互作用的各种光谱法;简要介绍了量子点在痕量物质检测方面的应用。
     第二章:在模拟的生理条件下利用多种光谱技术和分子对接方法考察了曙红B与HSA的相互作用。用分子对接技术模拟了曙红B与HSA的结合位置和结合方式,计算了相互作用的Gibbs自由能;通过荧光猝灭数据确定了相互作用的结合常数、结合位点数及相关热力学参数,并对相互作用的机理进行了考察;用红外、紫外、同步荧光、圆二色性光谱证明了曙红B对HSA二级结构的影响;计算了曙红B与HSA的氨基酸残基之间的距离。
     第三章:在水相中合成了谷胱甘肽(GSH)修饰的CdTe量子点,并用荧光光谱(FL),紫外-可见吸收光谱(UV-vis)对合成的量子点进行了表征,结果表明合成的量子点粒径较为均一,表面缺陷较少。用荧光光谱法对该量子点与HSA之间的相互作用进行了研究,通过实验测定的结合常数、基本的热力学参数确定了量子点与HSA的键合模式及作用机理。同步荧光光谱表明量子点可引起HSA二级结构的变化。
     第四章:在水相中合成了尺寸分布较为均一的巯基乙酸(TGA)修饰的CdTe量子点,考察了体系pH值对该量子点荧光强度的影响。实验结果表明其荧光强度在pH4.0-6.5的范围内,随着体系pH值的升高而增强,据此原理建立了以自行合成的CdTe@TGA量子点为酸度敏感荧光探针检测药物没食子酸的新方法。在最佳条件下,该方法的线性范围为4.00-32.00μg/mL,检测限为0.44μg/mL,线性相关系数为0.9967。该方法已用于人工合成样品中没食子酸含量的检测,结果令人满意。
Human Serum Albumin (HSA) is the important carrier protein in human body, which can bind different categories of endogenous and exogenous small molecules, and play a role in storage and transit. Investigating the binding mechanism between small molecules and HSA is significative in diagnostics, pharmaceutical and toxicology. Because semiconductor nanocrystals (also known as quantum dots) have many unique properties (especially the optical properties), they are favored by more and more researchers. In fluorescence probe, biological biomarkers and cell image, quantum dots have shown great potential applications. Based on the abovementioned research background, we have used molecular docking approach and multi-spectroscopic technology to study the binding characteristics of HSA with Eosin B and homemade CdTe@GSH quantum dot. Furthermore, we used homemade CdTe@TGA quantum dots as pH-sensitive fluorescent probe for detection of Gallic acid.
     This thesis is divided into four chapters:
     Chapter1:The structures, functions and properties of QDs and HSA were introduced. Various spectroscopic methods were reviewed, which are often used to study the binding characteristics between small molecules and HSA. Meanwhile, the methods used to detect trace materials by QDs and the latest applications were introduced.
     Chapter2:Under simulated physiologic conditions, the interaction of Eosin B with HSA was investigated by the combination of fluorescence, UV, FT-IR, CD spectroscopic and molecular binding technologies. Through molecular docking method, the binding site and binding mode were discussed. Fluorescence quenching data revealed the binding constants and the number of binding sites. The thermodynamic parameters and binding mechanism were also discussed. The results of synchronous fluorescence, UV, FT-IR and CD spectra indicated that secondary structure of HSA was changed in the presence of Eosin B. In addition, the binding distance was estimated according to the Forster non-radiative resonance energy transfer theory.
     Chapter3:CdTe@GSH QDs were synthesized in aqueous solution. The obtained QDs were characterized by UV-visible absorption spectrum and fluorescence spectrum, which indicates that as-prepared QDs are nearly monodisperse and homogeneous. The interaction between the as-prepared QDs and HSA was studied by fluorescence technique. The results were discussed on the binding parameters, the quenching mechanism, the nature of forces involved in the interaction, and the effect of QDs on the conformation of HSA.
     Chapter4:CdTe@TGA QDs were synthesized in aqueous solution. The relationship between its fluorescence intensity and pH was investigated. The experimental results showed that in the pH range4.0-6.5, the QDs was pH-sensitive. And a new method was developed to detect Gallic acid by employing CdTe@TGA QDs as pH-sensitive fluorescence probe. Under the optimal conditions, the linear range of this method was4.00-32.00μg/mL. The detection limit was0.44μg/mL and the correlation coefficient was0.9967. The method was applied to detect Gallic acid in synthetic samples and the obtained results were satisfactory.
引文
[1]Taboada, P., Gutierrez-Pichel, M., Mosquera, V. Effects of the molecular structure of two amphiphilic antidepressant drugs on the formation of complexes with human serum albumin[J]. Biomacromolecules.2004,5(3):1116-1123.
    [2]Zhang, Y.P., Shi, S.Y., Chen, X., Zhang, W., Huang, K., Peng, M.J. Investigation on the interaction between ilaprazole and bovine serum albumin without or with different C-ring flavonoids:with the viewpoint of food/drug interference[J]. Journal of agricultural and food chemistry.2011,59(15):8499-8506.
