几种新型荧光探针的合成及分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章首先介绍了荧光探针的分类及其响应机制。之后对量子点(QDs)的光学性质进行了概述,并就其在分析化学方面的应用进行了综述。
     第二章采用一种简便的方法制备了水溶性的巯基丁二酸(MSA)包覆的CdSe QDs (MSA-CdSe QDs),同时利用紫外光谱、荧光光谱、红外光谱等手段对合成的水相量子点进行了表征。结果表明,巯基丁二酸可部分替换量子点表面原有的油酸配体、通过其硫原子上的非键电子对与悬挂的Cd2+配位结合,形成巯基丁二酸包覆的量子点。且对原有结构改变不大,该复合物仍可发射荧光,并具有水溶性。鉴于巯基丁二酸的特性,合成的MSA-CdSe-QDs应该具有络合金属离子的识别功能,从而可以作为一种新型的识别金属离子的荧光传感器。
     第三章考察了常见金属离子对巯基丁二酸包覆的CdSe QDs(MSA-CdSe QDs)的荧光响应。在中性PBS缓冲溶液中,Cd2+可以增强该量子点的荧光,Cu2+则对该量子点具有荧光猝灭效应,并且在各自的浓度范围内同量子点的相对荧光强度呈现良好的线性关系,由此可实现对这两种金属离子的识别与检测。初步探讨了金属离子对量子点的响应机理。
     第四章以7-硝基苯并-2-氧杂-1,3-二唑为荧光团,二乙醇胺为配体合成了新的荧光探针NBD-OH。在中性缓冲水溶液中,VB12可以使NBD-OH荧光发生猝灭,由此建立了一种新的检测VB12的荧光方法。实验结果表明,在优化的实验条件下,当VB12的浓度在0.0-2.4×10-5M范围时,其浓度同体系荧光变化△F呈现良好的线性关系,检测限为8×10-8M。该方法可用于实际样品VB12针剂及片剂的检测。
     第五章非除氧条件下,在y-环糊精(y-CD)溶液中,α-溴代萘(α-BrN)可以敏化樟脑醌(CQ)产生强的室温磷光。考察了y-CD浓度、α-BrN浓度、CQ浓度等因素对体系磷光强度的影响。实验发现VB12的加入对体系的磷光强度具有猝灭作用,由此建立了对VB12的新的磷光检测方法。
Chapter1The classification and mechnism of fluorescent probes are briefly introduced. The optical properties of quantum dots and their analytical applications have been reviewed.
     Chapter2Water-soluble luminescent CdSe quantum dots surface-modified with mercaptosuccinic acid (MSA-CdSe-QDs) were prepared and characterized by UV-vis and fluorescence spectroscopy, FT-IR, and TEM techniques. The results show that the sulfur atom of MSA coordinate with Cd2+ion on the QD surface and partially replaced the original oleic acid. After the MSA modification, the QDs exhibited no obvious change in shape or size. Due to the metal ion binding capability of MSA, the synthesized QDs could potentially function as a fluorescent probe for metal ions.
     Chapter3The sensing behavior of MSA-CdSe-QDs towards metal ions was investigated by fluorescence spectroscopy. It was found that in neutral PBS buffer solution, Cd2+enhanced the fluorescence of the QDs, whereas Cu2+exhibited a significant quenching effect on the fluorescence of the QDs. The fluorescence responses were concentration-dependent, which could be used for recognition of Cu2+ions and Cd2+in aqueous solution. The possible mechanism was also discussed.
     Chapter4A new fluorescent probe,4-N, N-di (2-hydroxyethyl) imino-7-nitrobenzo-2-oxa-1,3-diazole (NBD-OH) was synthesized in a single step with reasonably good yield. It was found that Vitamin B12(VB12) had the ability to quench the fluorescence of NBD-OH, and the quenched fluorescence intensity was proportional to the concentration of VB12. A method for VB12determination based on the quenching fluorescence of NBD-OH was thus established. Interference effects of various substances including sugars, vitamins, amino acids, inorganic cations and some organic substances have been studied. Under optimal conditions, the linear range is0.0-2.4×10-5M. The determination limit is8.3×10-8M. The method was applied to measure VB12injections and tablets with satisfactory results.
     Chapter5α-bromonaphthalene (α-BrN) has been used as a donor of triplet state energy for the acceptor camphorquinone (CQ) in y-cyclodextrin nanocavity. Intense RTP phosphorescence emission of CQ was observed in non-deoxygenated γ-CD solution. Several parameters that affect the intensity of sensitized phosphorescence have been examined. It was found that Vitamin B12(VB12) had the ability to quench the phosphorescence of CQ, and the quenched RTP intensity was proportional to the concentration of VB12. A method for VB12determination based on the phosphorescence quenching of CQ was thus established.
引文
[1]Diederich, F. J. Molecular recognition in aqueous solution:Supermolecular com-plexation and catalysis(SYMP). J. Chem. Educ.,1990, 10,813.
    [2]Ghadin, M. R.; Granja, J. R.; Buehler, L. K. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature, 1994, 6478,301-304.
    [3]Anslyn, E. V. Supermolecular Analytical Chemistry. J. Org. Chem.,2007,72, 687-699.
    [4]Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Supermolecular Chemistry in Water. Angew. Chem. Int. Ed.,2007,46,2366-2393.
    [5]Lehn, J. M. Perspectives in supramolecular chemistry-From molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. Engl.,1990,29,1304-1319.
    [6]Suzuki, Y.; Komatsu, H.; Ikeda, T.; Saito, N.; Araki, S.; Citterio, D.; Hisamoto, H. Kitamura, Y.; Kubota, T.; Nakagawa, J.; Oka, K.; Suzuk, K. Design and synthesis of Mg2+-selective fluoroionophores based on a coumarin derivative and application for Mg2+measurement in a living cell. Anal. Chem.,2002,74, 1423-1428.
    [7]Hortala, M. A.; Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, A. Designing the selectivity of the fluorescent detection of amino acids:a chemosensing ensemble for histidine. J. Am. Chem. Soc.,2003,125,20-21.
    [8]Guo, X.; Qian, X.; Jia, L. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. J. Am. Chem. Soc.,2004,126, 2272-2273.
