子午线轮胎综合接地性能评价体系与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮胎标签法的实施,对轮胎产品质量提出了更高的要求。中国制造商生产的轮胎36%达不到欧盟第一阶段标准,50%达不到欧盟第二阶段标准。其根本原因在于企业自主研发能力不足,缺失相应的轮胎性能评价体系。目前对轮胎接地性能的评价主要依据试验,评价结果与轮胎结构之间尚缺乏必要的桥梁,亟需一种对轮胎综合接地性能进行评价与预测的方法。
     运用Tekscan压力分布测量系统对轮胎接地压力分布展开了试验研究,以某型号轮胎为例研究了充气压力及负荷对接地压力分布的影响。结果表明,接地面积随负荷的增加呈线性规律增加;接地面积随充气压力的增加而减小,但不存在线性关系。
     进行轮胎综合接地性能评价的前提是采用合适的方法对轮胎接地压力特征进行描述。本文对轮胎接地压力分布特征进行了研究,提出采用10个接地压力几何特征指标与5个接地压力力学特征指标对其进行描述的方法。基于接地压力特征描述方法,开发了接地压力特征处理软件—-TFAS,实现了对接地压力特征指标的自动化处理。
     以全钢载重子午线轮胎385/55R22.5为研究对象,运用有限元方法对轮胎接地压力分布进行了仿真试验研究。进行了轮胎橡胶材料及钢丝帘线材料拉伸力学特性的试验研究,探索了有效的有限元所需轮胎材料参数试验方法,选用Yeoh本构模型描述橡胶材料,Rebar模型描述帘线-橡胶材料,建立了轮胎有限元分析模型。从轮胎的充气外轮廓、负荷-下沉量及接地压力分布方而对有限元分析模型进行了验证,结果表明本文所采用的有限元模型建模方法是正确的,有限元模型的计算精度满足研究需要。
     以385/55822.5型轮胎现行设计断面与实际测绘断面为基础,分别建立了有限元分析模型,分析了气压、负荷、带束层结构、胎冠弧结构及断而轮廓设计等参数对接地压力分布的影响规律。研究结果表明,随着负荷的增加或气压的降低,该轮胎接地压力分布都呈现内凹的蝴蝶型,容易导致胎肩部位的旱期破坏:带束层宽度的增加对接地压力分布形状无明显改善;带束层角度的增加,对轮胎胎面的箍紧作用减弱,使轮胎胎肩处的接地压力减小,接地压力分布趋于知形;结合带束层宽度增加及角度增加可以带来较好的改善压力分布的效果:胎冠弧结构对改善接地压力分布最有效,通过胎冠弧的控制可以得到任何接地压力分布形状;断面轮廓设计对改善轮胎在接地面内的接地压力分布有重要作用,可以增加轮胎接地面积,使接地压力分布更加均匀。
     研究轮胎综合接地性能,即抓地性能、磨损性能及滚动阻力性能的虚拟试验方法,提出以轮胎制动时的切向力值来度量轮胎抓地性能,以接地面摩擦能量损失值来度量轮胎磨损性能,以滚动阻力值来度量轮胎滚动阻力性能。分析轮胎接地压力分布特征对抓地性能、磨损性能及滚动阻力性能的影响规律。结果表明,静态加载工况下,轮胎与路而间法向及切向作用力均呈中心对称分布;制动工况下,接地面内的法向力分布与切向力分布相似,轮胎接地压力中心前移,在胎面中心处的切向力向接地区后缘凸出,而两侧胎肩处的切向力则向接地区前端凸出;轮胎在制动工况下胎肩处应力集中现象比静态加载工况更明显,接地面积比静态加载工况高出了7%左右。轮胎磨损是在与路面的接触区内切向力和胎面滑移的共同作用下产生的,路面切向力的大小不直接影响轮胎的磨损。在自由滚动工况下,滚动阻力随着气压的减小或负荷的增加而增加。相比静态加载工况,滚动工况下胎面中部不再出现应力集中现象,接地压力向胎肩处移动。
     运用相关分析理论研究了轮胎接地性能与接地压力分布特征指标之间的关系,结果表明,较宽行驶面设计的轮胎,具有更优秀的抓地能力;平均接地压力和接地压力偏度值越大,磨损性能越差:硬度系数对轮胎滚动阻力的影响最显著。在此基础上,结合仿真试验结果,提出轮胎综合接地性能评价层次分析法(AHP)模型及其判断知阵构造方法,建立了轮胎综合接地性能评价的AHP模型,对判断矩阵的一致性检验表明,本文提出的AHP模型判断矩阵构造方法是准确有效的。运用所建立的轮胎综合接地性能评价体系,对4种轮胎设计方案进行子评价与预测,评价结论与仿真试验结论一致性良好,表明本文提出的轮胎综合接地性能评价体系的构建方法是可行的。为完善轮胎综合性能评价体系提供了研究工作基础,为提升我国轮胎产业的研发效率与轮胎质量等级提供了技术支持。
The tires labeling regulation has set requirements of tire quality. It is reported that there are36%of tires produced by Chinese factories cannot meet the standard of the first stage and50%of the tires cannot meet the standard of the second stage of the regulation. The basic reason to the situation is the lacking of independent innovation and tire performance evaluation system. Nowadays tire performance evaluation is mainly according to the test. The relationship between evaluation results and tire structure requires exploring. It is urgent to put forward an evaluation and prediction method of tire ground performance.
     Tire-ground pressure distribution test is carried out by Tekscan system. Taking a tire as an example, the laws of tire inflation pressure and load affecting the pressure distribution are studied. The results show that the contact area increases linearly with the load. But there is no linear relationship between the contact area decreasing and the inflation pressure increasing.
     To evaluate tire ground performance, a proper way of describing the footprint characters needs to be put forward. This paper adopts10footprint geometrical indexes and5mechanical characters indexes to describe the tire-ground pressure distribution. Based on the describing method, the software called TFAS (Tire Footprint Analyze System) has been invented. The footprint character indexes can be calculated automatically.
