CdTe量子点的合成及其基于荧光淬灭作用的分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点(quantum dots,QDs)又称半导体纳米晶(semiconductor nanocrystals)是一种高效的光致发光纳米晶体。近年来,量子点表面化学的快速发展,使它们得到了越来越广泛的应用,例如细胞及生物组织多色成像和生物大分子检测等。
     本项研究以水热法在水相中直接合成了四种不同粒径的巯基乙酸修饰的CdTe量子点,利用透射电子显微镜(TEM)、吸收光谱和荧光光谱对所合成的量子点进行了表征。结果表明,所合成的量子点具有粒径均匀、分散性好、尺寸分布较窄、发光性能良好的特点,可以用于定量检测。
     首次以合成的量子点作为pH敏感探针,实现了对抗坏血酸的定量检测。实验中观察到水溶液中抗坏血酸可以与量子点发生尺寸依赖的非线性淬灭现象。处于0.05mol·L~(-1) PBS缓冲溶液中的巯基乙酸包覆的CdTe量子点,当pH从8.22下降到6.45时,体系发生荧光淬灭,其荧光强度与相应pH之间呈现良好的线性关系。由此提出了一种简单,快速,准确定量检测抗坏血酸的方法,并对反应机理进行了探讨。在最优条件下,量子点的淬灭程度(1g(F_0/F))与抗坏血酸在1.25×10~(-5)~1.00×10~(-4) mol·L~(-1)的浓度范围内呈现良好的线性关系,相关系数为0.9981,检出限为3.6×10~(-6) mol·L~(-1)。对浓度为3.75×10~(-5) mol·L~(-1)的标准溶液平行测定11次,得到的相对标准偏差为2.1%。用本方法测定了维生素C药片和注射液中抗坏血酸的含量,结果与氧化还原滴定方法和标定值一致。
     首次以合成的CdTe量子点作为生物探针,基于荧光淬灭作用建立了一种灵敏,选择性好,操作简便的定量检测血红蛋白的方法,并对反应机理进行了探讨。在最佳条件下,量子点的淬灭程度(F_0-F)与血红蛋白的浓度在0.90~12μg·mL~(-1)范围内呈现良好的线性关系,相关系数为0.9982,检出限为0.3μg·mL~(-1)。对浓度为3.0μg·mL~(-1)的标准溶液平行测定11次,得到的相对标准偏差为1.4%。用该方法对牛血中的血红蛋白含量进行了定量检测,检测结果与常规标准方法测定值无显著性差异。
Quantum dots (QDs) have attracted tremendous attentions in the past two decades because of their high emission quantum yields, good chemical and photo-stability, size-tunable emission profiles and narrow spectral bands in comparisons with conventional organic fluorophores. Recently, the great advances in the surface chemistry of QDs allow them to be effective in practical applications, such as biological imaging and biological macro molecular detection.
     In this work, four kinds of thioglycolic acid (TGA) capped water-soluble CdTe quantum dots (QDs) with different size were synthesized via a hydrothermal synthesis method. The as-prepared QDs were characterized by transmission electron microscopy (TEM) and UV-vis absorption and fluorescence spectra. The results indicated that the synthesized CdTe QDs have small size, good monodispersity and uniform size distribution, which is suitable for the demand of quantitative determination and biological analytical applications.
     The as prepared thiol-modified CdTe quantum dots were used as pH-sensitive probes for the determination of ascorbic acid in aqueous solutions for the first time and the quenching mechanism was also discussed. The fluorescence of the water-soluble QDs could be irreversibly quenched by H~+ and the fluorescence intensity of the water-soluble QDs decreased linearly with the pH decrease in the range of 6.45-8.22. Based on this phenomenon, a simple, rapid and specific method to quick determination of ascorbic acid was proposed. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of ascorbic acid in the range of 1.25×10~(-5)-1.00×10~(-4) mol·L~(-1) with a correlation coefficient of 0.9981. The limit of detection (3σ) of 3.6×10~(-6) mol·L~(-1) was obtained with the relative standard deviation (RSD) of 2.1% for a 3.75×10~(-5) mol·L~(-1) ascorbic acid (n=11). As an application, the proposed method was successfully applied to the analysis of ascorbic acid in medical samples, and the results were consistent with those obtained from the oxidation-reduction titration method and the claimed value. This method also provided a new idea to determine acidic medicine and further to explore application of quantum dots in fluorescence sensor field.
     Based on the fluorescence quenching effect of the CdTe QDs caused by bovine hemoglobin, a sensitive, convenient and selective quantification method for the determination of bovine hemoglobin was proposed for the first time, and the reaction mechanism was also discussed. Under optimum conditions, a linear relationship was observed in the range of 0.90 - 12μg·mL~(-1) with a correlation coefficient of 0.9982 forbovine hemoglobin. The detection limit (3σ) of 0.3μg·mL~(-1) was obtained with the relative standard deviation (RSD) of 1.4% for a 3μg·mL~(-1) BHb (n=11). The proposed method was applied to the determination of BHb in bovine blood, and there were not significant difference between the content found by this method and routine standard method.
引文
1. Paul O, Nigel L P. Nanocrystalline semiconductors: synthesis, properties, and perspectives [J], Chem. Mater., 2001, 13(11): 3843-3858.
    