    [9]Chen, C. Y.; Cheng, C. T.; Lai, C. W.; Wu, P. W.; Wu, K. C.; Chou, P. T.; Chou, Y. H.; Chiu, H. T. Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H2O. Chem. Commun.,2006,263-265.
    [10]Li, H. B.; Zhang, Y.; Wang, X. Q. L-Carnitine capped quantum dots as luminescent probes for cadmium ions. Sens. Actuators, B, 2007,127,593-597.
    [11]Zhou, Y.; Xiao, Y.; Qian, X. H. A highly selective Cd2+sensor of naphthyridine:377 fluorescent enhancement and red-shift by the synergistic action of forming 378 binuclear complex. Tetrahedron Lett.,2008,49,3380-3384.
    [12]Cao, S. H.; Li, H. B.; Chen, T. T. A polyaza macrocycle ligand bearing anthracenyl fluorophores for selective signaling of Zn(II) in aqueous solution. J. Solution Chem., 2009,38,1520-1527.
    [13]Pond, S. J. K.; Rumi, M.; Levin, M. D. One-and two-photon spectroscopy of donor-aceePtor-donordistyrylbenzenederivatives:effect of eyano substitution and distortionfromplanarity. J. Phy. Chem.,2002,106(47),11470-11480.
    [14]A. Prasanna de Silva, Thomas S. Moody.; Glenn D. Wright. Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst, 2009, 134,2385-2393.
    [15]Lee, H. N.; Kim, H. N.; Swamy, K. M. K.New acridine derivatives bearing immobilized azacrown or azathiacrown ligand as fluorescent chemosensors for Hg2-and Cd2+. Tetrahedron Lett.,2008,49,1261-1265.
    [16]Tang, J. G; Yang, H.; Liu, J. X.; Wang, Y; Yin, X. J.; Wang, R.; Huang, L. J.; Huang, Z. Ln3+-enhanced blue fluorescence from novel excimer of 1,8-naphthalimide-conj-ugated PAMAM. Opt. Mater.,2010,32,1417-1422.
    [17]Wang, Y; Hu, X. Y; Jin, W. J. A new acridine derivative as a highly selective 'off-on'fluorescence chemosensor for Cd2+ in aqueous media. Sens. Actuators, B., 2011,156,126-131.
    [18]Li, Z. X,; Zhang, L. F; Li, X. Y; Guo, Y K.; Ni, Z. H.; Chen, J. H.; Wei, L. H.; Yu, M. M. A fluorescent color/intensity changed chemosensor for Fe3+ by photo-induced electron transfer (PET) inhibition of fluoranthene derivative. Dyes and Pigments, 2012,94,60-65.
    [19]Gunnlaugsson, T.; Nieuwenhuyzen, M.; Richard, L.; Thoss, V. Novel sodium-selective fluorescent PET and optically based chemosensors:towards Na+ determination in serum. Chem. Soc. Perkin Trans.,2002,2,141-150.
    [20]Gawley, R. E.; Pinet, S.; Cardona, C. M. Chemosensors for the Marine Toxin Saxitoxin.,J.Am.Chem.Soc.,2002,124,13448-13453.
    [21]Roy, M.B.;Samanta,S.:Chattopadhyay. G. Exciplex emission and photo induced energy transfer as a funetion of cavity dimension in naphthalene-linked aza-crown ethers.,J. Lumin, 2004,106,141-152.
    [22]Gunnlaugsson,T.;Bichell,B.;Nolan,C.Fluorscent PET chemosensors for li-thium. Tretrahedron,2004,60,5799-5806.
    [23]Kenmoku,S.;Urano,Y;Kanda,K.Rational design of novel photoindueed electron transfer tyPe fluorescent probes for sodium cation. Tetrahedron,2004,60, 11067-11073.
    [24]Rivero,I.A.;Gonzalez,T.;Pina-Luis,G Library preparation of derivatives of 1,4, 10,13-tetraoxa-7, 16-diaza-cycloctadecane and their fluorescence behavior for signaling puroses.J. Comb. Chem.,2005,7,46-53.
    [25]Hdi'koMo'cza'ra, Pe'ter Huszthy;Andra's Mezel', et al.Synthesis and optical characterization of novel azacrown etllers containing an ac-dinone or all N-methylacridinone unit as potential fluorescent chemosensors. Tetrahedron,2010, 66. 350-358.
    [26]Kubo, K.;Yamamoto,E.;Sakurai,T.Synthesis, Complexation and fluorescence behavior of Diaza-12-crown-4 carrying two naphthyl pendants. Heterocycles, 1998, 48. 2133-2139.
    [27]Meadows,E.S.;Wall, S.L.D.E.;Barbour L.J.1-and 2-naphthylmethyl sidearms of isomeric bibracehial lariat ethers signeficantly effect alkali metal cation complexation.Chem.Comm.,1999,1555-l556.
    [28]Kubo,K.;Ishige,R.;Kubo,J.Synthesis and complexation behavior of n-(1_naphth ylmethyl)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane. Talanta, 1999,48, 181-187.
    [29]Ji,H.F.;Dabistani,R.;M.Brown,G A.Supramoleeular fluorescent probe activated by protons to detect cesium and potassium ions,mimics the funetion of s logic gate. J.Am.Chem. Soc.,2000,122,9306-9307.
    [30]Rurack,K.;Resch-Genger U.;N ricks,J.L.;Spieles,M.Cation-triggered'SWitching on'of the red/near infra-red(NIR)tluorescence of rigid fluorophore-spacer-receptor ionophores.Chem.Comm.,2000,2103-2104.
    [31]Li,L.D.;Wei,Y;Tong,A.J.Study on cation reeognition ProPerties of 4-methene-6, 7-dimechoxycomuarin-monoaza-18-crown-6.Anal.Chim.Acta,2001,427,29-37.
    [32]He,H.;Mortelloar,M.A.;Leiner,M.J.P;Faartz,R.J.;Tusa,K.A fluocrscent sensor with high seleetivity and sensitivity for Potassium in water.Am. Chem.Soc., 2003,125,1468-1469.
    [33]He,H.;Moriellaro,M.A.;Leine r, J.P.;Young,T.S.;J.Fraatz,R.;K.Tusa,J.A fluoreseent chemosensor for sodium based on Photoinduced electron transer.Anal. Chem.,2003,75,549-555.