     Taking the TBR tire385/55R22.5as the study object, the tire-ground pressure distribution is analyzed by finite element method. The mechanical properties of rubber material and steel cord material are studied by experiments. An effective testing method of getting material parameters for FEA is explored. The Yeoh model is chose for describing rubber material and Rebar model is chose for cord-rubber material to establish the FEA model. The validation of the FEA model is proved by tire contour dimensions, load-deflection and tire-ground pressure distribution. The calculation accuracy of the FEA model meets the research needs.
     Based on the current design cross section and the actual mapping cross section of tire385/55R22.5, FEA models are built to study the law of inflation pressure, load, belt structure, crown arc and contour profile working upon the tire-ground pressure distribution. The conclusions show that the footprint becomes concave with the decrease of inflation pressure and increase of load. This phenomenon often leads to tire tread shoulder early wear. The increase of belt width brings little improvement to footprint while the increase of belt angle makes the pressure of tread shoulder decrease and the footprint becoming rectangle. The tire-ground pressure distribution can be well improved by increasing the belt width and angle at the same time. The crown arc can modify the footprint directly and almost any footprint can be acquired by control the crown arc parameters. The contour profile of cross section has great importance of improving the tire-ground pressure distribution, increasing the contact area and making the contact pressure well-distributed.
     The tire ground performance is studied by using the virtual test method of simulating tire grip performance, wear performance and rolling resistance. The value of the tangential force is put forward to measure grip performance, the friction energy loss to measure wear performance and the rolling resistance to measure the rolling resistance performance. The results show that normal and tangential forces on tire-ground contact surface both show a center symmetric distribution during static-load condition. While the normal and tangential forces on the contact surface show a similar tendency that the force on tread center moving back and the forces on tread shoulder moving front during the braking condition. Comparing with the static-load condition the stress concentration of the tread shoulder during braking condition is more obvious and the contact area is7%larger. Tire wear happens in the joint action of tangential force and tread slippage. The value of tangential force doesn't determine the friction energy loss, thus tread wear. During free rolling condition, the rolling resistance increases with the increase of load and decrease of inflation pressure and the forces on tread center becomes even and the forces on tread shoulder is higher.