    2. Alivisatos A P. Semieonductor clusters, nanocrystals, and quantum dots [J], Science, 1996, 271(5251): 933-937
    
    3. Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals [J], J. Phys. Chem., 1996, 100(31): 13226-13239.
    
    4. Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, et al. (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrstallites [J], J. Phys. Chem. B, 1997, 101(46): 9463-9475.
    
    5. Du H, Chen C, Krishnan R, et al. Optical properties of colloidal PbSe nanocrystals [J], Nano Lett., 2002, 2(11): 1321-1324.
    
    6. Zhang H, Zhou Z, Yang Bai. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles [J], J. Phys. Chem. B, 2003, 107(1), 8-13.
    
    7. Han M Y, Gao X H, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J], Nat. Biotechnol., 2001, 19(7): 631-635.
    
    8. Spanhel L, Haase M, Weller H, et al. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles [J], J. Am. Chem. Soc, 1987, 109(19): 5649-5655.
    
    9. Cao Y W, Banin U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores [J], J. Am. Chem. Soc, 2000, 122(40): 9692-9702.
    
    10. Brus L. Chemical approaches to semiconductor nanocrystals [J], J. Phys. Chem. Solids., 1998, 59(4): 459-465
    
    11. Wang Y, Herron N, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties [J], J. Phys. Chem., 1991, 95(2): 525-532.
    
    12. Chan W C W, Nie S. Qantum dot bioconjugates for ultrasensitive nonisotopic detection [J], Science, 1998, 281(5385): 2016-2018.
    13.张春阳,马辉,丁尧等.量子点标记天花粉蛋白的研究[J],高等学校化学学报,2001,22(1):34-37.
    14.Mattoussi H,Mauro J M,Bawendi M G.Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein[J],J.Am..Chem.Soc.,2000,122(49):12142-12149.
    15.Bruchez M J,Mononne M,Grin P,et al.Semiconductor nanocrystals as fluorescent biological label[J],Science,1998,281(5385):2013-2016.
    16.Waton A,Wu X,Bruchez M.Lighting up cells with quantum dots[J],Biotechniques,2003,34(2):296-303.
    17.孙宝全,徐咏蓝,衣光舜等.半导体纳米晶体的光致发光特性及在生物材料荧光标记中的应用[J],分析化学,2002,30(9):1130-1136.
    18.Murray C B,Norris D J,Bawendi M G.Synthesis and characterization of nearly monodisperse CdE(E=sulfur,selenium,tellurium) semiconductor nanocrystallites [J],J.Am.Chem.Soc.,1993,115(19):8706-8715.
    19.Peng X G,Manna L,Yang W D,et al.Shape control of CdSe nanocrystals[J],Nature 2000,404(6773):59-61.
    20.Hines M A,Guyot-Sionnest P.Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals[J],J.Phys.Chem.,1996,100(2):468-471.
    21.Peng X G,Schlamp M C,Kadavanich A V,et al.Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J],J.Am.Chem.Soc.1997,119(30):7019-7029.
    22.Peng Z A,Peng X G.Formation of high-quality CdTe,CdSe,and CdS nanocrystals using CdO as precursor[J],J.Am.Chem.Soc.2001,123(1):183-184.
    23.Li L S,Pradhan N,Peng X,et al.High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors[J],Nano Lett.,2004,4(11):2261-2264.
    24.Deng Z T,Cao L,Tang F Q,et al.A New route to zinc-blende CdSe nanocrystals:mechanism and synthesis[J],J.Phys.Chem.B,2005,109(35):16671-16675.
    25.Yang D Z,Chen Q F,Xu S K.Synthesis of CdSe/CdS with a simple non-TOP-based route[J],J.Lumin.,2007,126:853-858.
    26.Rajh T,Micic O I,Nozik A J.Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots [J], J. Phys. Chem., 1993, 97(46): 11999-12003.
    