    [34]Sadhu,K.K.;Bag,B.;Bharadwaj,P.K.A multi-receptor fluorescence signaling system exllibiting enhancement selectively in presence of Na(Ⅰ)alld T1(Ⅰ) ions.J. photochem.Photobiol.,A,2007,185,231-238.
    [35]Xu, Z. C.;Zheng, S. J.;Yoon, J. Y. Discovery of a 11ighly selective turn-on fluorescent probe for Ag'.Analys,2010, 35,2554-2559.
    [36]Wang, H. W.;Feng,Y. Q.;Chen,C.;Xue,J.Q.Two novel nuorescent calix[4]arene derivatives with benzoazole units in 1.3-altemate confoirmation for selective recognition to Fe3+ and Cr3+.Chin.Chem.Lett.,2009,20,1271-1274.
    [37]Ji,H.F.;Dabistani,R.;M.Brown,G A.Supramolecular fluorescent probe activated by protons to detect cesium and potassium ions,mimics the function of slogic gate. J.Am.Chem.Soc.,2000,122,9306-9307.
    [38]Kim,J.S.;Noh,K.H.;Lee,S.H.;Kim,S.K.;Yoon.J.A new calix[4]azacrown bearing two different binding sites as a new fluorescent ionophore.J.Org.Chem., 2003,68.597-600.
    [39]Benco,J.S.;Nienaber.H.A.A highly selective fluoroionophore for the detection of lithium ions.J.Photochem.Photobio.A,2004,162,289-296.
    [40]Chen,Q.Y;Chen,C.F.A new Hg2+-selective nuorescent sensor based on a dansyl amide-armed calix[4]-aza-crown.Tetrahedron Lett.,2005,46,165-168.
    [41]S elinger B.K.Fluorescence quenching of excited state donor-acceptor pairs in surfactant micelles during a pH tiration.Aust.J.Chem.,1977,30,2087-2090.
    [42]Fabbrizzi,L.;Liucchelli,M.;Pallavicini,P.A fluorescent photoinduced electron transfer sensor for cations with an off-on-off proton switcll.Inorg.Chem.,1996,35, 1733-1736.
    [43]Pina, F; Lima, J. C; Lodeiro, C; De Melo, J. S.; Diaz, P.; Albelda, M. T.; Garcia-Espana, E. Long Range Electron Transfer Quenching in Polyamine Chains Bearing a Terminal Naphthalene Unit. J. Phys. Chem. A,2002,106,8207-8212.
    [44]De-silva, A. P.; Gunaratne H. Q. N. Fluoresceng PET (photoinduced electron transfer) sensors selective for submicromolar calcium with quantitatively predictable spectral and ion-binding properties. J. Am. Chem. Soc.,1990, 186-188.
    [45]De-silva, A. P.; Gunaratne, H. Q. N.; Maguire. G. E. M. Off-on flurroescen sensors for physiological levels of magnesium ions based on photoinduced electron transfer (PET), which also behave as photoionic OR logic gates. J. Chem. Soc. Chem. Commun.,1994,1213-1215.
    [46]Valeur, B.; Bourson, J.; Pouget, J.; in:Czarnik. A. W. Fluorescent chemosensors for ion and molecule recognition. ACS. Symp. Ser.,1993,538,25.
    [47]Rettig, W.; Lapouyade, R. Probe design and chemical sensing, in:Lakowicz. J.R.(Ed.), Topics in fluorescence spectroscopy, Plenum, New York, 1994, 109.
    [48]Grabowski, Z. R.; Rotkiewiccz, K.; Retting, W. Structural Changes Accompanying Intramolecular Eletron Transfer:Foccus on Twisted Intramolecular Charge-Transfer States and Structures. Chem, Rev.,2003,103,3899-4032.
    [49]Lin, W. Y.; Yuan, L.; Feng, J. B. A Coumarin-based Chromogenic sensor for transition-metal ions showing ion-dependent bathochromic shift. Eur. J. Inorg. Chem.,2008,29,4981-4987.
    [50]Suresh, M.; Das, A. New coumarin-based sensor molecule for magnesium and calcium ions. Tetrahedron Lett.,2009,50,5808-5812.
    [51]Helal, A.; Choi, C. H.; Kim, H. S. Chromogenic and fluorogenic sensing of Cu2+ based on coumarin. Tetrahedron,2011,67,2794-2802.
    [52]Lodeiro, C. Lima, J. C; Parola, A. J.; Seixas de Melo, J. S.; Capelo, J. L.; Covelo, B.; Tamayo, A.; Pedras, B. Intramolecular excimer formation and sensing behavior of new fluorimetric probes and their interactions with metal cations and barbituric acids. Sens. Actuators B,2006,115,276-286.
    [53]Kim, J. S.; Choi, M, G; Song, K. C. Ratiometric determination of Hg2+ions based on simple molecular motifs of pyrene and dioxaoctanediamide. Org. Lett.,2007, 9(6),1129-1132.
    [54]Han,Z.X.;Zhang,X.B.;Li,Z.;Gong,Y J.;Wu,X.Y;Jin,Z.;He,C.M.;Jian,L. X.;Zhang,J.;Shen, G L.;Yu,R.Q.Efficient Fluorescence Resonance Energy Transfer-Based Ratiometric Fluorescent Cellular Imaging Probe for Zn2+Using a Rhodamine Spirolactam as a Trigger.Anal.Chem.,2010,82,3108-3113.
    [55]Ma,C.;Zeng,F.;Huang,L.F.;Wu, S. Z.FRET-Based Ratiometric Detection System for Mercury Ions in Water with Polymeric Particles as Scaffolds.J.Phys. Chem.B,2011,115,874-882.
    [56]Willard,D.M.;Carillo,L.L.;Jung,J.;Orden,A.V;CdSe-ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein-Protein Binding Assay. Nano.Lett.,2004,1,469-474.
    [57]Medintz,I.L.;Traminell, S.A.;Mattoussi,H.;Matthew-Mauro J.Reversible Modulation of Quanturn Dot Photoluminescnce Using a Protein-Bound Pllotochtomic Fluorescence Resonance Energy Transfer Acceptor.J.Am.Chem. Soc..,2004,126,30-31.