    [3]Yue, Y., Chen, X., Qin, J., Yao, X. Spectroscopic investigation on the binding of antineoplastic drug oxaliplatin to human serum albumin and molecular modeling[J]. Colloids and Surfaces B: Biointerfaces.2009,69(1):51-57.
    [4]Ding, F., Huang, J., Lin, J., Li, Z., Liu, F., Jiang, Z., Sun, Y. A study of the binding of C.I. Mordant Red 3 with bovine serum albumin using fluorescence spectroscopy[J]. Dyes and Pigments.2009,82(1):65-70.
    [5]Wang, J., Zhang, Y.Y, Guo, Y, Zhang, L., Xu, R., Xing, Z.Q., Wang, S.X., Zhang, X.D. Interaction of bovine serum albumin with Acridine Orange (CI Basic Orange 14) and its sonodynamic damage under ultrasonic irradiation[J]. Dyes and Pigments.2009, 80(2):271-278.
    [6]Shaikh, S.M.T., Seetharamappa, J., Ashoka, S., Kandagal, P.B. A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods[J]. Dyes and Pigments.2007,73(2):211-216.
    [7]Li, J., Liu, X., Ren, C., Li, J., Sheng, F., Hu, Z. In vitro study on the interaction between thiophanate methyl and human serum albumin[J]. Journal of Photochemistry and Photobiology B:Biology.2009,94(3):158-163.
    [8]Yue, Y., Zhang, Y, Zhou, L., Qin, J., Chen, X. In vitro study on the binding of herbicide glyphosate to human serum albumin by optical spectroscopy and molecular modeling[J]. Journal of Photochemistry and Photobiology B:Biology.2008,90(1):26-32.
    [9]Xu, C., Zhang, A., Liu, W. Binding of phenthoate to bovine serum albumin and reduced inhibition on acetylcholinesterase[J]. Pesticide Biochemistry and Physiology.2007, 88(2):176-180.
    [10]Wang, Q., Zhang, Y., Sun, H., Chen, H., Chen, X. Study of interaction of butyl p-hydroxybenzoate with human serum albumin by molecular modeling and multi-spectroscopic method[J]. Journal of Luminescence.2011,131(2):206-211.
    [11]Wang, X., Xie, X., Ren, C., Yang, Y., Xu, X., Chen, X. Application of molecular modeling and spectroscopic approaches for investigating binding of vanillin to human serum albumin[J]. Food Chemistry.2011,127(2):705-710.
    [12]Gelamo, E.L., Tabak, M. Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.2000,56(11):2255-2271.
    [13]Lu, R.C., Cao, A.N., Lai, L.H. Xiao, J.X. Effect of anionic surfactant molecular structure on bovine serum albumin (BSA) fluorescence[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,278(1-3):67-73.
    [14]Tu, S., Jiang, X., Zhou, L., Yin, W., Wang, H., Duan, M., Liu, P., Jiang, X. Study of the interaction of gemini surfactant NAE12-4-12 with bovine serum albumin[J]. Journal of Luminescence.2012,132(2):381-385.
    [15]Zhou, X.M., Lu, W.J., Su, L., Shan, Z.J., Chen, X.G Binding of phthalate plasticizers to human serum albumin in vitro:A multi-spectroscopic approach and molecular modeling[J]. Journal of Agricultural and Food Chemistry.2012,60(4):1135-1145.
    [16]Xie, X., Wang, X., Xu, X., Sun, H., Chen, X. Investigation of the interaction between endocrine disruptor bisphenol A and human serum albumin[J]. Chemosphere.2010, 80(9):1075-1080.
    [17]Liu, Y., Yang, Z., Du, J., Yao, X., Lei, R., Zheng, X., Liu, J., Hu, H., Li, H. Interaction of curcumin with intravenous immunoglobulin:A fluorescence quenching and Fourier transformation infrared spectroscopy study[J]. Immunobiology.2008,213(8):651-661.
    [18]Chakraborty, S., Chaudhuri, S., Pahari, B., Taylor, J., Sengupta, P.K., Sengupta, B. A critical study on the interactions of hesperitin with human hemoglobin:Fluorescence spectroscopic and molecular modeling approach[J]. Journal of Luminescence.2012,132(6):1522-1528.
    [19]谢安建,姚成立,沈玉华.Mg2+与胆汁蛋白质相互作用研究[J].无机化学学报.2005,21(3):413-416.
    [20]顾晓天,吴晓红,周家宏,魏少华,刘颖,冯玉英.竹红菌甲素与细胞色素C相互作用的同步荧光光谱研究[J].南京师大学报:自然科学版.2005,28(4):70-72.