    27. Rogach A L, Katsikas L, Kornowski A, et al. Synthesis and characterization of thiol-stabilized CdTe nanocrystals [J], Phys. Chem., 1996, 100(11): 1772-1778.
    
    28. Gao M Y, Kirstein S, Rogach A L, et al. Strongly photoluminescent CdTe nanocrystals by proper surface modification [J], J. Phys. Chem. B, 1998, 102(43): 8360-8363.
    
    29. Gaponik N, Talapin D V, Rogach A L, et al. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes [J], J. Phys. Chem. B, 2002, 106(29): 7177-7185.
    
    30. Zhang H, Wang L, Xiong H, et al. Hydrothermal synthesis for high-quality CdTe nanocrystals [J], Ady. Mater., 2003, 15(20): 1712-1715.
    
    31. Sondi I, Siiman O, Matijevic E. Synthesis of CdSe nanoparticles in the presence of aminodextran as stabilizing and capping agent [J], J. Colloid. Interface. Sci., 2004, 275(2): 503-507.
    
    32. Mitchell G P, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots [J], J. Am. Chem. Soc, 1999, 121(35): 8122-8123.
    
    33. Sun B Q, Xie W Z, Yi G S, et al. J. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection [J], J. Immuno. Methods, 2001, 249(1-2): 85-89.
    
    34. Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles [J], Science, 2002, 298(5599): 1759-1762.
    
    35. Goldman E R, Anderson G P, Tran P T, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays [J], Anal. Chem., 2002, 74(4): 841-847.
    
    36. Goldman E R, Balighian E D, Kuno M K, et al. Luminescent quantum dot-adaptor protein-antibody conjugates for use in fluoroimmunoassays [J], Phys. Stat. Sol. B, 2002, 229(1): 407-414.
    
    37. Wlliams S C, Parak D J, Zanchet D. et al. Synthesis and properties of biocompatible water-soluble silica-coated Cdse/ZnS semiconductor quantum dots [J], J. Phys. Chem. B, 2001, 105(37): 8861-8871.
    38. Michalet X, Pinaud F, Lacoste T D, et al. Properties of fluorescent semiconductor nanocrystals and application to biological labeling [J], Single Molec, 2001, 2(4): 261-276.
    
    39. Wang Y A, Li J J, Chen H, et al. Stabilization of inorganic nanocrstals by organic dendrons [J], J. Am. Chem. Soc, 2002, 124(10): 2293-2298.
    
    40. Guo W, Peng X. Nanocrystal in dendron-box: a versatile solution to the chemical, photochemical, and thermal instability of colloidal nanocrystals [J], Comp. Rend. Chim., 2003, 6(8-10): 989-997.
    
    41. Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes [J], Anal. Chem., 2002, 74(19): 5132-5138.
    
    42. Gattas-Asfura K M, Leblanc R M. Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver(I) [J], Chem. Commun., 2003, (21): 2684-2685.
    
    43. Jin W J, Ferandez-Argiielles M T, Costa-Fernandez J M, et al. Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions [J], Chem. Commun., 2005, (7): 883-885.
    
    44. Liang J G, Ai X P, He Z K, et al. Functionalized CdSe quantum dots as selective silver ion chemodosimeter [J], Analyst, 2004, 129(7): 619-622.
    