    [58]Suzuki,M.;Husimi,Y.;Komatsu,H.;Suzuki, K.;Douglas,K.T.Quantum Dot FRET Biosensors that Respond to pH,to Proteolytic or Nucleolytic Cleavage,to DNA Synthesis,or to a Multiplexing Combination.J.Am. Chem. Soc.,2008, 130, 5720-5725.
    [59]Zhang,Y;Zhang,H.Y;Hollins,J.;Webb,M.E.;Zhou,D.J.Small-molecule ligands strongly affect the Forster resonance energy transfer between a quantum dot and a fluorescent protein.J.Phys.Chem.,2011,13,19427-19436.
    [60]Quach,A.D.;Crivat,G;Tarr,M.A.;Rosenzweig,Z.Gold Nanoparticle-Quantum tyrene Microspheres as Fluorescence Resonance Energy Transfer Probes for BioDot-Polysassays.J.Am.Chem.Soc.,2011,133,2028-2030.
    [61]孙保全,徐咏蓝,陈德扑,等.半导体纳米晶体的光致发光特性及在生物材料荧光标记中的应用[J].分析化学,2002,30,1130-1136.
    [62]Gunnlaugsson,T.;Nieuwenhuyzen,M.;Richard,L.;Thoss,V Novel sodium-sele-tive fluorescent PET and optically based chemosensors:towards Na'determination in serum.Chem.Soc.Perkin Trans.,2002,2,141-150.
    [63]Hines,M.A.;Seholes,G D.Colloidal PbS Nanocrystals with Size Tunable near-Infrared Emission:Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Adv. Mater.,2003,15(21),1844-1849.
    [64]Hart, M. Y.; Gao, X.; S. U, J.Z. Quantum-dot-tagged microbeads for multiplexed optical coding of biomoleculos. Nat. Biotechnol, 2001,19,631-635.
    [65]Leatherdale, C. A.; Woo, W. K.; Mikulec, F. V.; Bawendi, M. G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B, 2002,106, 7619-7622.
    [66]Chan, W. C. W.; Nie, S. M. Quantum Dot Bioconjugates for Uttrasensitive Nonisotopic Detection. Science,1998,281,2016-2018.
    [67]Chen, Y. F.; Rosenzweig, Z. Luminescent CdS quantum dots as 8elective ion Probes. Anal chem.,2002,74(19),5132-5138.
    [68]Gattas-Asfura, K. M. Leblanc, R. M. Peptide-coated CdS quantum dot for the optical detection of copper and silver. Chem. Commun.,2003,268,2684-2685.
    [69]Koneswaran, M.; Narayanaswamy, R. L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ion. Sens. Actuators, B,2009,139,104-109.
    [70]Ingole, P. P.; Abhyankar, R. M.; Prasad, B.L.V.; Haram, S. K.Citrate-capped quantum dots of CdSe for the selective photometric detection of silver ions in aqueous solutions. Mater. Sci. Eng., B, 2010, 168,60-65.
    [71]Xu, H.; Miao, R.; Fang, Z.; Zhong, X. H. Quantum dot-based "turn-on" fluorescent probe for detection of zinc and cadmium ions in aqueous media. Anal. Chim. Acta, 2011,687,82-88.
    [72]Mahmoud, W. E. Functionalized ME-capped CdSe quantum dots based luminescence probe for detection of Ba2+ions. Sens. Actuators B, 2012,164,76-81.
    [73]严拯宇,庞代文.量子点荧光猝灭法测定中药饮片中的微量铜[J].中国科大学报,2005,36(3),40-43.
    [74]Li, H. B.; Zhang, Y.; Wang, X. Q.1-Carnitine Capped Quantum Dots as Luminescent Probes for Cadmium Ions. Sens. Actuators, B,2008,127(2),593-597.
    [75]Li, H. B.; Zhang, Y.; Wang, X. Q. Calixarene Capped Quantum Dots as Luminescent Probes for Hg2+ions. Mater. Lett.,2007, 61(7),1474-1477.
    [76]Zhang, Y. H.; Zhang, H. S.; Guo, X. F.; Wang, H. L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(Ⅱ) determination.J. Micr. chem.,2008,89,142-147.
    [77]Sung,T..W;Lo,Y L.Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for CU2+ion detection.Sens.Actuators,B,2012,165, 119-125.
    [78]Jin,W.J.;Costa-Fernandez,J.M.;Pereiro,R.;Sanz-Medel,A.Surface-modified CdSe quantum dots as luminescent probes for cyanide determination.Anal Chim. Acta,2004,522,1-8.
    [79]Jin,W.J.;Femhndez-Arguelles,M.T.;Costa-Ferrffmdez,J.M.;Pereiro,T, L. Sanz-Medel,A.Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions.Chem. Commun.,2005,883-885.
    [80]Shang,L.;Zhang,L.H.;Dong,S.J.Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots.Analst,2009,134,107-113.
    [81]Wu,C.L.;Zhao,Y B.CdS quantum dots as fluorescenee probes for the sensitive and selective decection of highly reactive HSe ions in aqueous solution.Anal. Bioanal.Chem.,2007,388,717-722.
    [82]Ruedas-Rama, M.J.;Hall,E.A.H.A quantum dot'lucl'genin probe for CI.Analyst, 2008. 133. 1556-1566.
    [83]Shang,Z.B.;Wang,.Y;Jin,W.J.Triethanolamine-capped CdSe quantum dots as fluorescent sensors or reciprocal recognition of mercury(Ⅱ)and iodide in aqueous solution.Talanta,2009,78, 364-369.
    [84]Susha,A.S.;Javier, A.M.;Perak,W.J.Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous Solutions.Colloids.Surf,A,2006,28 1,40-43.
    [85]陈飞,来守军,王俊,关晓琳.水溶性量子点作为pH响应传感器的初步研究[J].广州化工,2009,37,82-83.
    [86]Dennis,A.M.;Rhee,W.J.;Dublin,S.N.;Bao,G.Quantum Dot Fluorecent Protein FRET Probes for Sensing Intracellular pH.ACS,Nano,2012,6(4),2917-2924.
    [87]董再蒸,周华萌,徐淑坤,伊魁宇,张红艳CdTe量子点酸度敏感荧光探针测定水样中铵根离子含量[J].分析化学研究简报,2009,37,1215-1218.