     The relation between the tire ground performances and the pressure distribution characters is studied by correlation analysis. The conclusions show that tire with wider tread has better grip performance. The lager the average pressure and the pressure deviation value are, the worse wear performance is. The stiffness of tire has the most important influence on the rolling resistance. On the basis of correlation analysis and the finite element analysis conclusions, the analytic hierarchy process model and judgment matrix of evaluating tire ground performance are built. The method accuracy of building judgment matrix is proved by consistency check. The tire-ground performances of4tires with different structure designs are predicted and evaluated by the evaluation system. The evaluation conclusions show good consistency with the virtual test result acquired from finite element analysis. The conclusions have provided research foundation of completing tire comprehensive performance evaluation system and technique support of improving R&D efficiency of China's tire industry and tire quality.
引文
[1]http://data.chyxx.com/201302/194024.html
    [2]EC 1222/2009《有关燃油效率及其它基本参数的轮胎标签》
    [3]GENT A N, WALTER J D. The pneumatic tire[M].National Highway Traffic Safety Administration, U.S. Department of Transportation, Washington DC 20590,2005.
    [4]酒井秀男,管建民.关于橡胶以及轮胎接触压力分布的测定和图象处理研究[J].橡胶工业,1995,42(11):682-692.
    [5]Pillai P S, Fielding-Russell G S. Empirical equations for tire footprint area[J]. Rubber chemistry and technology,1986,59(1):155-159.
    [6]张安强,姚钟尧.轮胎接地压力分布及其测试方法[J].橡胶工业,2001,48(6):368-374.
    [7]Marshek K M, Chen H H, Connell R B, et al. Experimental determination of pressure distribution of truck tire-pavement contact[J]. Transportation Research Record,1986 (1070).
    [8]Marshek,K M. Effect of truck tire inflation pressure and axle load on flexible and rigid pavement performance[J]. Transportation Research Record.1986(1):14-21.
    [9]俞淇等、静负荷下轮胎接地压力分布测试的研究.轮胎工业,1999(19):203-207
    [10]王吉忠等.花纹磨光轮胎接地特性试验研究.农业机械学报,2001.32(2): 18-20.
    [11]周刚,周进川,邓敏,等.轮胎接地压力试验研究[J].公路交通科技(应用技术版),2008,25(9):354-357
    [12]Tielking J T,Abraham,Moises A. Measurement of truck tire footprint pressures[J]. Transportation Research Record.1994(9):92-99.
    [13]Koehne S H, Matute B, Mundl R. Evaluation of tire tread and body interactions in the contact patch[J]. Tire Science and Technology,2003,31(3):159-172.
    [14]Jankowska K, Krzyzynski T, Domscheit A. An application for tyre-ground contact area analysis[J]. Computer Recognition Systems,2005:843-850.
    [15]胡小弟,孙立军.重型货车轮胎接地压力分布实测[J].同济大学学报:自然科学版,2005, 33(011):1443-1448,
    [16]梁晨.子午线轮胎接地压力特性研究[D].镇江:江苏大学,2010.
    [17]Cheli F, Braghin F. Brusarosco M, et al. Design and testing of an innovative measurement device for tyre-road contact forces[J]. Mechanical Systems and Signal Processing,2011.25(6):1956-1972.
    [18]Nakajima Y. Application of computational mechanics to tire design-yesterday, today, and tomorrow[J]. Tire Science and Technology.2011,39(4):223-244.
    [19]Zhang X. Rakheja S, Ganesan R. Stress analysis of the multi-layered system of a truck tire[J]. Tire science and technology,2002,30(4):240-264.