    [21]Cui, F., Zhang, Q., Yao, X., Luo, H., Yang, Y., Qin, L., Qu, G., Lu, Y. The investigation of the interaction between 5-Iodouracil and human serum albumin by spectroscopic and modeling methods and determination of protein by synchronous fluorescence technique[J]. Pesticide Biochemistry and Physiology.2008,90(2):126-134.
    [22]Jayabharathi, J., Thanikachalam, V., Venkatesh Perumal, M. A study on the binding interaction between the imidazole derivative and bovine serum albumin by fluorescence spectroscopy[J]. Journal of Luminescence.2012,132(3):707-712.
    [23]Wang, Y.P., Wei, Y.I., Dong, C. Study on the interaction of 3,3-bis(4-hydroxy-l-naphthyl)-phthalide with bovine serum albumin by fluorescence spectroscopy [J]. Journal of Photochemistry and Photobiology A:Chemistry.2006, 177(1):6-11.
    [24]Sudlow, G., Birkett, D., Wade, D. Further characterization of specific drug binding sites on human serum albumin[J]. Molecular pharmacology.1976,12(6):1052-1061.
    [25]Abou-Zied, O.K., Al-Shihi, O.I.K. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes[J]. Journal of the American Chemical Society.2008,130(32):10793-10801.
    [26]Chen, Y., Chen, Z., He, Y., Lin, H., Sheng, P., Liu, C., Luo, S., Cai, Q. L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene[J]. Nanotechnology.2010,21(12):125502-125507.
    [27]Li, M., Wang, Q., Shi, X., Hornak, L.A., Wu, N. Detection of Mercury (Ⅱ) by Quantum dot-DNA-Gold Nanoparticle Ensemble Based Nanosensor Via Nanometal Surface Energy Transfer[J]. Analytical Chemistry.2011,83(18):7061-7065.
    [28]Yan, H., Wang, H.F. Turn-on Room Temperature Phosphorescence Assay of Heparin with Tunable Sensitivity and Detection Window Based on Target-induced Self-assembly of Polyethyleneimine Capped Mn-doped ZnS Quantum Dots[J]. Analytical Chemistry.2011, 83(22):8589-8595.
    [29]Zhang, K., Mei, Q., Guan, G., Liu, B., Wang, S., Zhang, Z. Ligand Replacement-Induced Fluorescence Switch of Quantum Dots for Ultrasensitive Detection of Organophosphorothioate Pesticides[J]. Analytical Chemistry.2010,82(22):9579-9586.
    [30]Gao, F., Lv, C., Han, J., Li, X., Wang, Q., Zhang, J., Chen, C., Li, Q., Sun, X., Zheng, J. CdTe-Montmorillonite Nanocomposites:Control Synthesis, UV Radiation-Dependent Photoluminescence, and Enhanced Latent Fingerprint Detection[J]. The Journal of Physical Chemistry C.2011,115(44):21574-21583.
    [31]Law, W.C., Yong, K.T., Roy, I., Ding, H., Hu, R., Zhao, W., Prasad, P.N. Aqueous-Phase Synthesis of Highly Luminescent CdTe/ZnTe Core/Shell Quantum Dots Optimized for Targeted Bioimaging[J]. Small.2009,5(11):1302-1310.
    [32]Sukhanova, A., Devy, J., Venteo, L., Kaplan, H., Artemyev, M., Oleinikov, V., Klinov, D., Pluot, M., Cohen, J.H.M., Nabiev, I. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells[J]. Analytical biochemistry.2004, 324(1):60-67.
    [33]Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., Bruchez, M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature Biotechnology.2002,21(1):41-46.
    [34]Peng, Z.A., Peng, X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor[J]. Journal of the American Chemical Society.2000,123(1):183-184.
    [35]Zhang, Y., Zhang, H., Ma, M., Guo, X., Wang, H. The influence of ligands on the preparation and optical properties of water-soluble CdTe quantum dots[J]. Applied Surface Science.2009, 255(9):4747-4753.
    [36]陶慰孙,李惟,姜涌明,罗贵明,林永齐蛋白质分子基础.人民教育出版社.1982.
    [37]Zhang, G., Que, Q., Pan, J., Guo, J. Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy [J]. Journal of Molecular Structure.2008, 881(1-3):132-138.
    [38]Lakowica, J.R. Principles of fluorescence spectroscopy.2nd ed[M], New York:Kluwer Academic Publishers/Plenum Press.1999.
    [39]Scatchard, G. The attractions of protein for small molecules and ions. Annals of the New York Academy of Sciences.1949,51:660-672.
    [40]Ross, P.D., Subramanian, S. Thermodynamics of protein association reactions:forces contributing to stability[J]. Biochemistry.1981,20(11):3096-3102.
    [41]Miller J.N. Recent advances in molecular luminescence analysis[J]. Proceedings of the Analytical Division of the Chemical Society.1979,16:203-208.
    [42]Yue, Y., Chen, X., Qin, J., Yao, X. A study of the binding of CI Direct Yellow 9 to human serum albumin using optical spectroscopy and molecular modeling[J]. Dyes and Pigments. 2008,79(2):176-182.