    [88]Tu,R.Y;LiU,B.H.;Wang,Z.Y;Gao,D.M.;Wang,F.;Fang,Q.L.;Zhang,Z.P. Amine-capped ZnS-Mn2+ nanocrystals for nuorescence decection of trace TNT explosive.Ana.Chem.,2008,80,3458-3465.
    [89]Goldman,E.R.;Medintz,L.;Whitley J.L.A Hyb rid Quantum Dot Antibody Fragment Fluorescence Resonance Energy Transfer-Based TNT Sensor.J.Am. Chem.Soc.,2005,127(18),6744-6751.
    [90]Cordes,D.B.;Gamsey, S.;Singaram,B.Fluorescent quantum dots with boronic acid substituted viologeus to sense glucose in aqueous solution.Angew.Chem.Int. Ed.,2006,45,3829-3832.
    [91]Duong,H.D.;Rhee,J.L.Use of CdSe/ZnS Core-Shell Quantum Dots as Energy Transfer Donors in Sensing Glucos.Talanta,2007,73(5),899-905.
    [92]Gill,R.;Bahshi,L.;Freeman,R.Optical Detection of Glucose and Acetylclloline Esterase Inhibitors by H2O2-Sensitive CdSe/ZnS Quantum Dots.Angew.Chem. Int. Ed.,2008,47,1 676-1679.
    [93]Lisa,K.C.;Hogen-Eseh T.: Richmond,F.J.Percutaneous Fiber-Optic sensor for clironic gluco∞monitoring in vivo.Biosens Bioelectron,2008,23.1458-1465.
    [94]张毅.水溶性置子点碲化镉测定同型半胱氨酸的研究[J].分析测试学报,2008,27,844-847.
    [95]Li, H.B.;Han,C.P.Sonochemical Synthesis of Cyclodextrin-Coated Quantum Dots for Optical Dctection of Pohlutant Phenols in Water.Chem. Atate, 2008,20, 6053-6059.
    [96]Qu,F. G;Li,H.B.Selective molecular recogntion of polycyclic aromatic hydrocarbons using CdTe quantum dots with cyclodextrin as supramolecular nano-sensitizers in water.Sens.Actuators,B,2009,135,499-505.
    [97]Sotelo-Gonzalez, E.; Femandez-Arguelles, M. T.; Costa-Fernandez, J. M.; Sanz-Medel,A.Mn-doped ZnS quantum dots for the determination of acetone by phosphorescence attenuation.Anal. Chim.Acta,2012,712,120-126.
    [98]Yan, X.Q.;Shang, Z.B.;Zhang, Z.;Wang, Y;Jin,W.J.Fluorescence sensing of nitric oxide in aqueous solution by triethanolamine-modified CdSe quantum dots.J. Lumin.,2009,24,255-259.
    [99]张毅.单质碘对水溶性CdTe量子点的荧光猝灭研究[J].光谱实验室,2009,26,974-978.
    [100]Chan,P.M.;Yuen,T.;Sealfon, S.C.Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization.Nucleic Acids Res., 2005,33(18),161.
    [101]Hart, M. Y.; Gao, X. H.; Nie, S. M. Quantum-dot-tagged microbeads for multiplexed optical coding of biomoleeules. Nat. Biotechnol.,2001,19(7), 631-635.
    [102]Dubertret, B.; Skourides, P.; Albert, L. In vivo imagillg of quantum dots encapsulated ill phospholpid micelles. Science,2002,298,1759-1762.
    [103]汪乐余,郭畅,李茂国,等.功能性硫化镉纳米荧光探针荧光猝灭法测定核酸[J].分析化学,2003,31,83-86.
    [104]徐靖,赵应声,王洪梅等.应用水相合成的CdTe/CdS核壳型量子点荧光探针测定DNA[J].分析试验室,2006,25(4),50-53.
    [105]Dai, Z.; Zhan, J. M.; Xu, S. C.; Guo, N.; Bu, Y. H.; Dong, Q. X. Fluorescence Resonance Energy Transfer between CdTe Semiconductor Nanocrystals Donors and Gold Nanoparticles labeled DNA Acceptors. Proc. of SPIE, 2007,6423, 642357.
    [106]Wu, C. S.; Cupps, J. M.; Fan, X. D. Compact quantum dot probes for rapid and sensitive DNA detection using highly efficient fluorescence resonant energy transfer. Nanotechnology,2009,20,305502.
    [107]Li, Y. Q.; Guan, L. Y.; Zhang, H. L.; Chen, J.; Lin, S.; Ma, Z.Y.; Zhao,Y. D. Distance-Dependent Metal-Enhanced Quantum Dots Fluorescence Analysis in Solution by Capillary Electrophoresis and Its Application to DNA Detection. Anal. Chem.,2011,83,4103-4109.
    [108]Chart, W. C.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopie detection. Science,1998,281,2016-2018.
    [109]Sun, B. O.; Xie, W. Z.; Yi, G. S.; Zhou, Y. X.; Cheng, J. Micmminiatufized lmmunoassays using Quantum Dots Fluorescent Label by Laser Confocal Scanning Fluorescence Detection. J. Immunol. Meth.,2001,24(1),85-89.
    [110]Goldman, E. R.; Anderson, G. P.; Tran, P. T. Conjugation of lmineseem quantum dots with antibodies using an engineered adapter protein to provide new reagents for fluoroimmunoassays. Analy. Chem.,2002,74(4), 841-847.
    [111]Goldman, E. R.; Anderson, G. P.; Mattoussi, H. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Analy. Chem.,2004,6,684-688.
    [112]李平,刘梅川,张成林,等.聚乙烯吡咯烷酮/硫化镉量子点修饰电极的制备 及其对血红蛋白的测定研究[J].化学学报,2005,63(12),1075-1080.
    [113]Liang, J. G; Huang, S.; Zeng, D. Y.; He, Z. K.; Ji, X. H.; Ai, X. P.; Yang, H. X. CdSe quantum dots as luminescent probes for spironolactone determination. Talanta,2006,69,126-130.
    [114]凌霞,邓大伟,钟文英,于俊生.水溶性量子点荧光探针用于帕珠沙星的含量测定[J].2008,28,1317-1321.
    [115]Sun, J. F.; Ren, C. L.; Liu, L. H. A Feasible Method for the Sensitive and Selective Determination of Vitamin Bi with CdSe Quantum Dots. Microchimica Acta,2008, 163(3-4),271-276.