    [20]Zamzamzadeh M. Negarestani M. A 3D tire/road interaction simulation by a developed model (ABAQUS code)[J]. Asian Simulation and Modeling. Chiang Mai. Thailand.2007.
    [21]梁晨,王国林,伍建军,等.载重子午线轮胎接地几何特征研究[J].拖拉机与农用运输车,2010 (001):55-56.
    [22]Kim K W. Finite element analysis of a steady-state rolling tire taking the effect of tread pattern into account[J]. International journal of automotive technology,2006,7(1):101-108.
    [23]Xia K, Yang Y. Three-dimensional finite element modeling of tire/ground interaction[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2012,36(4):498-516.
    [24]Shiraishi M, Yoshinaga H, Miyori A, et al. Simulation of dynamically rolling tire[J]. Tire Science and Technology,2000,28(4):264-276.
    [25]刘锋,李丽娟,杨学贵.轮胎与地面接触问题的非线性有限元分析[J].应用力学学报,2001,18(4).
    [26]苗常青,谭惠丰,杜星文.轮胎—松软地而相互作用有限元分析[J].兵工学报,2002, 23(2): 150-154.
    [27]程钢,赵国群,管延锦.子午线轮胎静态接触有限元分析及试验研究[J].汽车工程,2005, 26(5):588-592.
    [28]赵国群,程钢,管延锦.滚动轮胎接地性能有限元分析[J].中国机械工程,2006,17(1):104-108.
    [29]许喆,王伟,赵树高.静态及滚动状态下轮胎接地印痕的有限元分析[J].弹性体,2009, 18(6): 13-18.
    [30]Moisescu R, FRATILA G. Finite element model of radial truck tyre for analysis of tyre-road contact stress [J]. Scientific Bulletin of University Politehnica of Bucharest, series D,2011 (3):3-16.
    [31]Albert, BJ mid Walker, JC, "Tyre to wet road friction," Proceedings of the Institute Mechanical Engineers,1965-66, Vol.180, p.105.
    [32]Dijks A. Influence of tread depth on wet skid resistance of tires[R].1976.
    [33]Jeusette J P, Theves M. Finite element analysis of tire/rim interface forces under braking and cornering loads[J]. Tire Science and Technology,1992,20(2):83-105.
    [34]Dolwichai P, Limtragool J. The effect of tire treads shape to stick-slip phenomenon in frictional contact[C]//The 20th Conference of MENETT.2006:18-20.
    [35]Kuwajima M, Koishi M, Sugimura J. Contact analysis of tire tread rubber on flat surface with microscopic roughness 3[J]. Tire Science and Technology,2006,34(4):237-255.
    [36]Heinrich G, Kluppel M. Rubber friction, tread deformation and tire traction[J]. Wear,2008,265(7): 1052-1060.
    [37]Bozeat N. Impact assessment study on possible energy labelling of tyres [J]. European Commission Directorate-General Transport and Energy,2008.
    [38]Carbone G, Lorenz B, Persson B N J, et al. Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties[J]. The European Physical Journal E;Soft Matter and Biological Physics,2009,29(3):275-284.
    [39]Sridharan K, Sivaramakrishnan R. Dynamic behavior of tyre tread block[J]. American Journal of Engineering and Applied Sciences,2012,5 (2):119-127
    [40]Choi J H, Cho J R, Woo J S, et al. Numerical investigation of snow traction characteristics of 3-D patterned tire[J]. Journal of Terramechanics,2012,49(2):81-93
    [41]杨始燕.改善轮胎接地面垂直压力分布的研究[J].橡胶工业.1992,39(011):689-691.
    [42]陆金燕.轮胎接地面三向力的动态测量[J].橡胶工业,1992,39(010):609-614.
    [43]Koutny F. A model for tire wear[J]. Rubber chemistry and technology.1991,64(5):683-695.