    [43]Patel, S., Datta, A. Steady State and Time-resolved Fluorescence Investigation of the Specific Binding of Two Chlorin Derivatives with Human Serum Albumin[J]. The Journal of Physical Chemistry B.2007,111(35):10557-10562.
    [44]Zhou, X., Yue, Y., Yang, Q., Yan, N., Chen, X. Complexes between CI Acid Orange 6 and human serum albumin, a multi-spectroscopic approach to investigate the binding behavior[J]. Journal of Luminescence.2011,131 (6):1222-1228.
    [45]T. Forster, In:Sinanoglu O, editor. Modern quantum chemistry, vol.3. Academic Press, New York,1996. p.93.
    [46]Tang, J., Qi, S., Chen, X. Spectroscopic studies of the interaction of anti-coagulant rodenticide diphacinone with human serum albumin[J]. Journal of Molecular Structure.2005, 779(1-3):87-95.
    [47]Kelly, S.M., Jess, T.J., Price, N.C. How to study proteins by circular dichroism[J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics.2005,1751(2):119-139.
    [48]Wu, T., Wu, Q., Guan, S., Su, H., Cai, Z. Binding of the environmental pollutant naphthol to bovine serum albumin[J]. Biomacromolecules.2007,8(6):1899-1906.
    [49]Zhou, X., Yang, Q., Xie, X., Hu, Q., Qi, F., Rahman, Z.U., Chen, X. NMR, multi-spectroscopic and molecular modeling approach to investigate the complexes between CI Acid Orange 7 and human serum albumin in vitro[J]. Dyes and Pigments.2012, 92(3):1100-1107.
    [50]Neelam, S., Gokara, M., Sudhamalla, B., Amooru, D.G., Subramanyam, R. Interaction Studies of Coumaroyltyramine with Human Serum Albumin and Its Biological Importance[J]. The Journal of Physical Chemistry B.2010,114(8):3005-3012.
    [51]Girard, I. Ferry, S. Protein binding of methohexital. Study of parameters and modulating factors using the equilibrium dialysis technique[J]. Journal of pharmaceutical and biomedical analysis.1996,14(5):583-591.
    [52]Yin, T., Wei, W., Yang, L., Liu, K., Gao, X. Kinetics parameter estimation for the binding process of salicylic acid to human serum albumin (HSA) with capacitive sensing technique[J]. Journal of Biochemical and Biophysical Methods.2007,70(4):587-593.
    [53]Andre, C., Guillaume, Y.C. Anti-coagulant rodenticide binding properties of human serum albumin:a biochromatographic approach[J]. Journal of Chromatography B.2004, 801(2):221-227.
    [54]王月,肖尚友,陈华,夏之宁.硝基苯胺同牛血清白蛋白的相互作用及其毒性[J].环境化学.2005,23(5):529-533.
    [55]MacManus-Spencer, L.A., Tse, M.L., Hebert, P.C., Bischel, H.N., Luthy, R.G. Binding of Perfluorocarboxylates to Serum Albumin:A Comparison of Analytical Methods[J]. Analytical Chemistry.2009,82(3):974-981.
    [56]呆秀珍,郑红,杨淑,郭海燕,宋林,冯瑛.藻红-Cu(Ⅱ)配合物与牛血清白蛋白作用的共振光散射研究及其应用[J].分析试验室.2011,30(6):47-49.
    [57]Zhang, Y., Li, J., Dong, L., Li, Y., Chen, X. Characterization of interaction between esculin and human serum albumin in membrane mimetic environments[J]. Journal of Molecular Structure.2008,889(1-3):119-128.
    [58]Zhang, Y., Li, Y., Dong, L., Li, J., He, W., Chen, X., Hu, Z. Investigation of the interaction between naringin and human serum albumin[J]. Journal of Molecular Structure.2008, 875(1-3):1-8.
    [59]Wang, X., Lv, Y., Hou, X. A potential visual fluorescence probe for ultratrace arsenic (III) detection by using glutathione-capped CdTe quantum dots[J]. Talanta.2011,84(2):382-386.
    [60]Cao, M., Liu, M., Cao, C., Xia, Y., Bao, L., Jin, Y., Yang, S., Zhu, C. A simple fluorescence quenching method for berberine determination using water-soluble CdTe quantum dots as probes[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2010, 75(3):1043-1046.
    [61]Shang, L., Zhang, L. Dong, S. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots[J]. Analyst.2009,134(1):107-113.
    [62]Han, B., Yuan, J., Wang, E. Sensitive and Selective Sensor for Biothiols in the Cell Based on the Recovered Fluorescence of the CdTe Quantum Dots-Hg(Ⅱ) System[J]. Analytical Chemistry.2009,81(13):5569-5573.
    [63]Xu, H., Miao, R., Fang, Z., Zhong, X. Quantum dot-based "turn-on" fluorescent probe for detection of zinc and cadmium ions in aqueous media[J]. Analytica Chimica Acta.2011, 687(1):82-88.