    [116]Sun, J. F.; Ren, C. L.; Liu, L. H. CdTe Quantum Dots as Fluorescence Sensor for the Determination of Vitamin B6 in Aqueous Solution. Chin. Chem. Lett.,2008, 19(7),855-859.
    [117]刘正文,刘绍璞,王雷,等.水溶性硫化镉量子点作探针共振瑞利散射测定某些氨基糖苷类抗生素[A],中国化学会第26届学术年会纳米化学分会场论文集[C].2008.
    [1]Alivisatos, A. P. Semiconductor Clusters, Nanocrystals and Quantum Dots. Science, 1996,271,933-937.
    [2]Peng, X. G.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc.,1997,119,7019-7029.
    [3]Chan, W. C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281,2016-2018.
    [4]Dubertret, M. E.; Skourides, P.; Norriis, D. J. In vivo imaging of quantum dots encapsulatedin phospholipids micelles. Science,2002,298,1759-1762.
    [5]Goldman, E. R.; Balighian, D. E.; Mattoussi, H.; Kuno, M. K.; Mauro, J. M.;Tran, P. T.; Anderson, G. P. A. A natural bridge for Quantum dot-antibody conjugates. J. Am. Chem. Soc.,2002,124,6378-6382.
    [6]Akerman, M. E.; Chan, W. C.; Laakkonen, P. Nanocrystal targeting in vivo. Sci. Appl. Biol.,2002,99,12617-12623.
    [7]Wu, X. Y.; Liu, H. J.; Liu, J. Q. Immunofluorescent labeling of cancer marker Her2 and orher cellular targets with semiconductor quantum dots. Nat. Biotechnol.,2003, 21,41-46.
    [8]Murray, C. B.; Norris, D. J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE(E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc., 1993,115,8706-8715.
    [9]Rajh, T.; Micic, O. L.; Nozik, A. Synthesis and characterization of surface modified colloidal cadmium telluride quantum dots. J. Phys. Chem.,1993,97,11999-12003.
    [10]Gaponik, N.; TalaPin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmiiller, A.; Weller, H. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B, 2002,106, 7177-7185.
    [11]Pathak, S.; Choi, S. K.; Arnheim, N.; Thompson, M. E. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc.,2001,123, 4103-4104.
    [12]Palaniappan,K.;Xue,C.H.;Arumugam,G.;Hackney,S.A.;Liu,J.Water soluble, cyclodextrin-modified CdSe-CdS core-shell structured quantum dots.Chem.Mater. 2006,8,1275-1280.
    [13]Dorokhin,D.;Tomczak,N.;Han,M.;Reinhoudt,D.N.;Velders,A.H.;Vancso,G. J. Reversible phase transfer of (CdSe/ZnS) quantum dots between organic and aqueous solutions.ACS Nano,2009,3,661-667.
    [14]Wang,Y.;Tang, z.;Correa-Duarte,M.A.;Pastoriza-Santos,I.;Giersig,M.; Kotov,N.A.;Liz-Marzan,L.M.Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores.J.Phys.Chem. B., 2004,108,15461-15469.
    [15]Zhuang,J.;Zhang,X.;Wang,G.;Li,D.;Yang,W.;Li,T.Synthesis of water-soluble ZnS:Mn2+nanocrystals by using mercaptopropionic acid as stabilizer. J. Mater.Chem.,2003,13,1853-1857.
    [16]Wang,L.Y.;Zhou,Y.Y.:Wang,L.Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a nuorescence probe.Anal. Chim. Acta,2002,466,87-92.
    [17]Wang,L.Y.;Kan, X.W.;Zhang, M.C. Fluorescence for the determination of protein with functionalized nano-ZnS.Analyst,2002,127,1531-1534.
    [18]Peng, Z. A.;PeDg,X.G.Formation of high-quality CdTe,CdSe,and CdS nanocrystals using CdO as precursor.J.Am. Chem. Soc.,2001,123,183-184.
    [19]Li,D.; Li,J.H. Preparation,characterization and quantized capacitance of 32mercapto21, 22propanediol monolayer protected gold nanoparticles. Chem. Phys. Lett.,2003,372,668-673.
    [20]Guo,W. Z.;Li,J.J.;Wang, Y.A.;Peng,X.G.Luminescent CdSe/CdS core/shell nanocrystals in dendton boxes:superior chemical, photochemical and thermal stability.J.Am. Chem. Soc.,2003,125,3901-3909.
    [21]Chang, S.Q.;Daia,Y.D.;Kang,B.;Han,W.;Mao,L.;Chen,D.UV-enhanced cytotoxicity of thiol-capped CdTe quantum dots in human pancreatic carcinoma cells. Toxicol Lett.,2009, 188, 104-110.
    [1]Bruchez Jr, M.;Moronne, M.;Gin, P.;Weiss, S.;Alivisatos, A. P.Semiconductor nanocrystals as fluorescent biologicallabels.Scince,1998,281,2013-2016.
    [2]Mattoussi,H.;Mattllew Mauro,J.Self-assembly of CdSe-ZnS quantum dot bioconju-gates using an engineered recombinant protein.J.Am. Chem. Soc.,2000, 122, 12142-12150.
    [3]Mattoussi,H.;Mauto,J.M.;Goldman,E.R.;Anderson,G.P.;Sundar,V.C.; Mikulec, F. V.; Bawendi, M. G. Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein, J. Am. Chem. Soc.2000, 122.12142-12150.
    [4]Trindade,T.;O'Brien, P.;Pickett,N.L.Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives.Chem. Mater.,2001,13,3843-3858.
    [5]Michalet,X.;Pinaud,F.;Lacoste, T.D.Properties of fluorescent semiconductor nanocrystals and their application to biogical labeling. Single Mol. 2001, 2, 261-276.
    [6]Arya, H.;Kaul, Z.;Wadhwa, R.; Taira, K.;Hirano, T.;Kaul, S. C. Quantum dots in bio-imaging: Revolution by the small.Biochem. Biophys. Res. Commun, 2005, 329, 1173.1177.
    [7]Dorokhin, D.;Tomczak, N.;Han, M. Y.;Reinhoud, D. N.;Velders, A. H.;Vancso G.J. Reversible Phase Transfer of (CdSe/ZnS) Quantum Dots between Organic and Aqueous Solutions.J. Am. Chem. Soc., 2009, 3, 661-667.