    [44]Veirh A G. A review of important factors affecting treadwear[J]. Rubber chemistry and technology, 1992,65(3):601-659.
    [45]Grosch K A. Abrasion of rubber and its relation to tire wear[J]. Rubber chemistry and technology,1992, 65(1):78-106.
    [46]Muhr AH, Roberts A D. Rubber abrasion and wear[J]. Wear,1992,158(1):213-228.
    [47]彭旭东,郭孔辉,丁玉华,等.轮胎磨耗机理及炭黑对磨耗的影响[J].合成橡胶工业,2003,26(003):136-140.
    [48]Fluegge J H, Kumar P R, Mau E, et al. Method and apparatus for wheel alignment audit:U.S. Patent 5,583,797[P].1996-12-10.
    [49]Fujikawa T, Yamazaki S, Uchiyama Y. Tire wear caused by mild tread slip[J]. Rubber chemistry and technology,1997,70(4):572-583.
    [50]Wright C, Pritchett G L, Kuster R J, et al. Laboratory tire wear simulation derived from computer modeling of suspension dynamics[J]. Tire Science and Technology,1991,19(3):122-141.
    [51]董保利,左曙光,吴旭东.轮胎均匀磨损建模与仿真[J].计算机仿真,2009 (2): 274-277.
    [52]黄海波,靳晓雄,丁玉伙.轮胎偏磨损机理及数值解析方法研究[J].同济大学学报(自然科学版),2006,34(2).
    [53]郝少锋.双轴转向及前轮摆振等引起的汽车轮胎磨损的研究[D].西安:长安大学,2008.
    [54]Zheng D. Prediction of tire tread wear with FEM steady state rolling contact simulation[J]. Tire Science and Technology,2003,31(3):189-202.
    [55]Lupker H, Cheli F, Braghin F, et al. Numerical prediction of car tire wear[J]. Tire Science and Technology,2004,32(3):164-186.
    [56]Cho J C, Jung B C. Prediction of tread pattern wear by an explicit finite element model 3[J]. Tire Science and Technology,2007,35(4):276-299.
    [57]庄继德.现代汽车轮胎技术[M].北京理工大学出版社,2001
    [58]崔胜民,余群,汽车工程汽车轮胎行驶性能与测试[M].机械工业出版社,1995.
    [59]沈浩.轮胎偏磨损机理及动力学改进方案研究[D].上海:同济大学,2000.
    [60]何涛,李子然,汪洋.子午线轮胎胎向花纹块滑动磨损有限元分析[J].工程力学,2010, 7:038.
    [61]王国林.王晨,张建.等.基于有限元分析的轮胎磨损性能优化[J].汽车工程,2009(9): 867-870.
    [62]方庆红,路金林.轮胎磨损分析中接地能量损失的有限元计算模型研究[J].沈阳化工学院学报.2002.16(3):228-231.
    [63]Glemming D A, Bowers P A. Tire testing for rolling resistance and fuel economy[J]. Tire Science and Technology,1974,2(4):286-311.
    [64]Bekker M G, Semonin E V. A note on tire rolling resistance due to test wheel curvature[J]. Tire Science and Technology,1977,5(2):119-122.
    [65]Clark S K. Rolling resistance of pneumatic tires[J].Tire Science and Technology,1978,6(3):163-175.
    [66]Mars W V, Luchini J R. An analytical model for the transient rolling resistance behavior of tires[J]. Tire Science and Technology,1999,27(3):161-175.
    [67]Wei Y T, Tian Z H, Du X W. A finite element model for the rolling loss prediction and fracture analysis of radial tires[J]. Tire science and technology,1999,27(4):250-276.
    [68]Ebbott T G, Hohman R L, Jeusette J P, et al. Tire temperature and rolling resistance prediction with finite element analysis[J]. Tire Science and Technology,1999,27(1):2-21.
    [69]Futamura S, Goldstein A. A simple method of handling thermomechanical coupling for temperature computation in a rolling tire[J]. Tire Science and Technology,2004,32(2):56-68.