    [64]Mohamed Ali, E., Zheng, Y., Yu, H.h., Ying, J.Y Ultrasensitive Pb2+ Detection by Glutathione-Capped Quantum Dots[J]. Analytical Chemistry.2007,79(24):9452-9458.
    [65]Liang, A.N., Wang, L., Chen, H.Q., Qian, B.B., Ling, B., Fu, J. Synchronous fluorescence determination of mercury ion with glutathione-capped CdS nanoparticles as a fluorescence probe[J]. Talanta.2010,81(1-2):438-443.
    [66]曹春,刘玫瑰,曹明,夏云生,朱昌青.基于自然尺寸分布的单一CdTe量子点样品中Eu(Ⅲ)诱导的能量转移测定磷酸根离子[J].中国科学:化学2010,40(4):379-385.
    [67]Tang, C.R., Su, Z.h., Lin, B.G., Huang, H.W., Zeng, Y.L., Li, S., Huang, H., Wang, Y.J., Li, C.X., Shen, G.L., Yu, R.Q. A novel method for iodate determination using cadmium sulfide quantum dots as fluorescence probes[J]. Analytica Chimica Acta.2010,678(2):203-207.
    [68]Sun, J., Liu, L., Ren, C., Chen, X., Hu, Z. A feasible method for the sensitive and selective determination of vitamin B1 with CdSe quantum dots[J]. Microchimica Acta.2008, 163(3):271-276.
    [69]Gao, Y., Wang, G., Huang, H., Hu, J., Shah, S.M., Su, X. Fluorometric method for the determination of hydrogen peroxide and glucose with Fe3O4 as catalyst[J]. Talanta.2011, 85(2):1075-1080.
    [70]Yuan, J., Guo, W., Yin, J., Wang, E. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose[J]. Talanta.2009,77(5):1858-1863.
    [71]Wang, G.L., Dong, Y.M., Yang, H.X., Li, Z.J. Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots[J]. Talanta.2011,83(3):943-947.
    [72]Wang, Y.q., Zou, W.s.3-Aminopropyltriethoxysilane-functionalized manganese doped ZnS quantum dots for room-temperature phosphorescence sensing ultratrace 2,4,6-trinitrotoluene in aqueous solution[J]. Talanta.2011,85(1):469-475.
    [73]卞倩茜,刘应凡,于俊生CdTe/CdS半导体量子点作为农药百草枯的高灵敏传感器[J].高等学校化学学报.2010,31(6):1118-1125.
    [74]Xiang, Y., Zhang, H., Jiang, B., Chai, Y., Yuan, R. Quantum Dot Layer-by-Layer Assemblies as Signal Amplification Labels for Ultrasensitive Electronic Detection of Uropathogens[J]. Analytical Chemistry.2011,83(11):4302-4306.
    [75]Zhao, Y., Hao, C., Ma, W., Yong, Q., Yan, W., Kuang, H., Wang, L., Xu, C. Magnetic Bead-Based Multiplex DNA Sequence Detection of Genetically Modified Organisms Using Quantum Dot-Encoded Silicon Dioxide Nanoparticles[J]. The Journal of Physical Chemistry C.2011,115(41):20134-20140.
    [76]Liu, C.W., Chien, M.W., Chen, G.F., Chen, S.Y., Yu, C.S., Liao, M.Y., Lai, C.C. Quantum Dot Enhancement of Peptide Detection by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry[J]. Analytical Chemistry.2011,83(17):6593-6600.
    [77]Huang, Y., Zhao, S., Shi, M., Chen, J., Chen, Z.F., Liang, H. Intermolecular and Intramolecular Quencher Based Quantum Dot Nanoprobes for Multiplexed Detection of Endonuclease Activity and Inhibition[J]. Analytical Chemistry.2011,83(23):8913-8918.
    [78]Lin, D., Wu, J., Yan, F., Deng, S., Ju, H. Ultrasensitive Immunoassay of Protein Biomarker Based on Electrochemiluminescent Quenching of Quantum Dots by Hemin Bio-Bar-Coded Nanoparticle Tags[J]. Analytical Chemistry.2011,83(13):5214-5221.
    [79]Yang, S.S., Ren, C.L., Zhang, Z.Y., Hao, J.J., Hu, Q. Chen, X.G. Aqueous Synthesis of CdTe/CdSe Core/Shell Quantum Dots as pH-Sensitive Fluorescence Probe for the Determination of Ascorbic Acid[J]. Journal of Fluorescence.2011,21(3):1123-1129.
    [80]Zhang, K., Zhou, H., Mei, Q., Wang, S., Guan, G., Liu, R., Zhang, J., Zhang, Z. Instant Visual Detection of Trinitrotoluene Particulates on Various Surfaces by Ratiometric Fluorescence of Dual-Emission Quantum Dots Hybrid[J]. Journal of the American Chemical Society.2011, 133(22):8424-8427.