    45. Chen B, Yu Y, Zhou Z, et al. Synthesis of novel nanocrystals as fluoreseent sensors for Hg~(2+) ions [J], Chem. Lett., 2004, 33(12): 1608-1609
    
    46. Chen B, zhong P. A new determining method of copper(II) ions at ng·mL~(-1) levels based on quenehing of the water soluble nanocrystals fluorescence [J], Anal. Bioanal. Chem., 2005, 381(4): 986-992.
    
    47. Chen J L, Gao Y C, Xu Z B, et al. A novel fluorescent array for mercury(II) ion in aqueous solution with functionalized cadmium selenide nanoclusters [J], Anal. Chim. Acta, 2006, 577(11): 77-84.
    
    48. Wu H, Liang J, Han H. A novel method for the determination of Pb~(2+) based on the quenching of the fluorescence of CdTe quantum dots [J], Microchim. Acta, 2008, 161(1-2): 81-86.
    
    49. Joseph R, Ignacy G, Zygmunt G S, et al. Luminescence spectral properties of CdS narioparticles [J], J. Phys. Chem. B, 1999, 103(36): 7613-7620.
    
    50. Jin W J, Costa-Fernandez J M, Pereiro R, et al. Surface-modified CdSe quantum dots as luminescent probes for cyanide determination [J], Anal. Chim. Acta, 2004, 522(1): 1-8.
    
    51. Gerion D, Chen F, Kannan B, et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrstals and microarrays [J], Anal. Chem., 2003, 75(18): 4766-4772.
    
    52. Goldman E R, Anderson G P, Mattoussi H, et al. Preparation of quantum dot-biotin conjugates and their use in immunochromatography Assays [J], Anal. Chem., 2003, 75(16): 4043-4049.
    
    53. Goldman E R, Anderson G P, Mattoussi H, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents [J], Anal. Chem., 2004, 76(3): 684-688.
    
    54. Wang S P, Mamedova N, Kotov N A, et al. Antigen/anitibody immunocomplex from CdTe nanoparticle bioconjugates [J], Nano lett., 2002, 2(8): 817-822.
    
    55. Akerman M E, Chan W C W, Laakkonen P, et al. Nanocrystal target in invivo [J], Proc. Natl. Acad. Sci. U. S. A., 2002, 99(20): 12617-12621.
    
    56. Kim S, Lim Y T, Soltesz E G, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping [J], Nat. Biotechnol., 2004, 22(1): 93-97.
    
    57. Snee P T, Somers R C, Nair G E, et al. A ratiometric CdSe/ZnS nanocrystal pH sensor [J], J. Am. Chem. Soc, 2006, 128(41): 13320-13321.
    
    58. Tomasulo M, Yildiz I, Raymo F M. pH-sensitive quantum dots [J], J. Phys. Chem. B, 2006, 110(9): 3853-3855.
    
    59. Susha A S, Javier A M, Parak W J, et al. Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions [J], Colloids Surf. A: Physicochem. Eng. Asp., 2006, 281(1-3): 40-43.
    
    60. Zhang Y, Deng Z T, Yue J C, et al. Using cadmium telluride quantum dots as a proton flux sensor and applying to detect H9 avian influenza virus [J], Anal. Biochem., 2007, 364(2): 122-127.
    
    61. Deng Z T, Zhang Y, Yue J C, et al. Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses [J], J. Phys. Chem. B, 2007, 111(41): 12024-12031.
    