    [8]Wu, Y. Z.;Chakrabortty, S.;Gropeanu, R. A.;Wilhelmi, J.;Xu, Y.;Er, K. S.;Kuan, S. L.;Koynov, K.;Chan, Y.;Weil, T. pH-Responsive Quantum Dots Via an Albumin Polymer Surface Coating.J. Am. Chem. Soc. 2010, 132, 5012-5014.
    [9]Chen, Y. F.;Rosenzweing, Z. Luminescent CdS Quantum Dots as Selective Probes, Anal. Chem., 2002, 74, 19, 5132-5138.
    [10]Tang, B.;Niu J. Y.;Yu, C. G.;Zhuo, L. H.;Ge, J. C. Highly luminescent water soluble CdTe nanowires as fluorescent probe to derect copper(Ⅱ). Chem. Commun., 2005.4184-4186.
    [11]Chen, C. Y.;Cheng, C. T.;Lai, C. W.;Wu, P. W.;Wu, K. C.;Chou, P. T.;Chou Y. H. Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H2O. Chem. Commun., 2006, 263-265.
    [12]Cai, Z. X.;Yang, H.;Zhang, Y.;Yan, X. P. Preparation, characterization and evaluation of water-soluble 1-cysteine-capped-CdS nanoparticles as nuorescence probe for detection of Hg(Ⅱ) in aqueous solution. Anal. Chim. Acta, 2006,559,234-239.
    [13]Shang, Z. B.; Wang, Y.; Jin, W. J. Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (Ⅱ) and iodide in aqueous solution. Talanta,2009,78,364-369.
    [14]Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998,281,2013-2016.
    [15]Michell, G.P.; Mirkin, C. A.; Letsingger, R. L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc,1999, 121,8122-8123.
    [16]Goldman, E. R.; Anderson, G. P.; Tran, P. T.; Mattoussi, H.; Charles, P. T.; Mauro, J. M. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem,2002, 74,841-847.
    [17]Su, X. L.; Li, Y. B. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal. Chem.,2004,76, 4806-4810.
    [18]Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bio-conjugates for imaging, labeling and sensing. Nat. Mater, 2005,4,435-446.
    [19]Li, H. B.; Han, C. P. Sonochemical Synthesis of Cyclodextrin-Coated Quantum Dots for Optical Detection of Pollutant Phenols in Water. Chem. Mater.,2008,20, 6053-6059.
    [1]Hishida, F; Akishige, J.; Murata, K. Proceedings:Effects of VB12 and aldosterone on membrane Nihon seirigaku zasshi. J. Phys. Soc. Jpn.,1974,36(8-9),363.
    [2]Okawa, M.; Mishima, K.; Nanami, T. Vitamin B12 treatment for sleep-wake rhythm disorders.1990,13(1),15-23.
    [3]Kubota, M.; Shinozaki, M.; Sasaki, H. Circadian rhythm disturbance after radiotherapy for brain tumor in infantile period-clinical effect of L-thyroxine and vitamin B12. Brain nerve,1993,45(8),759-763.
    [4]Chang, H.Y.; Sei, H.; Morita, Y. Effects of intravenously administered Vitamin B12 on sleep in the rat. Phsiology Behavior, 1995,57, 1019-1024.
    [5]Ikeda, M.; Inoue, S. Circadian rhythms in vitamin B12 content of the rat brain. Neuroscience Lett.,1997,228,131-134.
    [6]Altay, C; Cetin, M. Vitamin B12 absorption test and oral treatment in 14 children with selective vitamin B12 malabsorption. Pediatr. hematolo. oncol,1999,16(2),159-163.
    [7]Xu, Y. J.; Li, Y.; Tang, Y. N.; Wang, J. B.; Shen X. Y; Zheng X. Y The maternal combined supplementation of folic acid and Vitamin B12 suppresses ethanol-induced developmental toxicity in mouse fetuses. Reprod. Toxicolo.,2006,22,56-61.
    [8]Zhang, C; Easteal, A. J.; Edmonds, N. R.; Liang G. H. In vitro and Mechanism Study of Poly(ethylene-co-vinyl acetate)-Based Implant for Sustained Release of Vitamin B12. Macromol. Res.,2010,18(7),653-659.
    [9]Akatsuka, K.; Atsuya, I. Determination of vitamin B12 as cobalt by electrothermal atomic absorption sepectrometry using the solid sampling technique. Fresenius Z Anal. Chem.,1989,335,200-204.
    [10]Hernandez, S. R.;Ribero, G. G; Goicoechea H. C. Enhanced application of square wave voltammetry with glassy carbon electrode coupled to multivariate calibration tools for the determination of B6 and B12 vitamins in pharmaceutical preparations. Talanta,2003,61,743-753.
    [11]Barthus, R. C; Mazo, L. H.;Poppi, R. J. Simultaneous determination of vitamins C, B6 and PP in pharmaceutics using differential pulse voltammetry with a glassy carbon electrode and multivariate calibration tools. J. Pharm. Biomed. Anal,2005, 38,94-99.
    [12]Li, J.; Liu, Y. L.; Du, Y. Y; Xing, D. Pressurized capillary electrochromatographic analysis of water-soluble vitamins by Combining with on-line concentration technique. J. Chromatogr. A,2007,1154, 416-422.
    [13]Li, H. B.; Chen, F.; Jiang, Y. Determination of vitamin B12 in multivitamin tablets and fermentation medium by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A,2000,891,243-247.
    [14]鲁杰,杨大进,王竹天.固相萃取-高效液相色谱法测定保健食品中维生素B12的研究[J].中国食品卫生杂志,2004,16,324-328.
    [15]郝常明.维生素B12的研究及其进展[J].中国食品添加剂,2002,3,15-18.
    [16]Jiang, Z. L.; Sun, S. J.; Liang, A. H.; Kang, C. Y.; Huang, Z. Luminescence Properties of Metal(Ⅱ)-Diethyldithiocarbamate Chelate Complex Particles and Its Analytical Application. J. Fluoresc,2005,15(6),859-864.
    [16]Sun, J.; Zhu, X. S.; Wu, M. Hydroxypropyl-β-Cyclodextrin enhanced determination for the Vitamin B12 by Fluorescence Quenching Method.J.Fluoresc.,2007,17, 265-270.