    [81]Chen, Y.J., Yan, X.P. Chemical Redox Modulation of the Surface Chemistry of CdTe Quantum Dots for Probing Ascorbic Acid in Biological Fluids[J]. Small.2009, 5(17):2012-2018.
    [1]Yue, Y., Chen, X., Qin, J., Yao, X. Spectroscopic investigation on the binding of antineoplastic drug oxaliplatin to human serum albumin and molecular modeling[J]. Colloids and Surfaces B:Biointerfaces.2009,69(1):51-57.
    [2]Yue, Y., Zhang, Y., Qin, J., Chen, X., Study of the interaction between esculetin and human serum albumin by multi-spectroscopic method and molecular modeling[J]. Journal of Molecular Structure.2008,888(1-3):25-32.
    [3]Pang, Y.H., Yang, L.L., Shuang, S.M., Dong, C., Thompson, M. Interaction of human serum albumin with bendroflumethiazide studied by fluorescence spectroscopy[J]. Journal of Photochemistry and Photobiology B:Biology.2005,80(2):139-144.
    [4]Liu, X.P., Du, Y.X., Sun, W., Kou, J.P., Yu, B.Y. Study on the binding of chiral drug duloxetine hydrochloride to human serum albumin[J]. European Journal of Medicinal Chemistry.2010, 45(9):4043-4049.
    [5]Darwish, S.M., Abu sharkh, S.E., Abu Teir, M.M., Makharza, S.A., Abu-hadid, M.M., Spectroscopic investigations of pentobarbital interaction with human serum albumin[J]. Journal of Molecular Structure.2010,963(2-3):122-129.
    [6]Ding, F., Li, N., Han, B.Y., Liu, F., Zhang, L., Sun, Y. The binding of C.I. Acid Red 2 to human serum albumin:Determination of binding mechanism and binding site using fluorescence spectroscopy[J]. Dyes and Pigments.2009,83(2):249-257.
    [7]Song, S.M., Hou, X.L., Wu, Y.B., Shuang, S.M., Yang, C., Inoue, Y., Dong, C. Study on the interaction between methyl blue and human serum albumin by fluorescence spectrometry[J]. Journal of Luminescence.2009,129(3):169-175.
    [8]Yue, Y.Y., Chen, X.G., Qin, J., Yao, X.J. A study of the binding of CI Direct Yellow 9 to human serum albumin using optical spectroscopy and molecular modeling[J]. Dyes and Pigments.2008,79(2):176-182.
    [9]Girard, I., Ferry, S. Protein binding of methohexital. Study of parameters and modulating factors using the equilibrium dialysis technique[J]. Journal of pharmaceutical and biomedical analysis.1996,14(5):583-591.
    [10]Wu, T.Q., Wu, Q., Guan, S.Y, Su, H.X., Cai, Z.J. Binding of the environmental pollutant naphthol to bovine serum albumin[J]. Biomacromolecules.2007,8(6):1899-1906.
    [11]Yin, T.J., Wei, W.Z., Yang, L., Liu, K., Gao, X.H. Kinetics parameter estimation for the binding process of salicylic acid to human serum albumin (HSA) with capacitive sensing technique[J]. Journal of Biochemical and Biophysical Methods.2007,70(4):587-593.
    [12]Petitpas, I., Bhattacharya, A.A., Twine, S., East, M., Curry, S. Crystal Structure Analysis of Warfarin Binding to Human Serum Albumin[J]. Journal of Biological Chemistry.2001, 276(25):22804-22809.
    [13]Morris, G. SYBYL Software, Version 6.9, Tripos Associates, St. Louis,2002.
    [14]Khan, A.M., Muzammil, S., Musarrat, J. Differential binding of tetracyclines with serum albumin and induced structural alterations in drug-bound protein[J]. International Journal of Biological Macromolecules.2002,30(5):243-249.
    [15]Dong, A., Huang, P., Caughey, W.S. Protein secondary structures in water from second-derivative amide I infrared spectra[J]. Biochemistry.1990,29(13):3303-3308.
    [16]Zhang, G.W., Que, Q.M., Pan, J.H., Guo, J.B. Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy[J]. Journal of Molecular Structure.2008, 881(1-3):132-138.
    [17]Suldow, G., Birkett, D.J., Wade. D.N. Further characterization of specific drug binding sites on human serum albumin[J]. Molecular pharmacology.1976,12(6):1052-1061.
    [18]Yue, Y.Y., Chen, X.G., Qin, J., Yao, X.J. Characterization of the mangiferin-human serum albumin complex by spectroscopic and molecular modeling approaches[J]. Journal of pharmaceutical and biomedical analysis.2009,49(3):753-759.
    [19]Scatchard, G. The attractions of protein for small molecules and ions. Annals of the New York Academy of Sciences.1949,51:660-672.