    62. Yu D H, Wang Z, Liu Y, et al. Quantum dot-based pH probe for quick study of enzyme reaction kinetics [J], Enzyme Microb. Tech., 2007, 41(1-2): 127-132.
    63.Liu Y S,Sun Y H,Vernier P T,et al.PH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells[J],J.Phys.Chem.C,2007,111(7):2872-2878.
    64.Wang Y Q,Ye C,Zhu Z H,et al.Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination[J],Anal.Chim.Acta,2008,610(1):50-56.
    65.Huang C P,Li Y K,Chen T M.A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots[J],Biosens.Bioelectron.,2007,22(8):1835-1838.
    66.Huang C P,Liu S W,Chen T M,et al.A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots[J],Sens.Actuators B,2008,130(1):338-342.
    67.鞠熀先,荀以刚,陈洪渊.碳纤维微电极研究(ⅩⅧ):亚甲基蓝/Nafion修饰微柱碳纤维电极测定血红蛋白的研究[J],高等学校化学学报,1994,15(6):827-831.
    68.林丽,仇佩虹,杨丽珠等.纳米银粒子修饰电极法测定血红蛋白[J],分析化学2006,34(1):31-34.
    69.Bao X Y,Zhu Z W,Li N Q,et al.Electrochemical studies of rutin interacting with hemoglobin and determination of hemoglobin[J],Talanta,2001,54(4):591-596.
    70.冶保献,周性尧.血红蛋白在裸银电极上的直接电化学及其分析应用[J],高等学校化学学报,1996,17(1):33-37.
    71.van Bommel M R,de Jong A P J M,Tjaden U R,et al.High-performance liquid chromatography coupled to enzyme-ampli fled biochemical detection for the analysis of hemoglobin after pre-column biotinylation[J],J.Chromatogr.A,2000,886(1-2):19-29.
    72.Inoue H,Maeno Y,Iwasa M,et al.Sensitive detection of human globin chains by microbore high-performance liquid chromatography and its forensic application[J],J.Chromatogr.B,1997,688(2):221-227.
    73.ICSH.Recommendations for reference method for hemoglobin-nometry in human blood(ICSH standard 1995) and specifica-tions for international hemoglobincyamide standard(4th edi-tion)[J],J.Clin.Pathol.,1996,49(4):271-274.
    74.Takahata K,Igarashi S.Spectrophotometric determination of trace amounts of hemoglobin using the oxidative decomposition reaction of a copper(Ⅱ)-phthalocyanine complex[J],Clin.Chim.Acta,1999,283(1-2):129-138.
    75.van Kampen E J,Zijlstra W G.Standardization of hemoglobinometryⅡ.The hemiglobincyanide method[J],Clin.Chim.Acta,1961,6(4):538-544.
    76.Standefer J C,Vanderjagt D.Use of tetramethylbenzidine in plasma hemoglobin assay[J],Clin.Chem.,1977,23(4):749-751.
    77.Lijana R C,Williams M C,Tetramethylbenzidine-a substitute for benzidine in hemoglobin analysis[J],J.Lab.Chin.Med.,1979,94(2):266-276.
    78.Levinson S S,Goldman J.Measuring hemoglobin in plasma by reaction with tetramethybenzidine[J],Clin.Chem.,1982,28(3):471-474.
    79.Zhang K,Cai R X,Chen D H,et al.Determination of hemoglobin based on its enzymatic activity for the oxidation of O-phenylenediamine with hydrogen peroxide [J],Anal.Chim.Acta,2000,413(1-2):109-113.
    80.王全林,刘志洪,原弘等.胶束增敏催化荧光法测定血红蛋白[J],分析化学,2001,29(4):421-424.
    81.李晓燕,张元勤,刘志昌等.一种高灵敏度测定血红蛋白的荧光分析法[J],分析化学,2005,33(1):54-56.
    82.Chen Y J,Yang J H,Wu X,et al.Resonance light scattering technique for the determination of proteins with resorcinol yellow and OP[J],Talanta,2002,58(5):869-874.
    83.Yang X F,Guo X Q,Li H.Fluorimetric determination of hemoglobin using spiro form rhodamine B hydrazide in a micellar medium[J],Talanta,2003,61(4):439-445.
    84.Sun C Y,Liu B,Li J H.Sensitized chemiluminescence of CdTe quantum-dots on Ce(IV)-sulfite and its analytical applications[J],Talanta,2008,75(2):447-454.