    [17]Xu,H.;Li,Y.;Liu,C.M.;Wu,Q.S.;Zhao,Y.;Lu,L.;Tang,H. W. Fluorence resonance energy transfer between acridine orange and rhodamine 6G and its analytical application for vitamin B12 with flow-injection laser-induced fluorescence detection. Talanta,2008,77,176-181.
    [18]Jung,M.E.;Dong,T.A.;Cai,X.L.Improved synthesis of4-amino-7-nitrnbenz-2,1, 3-oxadiazoles using NBD fluoride (NBD-F). Tetrahedron Lett.,2011, 52, 2533-2535.
    [19]Macehia,M.;Salvetti,F.;Bertini, S.;Bussdlo, V. D.;Gattuso,L.;Gesi,M.;Hamdan, M.;Klotz,K.N.;Laragione,T.;Lucacchini, A.;Minutolo, F.;Nencetti, S.;Papi,C.; Tuscanob, D.; Martini, C.7-Nitrobenzofurazan (NBD) Derivatives of 50-N-Ethylcarboxamidoadenosine(NECA)as NewFluorescent Probes for Human A3 Adenosine Reeeptors.Bioorg. Med. Chem. Letl.,2001, 11, 3023-3026.
    [20]Koseki,K.;Yamasllita,S.;Takahashi,S.;Koyama,T.Novel fluorescent analogues for transmembrane movement study of polyprcnyl pllosphatcs. Bioorg.Med. Chem. Lett.,2007,17,946-950.
    [21]Olojo, R.O.;Xia,R.H.;Abramson,J.J.Spectrophotometric and fluorometric assay of superoxide ion using 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. Anal. Biochem., 2005,339,338-344.
    [22]Shi, Z.D.;Karki,R. G.;Oishi, S.;Worthy. K.M.;Bindu,L.K.;Dharmawardana,P. G;Nicklaus,M.C.;Bottaro,D.P.;Fisher, R.J.;Burke,T.R.Utilization of a nitrobenzoxadiazole (NBD) fluorophore in the design of a Grb2 SH2 domain-binding peptide mimetic. Bioorg. Med Chem. Lett.,2005,15,1385-1388.
    [23]Amon,M.;Ligneau,X.;Schwartz,J.C.;Stark, H.. Fluorescent non-inlidazole histamine H3 receptor ligands with nanomolar affnities.Bioorg. Med Chem. Lett., 2006,16,1938-1940.
    [24]Guminski,Y.;Grousseaud,M.;Cugnasse, S.;Brel,V.;Annereau,J.P.;Vispe, S.; Guilbaud,N.;Barret,J.M.;Bailly, C.;Imbett,T.Synthesis of conjugated sper-mine dervatives with 7-nitrobenzoxadiazole(NBD), rhodamine and bodipy as new fluorescent probes for the polyamine transport system.Bioorg. Med. Chem. Lett., 2009,19,2474-2477.
    [25]Key, J. A.; Cairo, C. W. Identification of fluorogenic and quenched benzoxa-diazole reactive chromophores. Dyes and Pigments, 2011,88,95-102.
    [1]Donkerbroek, J. J.; Elzas, J. J.; Gooijer, C. R.; Frei, W.; Velthorst, N. H. Some aspects of room-temperature phosphorescence in liquid solutions. Talanta, 1981,28, 717-723.
    [2]Donkerbroek, J. J.; Gooijer, C; Velthorst, N. H.; Frei, R. W. Sensitized room temperature phosphorescence in liquid solutions with 1,4-dibromonaphthalene and biacetyl as acceptors. Anal. Chem.,1982,54,891-895.
    [3]Garcia-Ruiz, C.; Scholtes, M. J.; Ariese, F.; Gooijer, C. Enantioselective detection of chiral phosphorescent analytes in cyclodextrin complexes. Talanta,2005,66, 641-645.
    [4]Wang, Y.; Feng, T. T.; Chao, J. B.; Qin, L. P.; Zhang, Z.; Jin, W. J. Phosphorescence properties and chiral discrimination of camphorquinone enantiomers in the presence of a-cyclodextrin and 1,2-dibromoethane. J. Photochem. Photobiol. A,2010, 212 (1), 49-55.
    [5]Zhu, X. S.; Sun, J.; Wu, J. Study on the inclusion interactions of (3-cyclodextrin and its derivative with dyes by spectrofluorimetry and its analytical application, Talanta, 2007,72,237-242.
    [6]Liu, C; Fu, Z.; Yu, H. P.; Xu, H. W.; Wang, L.; Zhou,Y. Y. Spectrofluorimetric study on the inclusion behavior of p-sulfonated calix [6] arene with cetyltrimethyl ammonium bromide and analytical application, J. Lumin.,2007,126,747-752.
    [7]KuwabaRa, T.; Shiba, K.; Nakajima, H.; Ozawa, M.; Miyajima, N.; Hosoda, M.; Kuramoto, N.; Suzuki, Y. Host-Guest Complexation Affected by pH and Length of Spacer for Hydroxyazobenzene-Modified Cyclodextrins, J. Phys. Chem. A,2006,110, 13521-13529.
    [8]Qiu, W. G; Li, Z. F.; Bai, G. M.; Meng, S. N.; Dai, H. X.; He, H. Study on the inclusion behavior between meso-tetrakis[4-(3-pyridiniumpropoxy)phenyl]prophyrin tetrakis-bromide and p-cyclodextrin derivatives in aqueous solution. Spectrochim. Acta, Part A. 2007,66,1189-1193.
    [9]Martin Del Valle, E. M. Cyclodextrins and their uses:a review. Process Biochemistry, 2004, 39,1033-1046.
    [10]Vazquez, M. L.; Franco, C. M.; Cepeda, A.; Prognon, P.; Mahuzier, G. Liquid chromatographic study of the interaction between aflatoxins and P-cyclodextrin. Anal. Chim. Acta,1992,269,239-247.
    [11]Moraes, C. M.; Abrami, P.; Paula, E.; Braga, A. F. A.; Fraceto, L. F. Study of the interaction between S(-) bupivacaine and 2-hydroxypropyl-β-cyclodextrin. Inter. J. Pharm.,2007,331,99-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700