    [20]Ross, P.D., Subramanian, S. Thermodynamics of protein association reactions:forces contributing to stability[J]. Biochemistry.1981,20(11):3096-3102.
    [21]Rahman, M.H., Maruyama, T., Okada, T., Yamasaki, K., Otagiri, M. Study of interaction of carprofen and its enantiomers with human serum albumin-Ⅰ:Mechanism of binding studied by dialysis and spectroscopic methods[J]. Biochemical Pharmacology.1993, 46(10):1721-1731.
    [22]Miller, J. N. Recent advances in molecular luminescence analysis[J]. Proceedings of the Analytical Division of the Chemical Society.1979,16:203-208.
    [23]Hu, Y.J., Liu, Y., Wang, J.B., Xiao, X.H., Qu, S.S. Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis.2004,36(4):915-919.
    [24]P. Yang, F. Gao, The Principle of Bioinorganic Chemistry, Science Press,2002.
    [25]Sirotkin, V.A., Zinatullin, A.N., Solomonov, B.N., Faizullin, D.A., Fedotov, V.D. Calorimetric and Fourier transform infrared spectroscopic study of solid proteins immersed in low water organic solvents[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology.2001,1547(2):359-369.
    [26]T. Forster, In:Sinanoglu O, editor. Modern quantum chemistry, vol.3. Academic Press, New York,1996. p.93.
    [27]Epps, D.E., Raub, T.J., Caiolfa, V., Chiari, A., Zamai, M. Determination of the Affinity of Drugs toward Serum Albumin by Measurement of the Quenching of the Intrinsic Tryptophan Fluorescence of the Protein[J]. Journal of Pharmacy and Pharmacology.1999,51(1):41-48.
    [28]He, W.Y., Li, Y., Si, H.Z., Dong, Y.M., Sheng, F.L., Yao, X.J., Hu, Z.D. Molecular modeling and spectroscopic studies on the binding of guaiacol to human serum albumin[J]. Journal of Photochemistry and Photobiology A:Chemistry.2006,182(2):158-167.
    [1]Liang, A.N., Wang, L. Chen, H.Q., Qian, B.B., Ling, B., Fu, J. Synchronous fluorescence determination of mercury ion with glutathione-capped CdS nanoparticles as a fluorescence probe[J]. Talanta.2010,81(1-2):438-443.
    [2]Xia, Y.S., Zhu, C.Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (Ⅱ)[J]. Talanta.2008,75(1):215-221.
    [3]刘洁,李万万,孙康.谷胱甘肽包覆的水溶性碲化镉量子点在铅、汞离子检测中的荧光特性[J].理化检验(化学分册).2010,46(5):551-553.
    [4]Zhang, Y., Zhang, H., Guo, X., Wang, H. L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(II) determination[J]. Microchemical Journal. 2008,89(2):142-147.
    [5]Luminescent CdSe-ZnS quantum dots as selective Cu2+probe[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.2004,60(11):2527-2530.
    [6]Xu, H., Miao, R., Fang, Z., Zhong, X. Quantum dot-based "turn-on" fluorescent probe for detection of zinc and cadmium ions in aqueous media[J]. Analytica Chimica Acta.2011,87(1). 82-88.
    [7]Shang, L., Zhang, L., and Dong, S. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots[J]. Analyst.2009,134(1):107-113.
    [8]Tang, C., Sua, Z., Lin, B., Huang, H., et. A novel method for iodate determination using cadmium sulfide quantum dots as fluorescence probes[J]. Analytica Chimica Acta.2010, 678(2):203-207.
    [9]Yuan, J., Guo, W., Yin, J., Wang, E. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose[J]. Talanta.2009,77(5):1858-1863.
    [10]Wang, G.L., Dong, Y.M., Yang, H.X., Li, Z.J. Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots[J]. Talanta.2011,83(3):943-947.
    [11]Sun, J. F., Ren, C.L., Liu, L.H., Chen, X.G. CdTe quantum dots as fluorescence sensor for the determination of vitamin B6 in aqueous solution[J]. Chinese Chemical Letters.2008, 19(7):855-859.
    [12]Sun, J., Liu, L., Ren, C. A feasible method for the sensitive and selective determination of vitamin B1 with CdSe quantum dots[J]. Microchim Acta.2008,163(3):271-276.
    [13]Chen, Y., Chen, Z., He, Y., Lin, H., Sheng, P. Liu, C., Luo, S., and Cai, Q. L-cysteine-capped CdTe QD-based sensor for simple and selective detection of trinitrotoluene[J]. Nanotechnology.2010,21(12):125502-125507.
    [14]卞倩茜,刘应凡,于俊生CdTe/CdS半导体量子点作为农药百草枯的高灵敏传感器[J].高等学校化学学报.2010,31(6):1118-1125.
    [15]Zhang, K., Mei, Q., Guan, G., Liu, B., Wang, S., and Zhang, Z. Ligand Replacement-Induced Fluorescence Switch of Quantum Dots for Ultrasensitive Detection of Organophosphorothioate Pesticides[J]. Analytical Chemistry.2010,82(22):9579-9586.