    [70]Shida Z, Koishi M, Kogure T, et al. A rolling resistance simulation of tires using static finite element analysis[J]. Tire Science and Technology,1999,27(2):84-105.
    [71]Luchini J R, Peters J M, Arthur R H. Tire rolling loss computation with the finite element method[J]. Tire Science and Technology,1994,22(4):206-222.
    [72]Luchini J R, Motil M M, Mars W V. Tread depth effects on tire rolling resistance[J]. Tire Science and Technology,2001,29(3):134-154.
    [73]Cho J R, Lee H W, Jeong W B, et al. Numerical estimation of rolling resistance and temperature distribution of 3-D periodic patterned Tire[J]. International Journal of Solids and Structures,2012, 50(1):86-96
    [74]Terziyski J, Kennedy R. Accuracy, sensitivity, and correlation of FEA-computed coastdown rolling resistance 3[J]. Tire Science and Technology,2009,37(1):4-31.
    [75]Yokota K, Higuchi E, Kitagawa M. Estimation of tire temperature distribution and rolling resistance under running conditions including environmental factors[J]. SAE Technical Paper,2012:01-0796.
    [76]赵敏.降低轮胎滚动阻力的途径[J].轮胎工业,2006,26(10):586-593.
    [77]颜晋钧,陈宏.胎面胶对轮胎滚动阻力的影响[J].轮胎工业,2007,27(001):11-14.
    [78]Ghosh S, Sengupta R A, Heinrich G. Investigations on rolling resistance of nanocomposite based passenger car radial tyre tread compounds using simulation technique[J]. Tire Science and Technology, 2011,39(3):210-222.
    [79]崔玉福.郑慕侨.负重轮胎滚动阻力数学模型及分析[J].兵工学报.1998,19(004):289-292.
    [80]王建强,高蔚.台试于路试轮胎滚动阻力关联性研究[J].汽车工程,2003,25(6):613-616.
    [81]王建强,戴建国,高蔚.台试轮胎滚动阻力模型应用研究[J].农业机械学报,2003.34(004):35-38.
    [82]龚科家,危银涛,叶进雄.基于热力学有限元分析的轮胎滚动阻力仿真[J].中国机械工程.2009.10(5):626-629
    [83]韩秀枝.子午线轮胎稳态滚动阻力及水滑特性的研究[D].北京:北京化工大学,2009.
    [84]伍建军.载重子午线轮胎滚动阻力有限元仿真分析[D].镇江江苏大学,2011
    [85]张绍果,杭柏林,等.汽车轮胎滚动阻力试验机测试方法分析[J].中国公路学报,2012.1:021.
    [86]De Beer M, Fisher C. Jooste F J. Determination of pneumatic tyre/pavement interface contact stresses under moving loads and some effects on pavements with thin asphalt surfacing layers[C]//Proceedings of the Eighth International Conference on Asphalt Pavements. Seattle, Washington.1997:179-226.
    [87]De Beer M, Maina J W, van Rensburg Y, et al. Toward using tire-road contact stresses in pavement design and analysis[J]. Tire Science And Technology,2012,40(4):246-271.
    [88]张吉军.模糊层次分析法(FAHP)[J]模糊系统与数学,2000,14(002):80-88.
    [89]吕跃进.基于模糊一致矩阵的模糊层次分析法的排序[J].模糊系统与数学,2002,16(2):79-85.
    [90]常建娥,蒋太立.层次分析法确定权重的研究[J].武汉理工大学学报(信息与管理工程版),2007,29(1):153-156.
    [91]朱建军.层次分析法的若干问题研究及应用[D].沈阳:东北大学,2005.
    [92]郭金玉,张忠彬,孙庆云.层次分析法的研究与应用[J].中国安全科学学报,2008,18(5):148-153.
    [93]张志强,徐斌,何勇灵等.基于AHP评价方法的发动机性能评价[J].兵工学报,2008,29(5):625-628.