    85.中华人民共和国卫生部药典委员会编.中华人民共和国药典(二部)[M],北京:化学工业出版社,2005,669-671.
    86.刘海玲,欧水平.阻抑动力学光度法测定抗坏血酸[J],分析化学,2002,30(1):122.
    87.Ensafi A A,Rezaei B,Movahedinia H.Kinetic-spectrophotometric determination of ascorbic acid by inhibition of the hydrochloric acid-bromate reaction[J], Spectrochim.Acta Part A,2002,58(12):2589-2594
    88.谢全彪.分光光度法同时测定食品中的抗坏血酸和山梨酸[J],分析化学,1997,25(2):247.
    89.Esteban M R,Ho C N.Enzymatic spectrophotometric determination of ascorbic acid in commercial vitamin C tablets[J],Microchem.J.,1997,56(1):122-129.
    90.章丽,佘世科,高峰等.一种新型环糊精衍生物的制备及荧光法测定抗坏血酸[J],分析化学,2005,33(11):1583-1586.
    91.蒋淑艳,曲复宁.同步荧光-双波长法同时测定抗坏血酸和丙酮酸[J],分析化学,1997,25(9):1064.
    92.刘佳铭.抑制-褪色光度法测定维生素C[J],分析化学,2000,28(9):1147-1149.
    93.刘宝红,陈蕾,刘海鹰等.四氰基醌二甲烷修饰碳糊电极电催化氧化测定抗坏血酸[J],分析化学,1995,23(2):206.
    94.马全红,邓家祺.花椰莱组织膜2苯醌修饰电极测定L-抗坏电酸的研究[J],分析化学,1994,22(2):121.
    95.张雷,林祥钦.单分子层γ-氨基丁酸共价修饰破碳电极同时测定多巴胺、尿酸和抗坏血酸[J],高等学校化学学报,2003,24(4):59.
    96.Verdini R A,Lagier C M.Voltammetric iodometric titration of ascorbic acid with dead-stop end-point detection in fresh vegetables and fruit samples[J],J.Agric.Food Chem.,2000,48(7):2812-2817.
    97.祝兴华,何云华,刘梅等.锰C-抗坏血酸-甲醛化学发光体系的研究[J],分析化学,2004,32(6):752-754.
    98.陈浩汉,秦伟,章竹君.高灵敏反相流动注射化学发光法测定抗坏血酸[J],分析化学,1997,25(9):1079.
    99.李峰,朱果逸.铬(Ⅵ)-过氧化氢-鲁米诺化学发光法测定痕量抗坏血酸[J],分析化学,2002,30(5):580.
    100.Weller H.Colloidal semiconductor Q-particles:chemistry in the transition region between solid state and molecules[J],Angew.Chem.Int.Ed.,1993,32(1):41-53.
    101.Cao Q E,Wang K,Hu Z,et al.Syntheses of three new derivatives of 8-aminoquinoline and its applications for fluorimetric determination of copper(Ⅱ)[J],Talanta,1998,47(4):921-927.
    102.Dong C Q,Qian H F,Fang N H,et al.Study of fluorescence quenching and dialysis process of CdTe quantum dots,using ensemble techniques and fluorescence correlation spectroscooy[J],J.Phys.Chem.B,2006,110(23):11069-11075.
    103.常文保,李克安.简明分析化学手册[M],北京大学出版社,1981,261-266.
    104.Li M Y,Ge Y X,Chen Q F,et al.Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors' concentration and their conjunction with BSA as biological fluorescent probes[J],Talanta,2007,72(1):89-94.
    105.Guo J,Yang W L,Wang C C.Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions[J],J.Phys.Chem.B,2005,109(37):17467-17473.
    106.Yu W W,Qu L H,Guo W Z,et al.Experimental Determination of the Extinction coefficient of CdTe,CdSe,and CdS Nanocrystals[J],Chem.Mater.,2003,15(14),2854-2860.
    107.Diao X L,Xia Y S,Zhang T L,et al.Fluorescence-detecting cationic surfactants using luminescent CdTe quantum dots as probes[J],Anal.Bioanal.Chem.,2007,388(5-6):1191-1197.
    108.Laferriere M,Galian R E,Maurel V,et al.Non-linear effects in the quenching of fluorescent quantum dots by nitroxyl free radicals[J].Chem.Commun.,2006,(3):257-259.
    109.Wang Y,Tang Z,Correa-Duarte M A,et al.Mechanism of strong luminescence photoactivation of cirtrate-stabilized water-soluble nanoparticles with CdSe core[J],J.Phys.Chem.B,2004,108(40):15461-15469.
    110.Sun J F,Liu L H,Ren C L,et al.A feasible method for the sensitive and selective determination of vitamin B1 with CdSe quantum dots[J],Microchim.Acta,2008,163(3-4):271-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700