    [16]Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., et. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature biotechnology.2003,21(1):41-46.
    [17]Jaiswal, J.K., Mattoussi, H., Matthew Mauro, J., and Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates[J]. Nature biotechnology.2003, 21(1):47-51.
    [18]Choi, A.O., Cho, S.J., Desbarats, J., Lovric, J., Maysinger, D. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells[J]. Journal of Nanobiotechnology.2007,5(1):1-13.
    [19]Choi, A.O., Brown, S.E., SzyfM, M.D. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells [J]. Journal of Molecular Medicine.2008,86(3): 291-302.
    [20]Ghali, M. Static quenching of bovine serum albumin conjugated with small size CdS nanocrystalline quantum dots[J]. Journal of Luminescence.2010,130(7):1254-1257.
    [21]Zhao, L., Liu, R., Zhao, X., Yang, B., Gao, C., Hao, X., Wu, Y. New strategy for the evaluation of CdTe quantum dot toxicity targeted to bovine serum albumin[J]. Science of the Total Environment.2009,407(18):5019-5023.
    [22]马金杰,梁建功,韩鹤友.不同巯基试剂修饰的CdTe量子点与BSA相互作用研究[J].光谱学与光谱分析学.2010,30(4):1039-1043.
    [23]Xiao, J., Baia, Y., Wang, Y, Chen, J., Wei, X. Systematic investigation of the influence of CdTe QDs size on the toxic interaction with human serum albumin by fluorescence quenching method[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2010,76(1):93-97.
    [24]Liu, Y.F., Yu, J.S. Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots:The effect of ligands[J]. Journal of Colloid and Interface Science.2009, 333(2):690-698.
    [25]Yu, W.W., Qu, L.H., Guo, W.Z., Peng, X.G. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals[J]. Chemistry of Materials.2003, 15(14):2854-2860.
    [26]Lakowica, J.R. Principles of fluorescence spectroscopy,2nd ed[M]. New York:Kluwer Academic Publishers/Plenum Press.1999.
    [27]Ware, W. R. Oxygen Quenching of Fluorescence in Solution:An Experimental Study of the Diffusion Process[J]. The Journal of Physical Chemistry.1962,66(3):455-458.
    [28]Ross, P.D., Subramanian, S. Thermodynamics of protein association reactions:forces contributing to stability[J]. Biochemistry.1981,20(11):3096-3102.
    [1]Susha, A. S., Javier, A. M., et al.. Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2006,281(1-3):40-43.
    [2]伊魁宇,徐淑坤CdTe量子点作为pH敏感探针测定抗坏血酸的研究[J].分析化学.200937:增刊F076
    [3]董再蒸,周华萌,徐坤伊魁宇,张红艳CdTe量子点酸度敏感荧光探针测定水样中铵根离子含量[J].分析化学研究简报.2009,37(8):1215-1218.
    [4]Yang, S.S., Ren, C.L. et al. Aqueous Synthesis of CdTe/CdSe Core/Shell Quantum Dots as pH-Sensitive Fluorescence Probe for the Determination of Ascorbic Acid[J]. Journal of Fluorescence.2011,21(3):1123-1129.
    [5]Wang, Y.Q., Ye, C., Zhu, Z.H., Hu, Y.Z. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination[J]. Analytica chimica acta.2008,610(1):50-56.
    [6]潘国庆,卢永昌,德吉措姆HPLC测定藏成药七味诃子散中没食子酸[J].中草药.2006.37(9):1350-1351.
    [7]汪小玲,张丽,尹小娥HPLC法测定健胃止痛五味胶囊中没食子酸的含量[J].陕西中医学院学报.2008,31(1):57-58.
    [8]李小安,史美佳HPLC法测定速效止泻胶囊中没食子酸的含量[J].陕西中医学院学报.2007,30(2):58-59.
    [9]李爱群,蔡葵花,林励.薄层扫描法测定利喉乐含片中没食子酸的含量[J].分析测试学报.1999,18(1):64-65.
    [10]谢成根,崔华,林祥钦.流动注射化学发光增强法测定健民咽喉片中的没食子酸[J].分析化学.2002,30(11):1316-1318.
    [11]Xia, Y.S., Zhang, T.L., Diao, X.L., Zhu, C.Q. Measurable emission color change: size-dependent reversible fluorescence quenching of CdTe quantum dots by molecular oxygen[J]. Chemistry Letters.2007,36(2):242-243.
    [12]Tang, C.R., Su, Z.h. et al. A novel method for iodate determination using cadmium sulfide quantum dots as fluorescence probes[J]. Analytica Chimica Acta._2010,678(2):203-207.
    [13]Yu, W.W., Qu, L.H., Guo, W.Z., Peng, X.G. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals[J]. Chemistry of Materials.2003, 15(14):2854-2860.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700