    [94]陈勇,陈潇凯,林逸.改进雷达图评价方法在汽车综合胜能评价中的应用[J].吉林大学学报(工学版),2011,6:003.
    [95]徐汉宝,张振芳,孙金龙.基于层次灰关联分析法的露天矿汽车轮胎选型[J].化工矿物与加工,2012,8:011.
    [96]张含叶,郭瑞玲,刘海江.基于层次分析法的电动汽车用锂电池单元形状选择的研究[J].机械科学与技术,2012,31(004):523-527.
    [97]高尚鹏,徐家川.基于模糊层次分析法车身A级曲而评价[J].机械科学与技术,2012,3:011.
    [98]兰民国Tekscan (?)压力分布测量系统[J].测控技术.2002.v21(4):8-9
    [99]张建.全钢载重子车线轮胎断面测绘及有限元分析[D].镇江:江苏大学,2006
    [100]Eugene A. Petersen.The effect of footprint pressure distrubution on radial tire wear. The Tire Technology Conference.1987(10):120-124
    [101]Nakajima Y, Kadowaki H, Kamegawa T, et al. Application of a neural network for the optimization of tire design[J]. Tire Science and Technology,1999,27(2):62-83.
    [102]王登祥.轮胎胶料有限元分析的实验基础及计算[J].轮胎工业,1998,18(12):721-730.
    [103]Mars w v. Multiaxial fatigue of rubber[D].Toledo:University of Toledo.2001.
    [104]Toth W J.Chang J P.Zanichelli C. Finite element evaluation of the state of cure in a tire[J], Tire science and technology,1991.19(4):178-212
    [105]Ghosh P, Saha A. Bohara P C, et al. Material property characterization for finite element analysis of tires[J].Rubber World:22-31.January 2006.
    [106]HKS.Ltd. Abaqus analysis user's manual[R]. I IKS.Ltd.2006.
    [107]中国果家质量监督检验检疫总局.子午线轮胎用钢帘线[S].GB/T 11181-2003,2003
    [108]伊怀保,刘圣林.王立华.5×0.30HI钢丝帘线在全钢载重子午线轮胎带束保护层中的应用[J].轮胎工业,2010.V8(30):479-481
    [109]陈芳,王国林,高先进,等.载重子午线轮胎帘线受力有限元分析[J].橡胶工业,2008,55(2): 80-84.
    [110]ABAQUS Inc.ABAQUS example problems manual[R]. ABAQUS Inc.2007
    [111]刘占村,李明,刘杰,等,带束层结构对轿车子午线轮胎接地印痕,径向刚度及噪声的影响[J].轮胎工业,2011,31(9):534-536.
    [112]王国林,马银伟,梁晨,等.仿蝗虫脚掌的子午线轮胎胎面结构设计[J].机械工程学报
    [113]王国林,万治君,梁晨,等.基于非平衡轮廓理论的子午线轮胎结构设计[J].机械工程学报,2012,48(24):112-118.
    [114]庄继德.现代汽车轮胎技术[M].北京:北京理工大学出版社,2001.
    [115]张嗣伟.橡胶磨损原理[M].北京:石油工业出版社1998.
    [116]Cho J R, Choi J H, Kim Y S. Abrasive wear amount estimate for 3D patterned tire utilizing frictional dynamic rolling analysis[J]. Tribology International,2011,44(7):850-858.
    [117]Wang G, Wu J, Zhu M. Finite element analysis of tire thermo-mechanical coupling rolling resistance[C]//Electric Information and Control Engineering (ICEICE),2011 International Conference on. IEEE,2011:2200-2203.
    [118]刘心报.决策分析与决策支持系统[M].北京:清华大学出版社,2009
    [119]王莲芬,许树柏.层次分析法引论[M].北京:中国人民大学出版社,1990.
    [120]余建英,何旭宏.数据统计分析与SPSS应用[M].北京:人民邮电出版社,2003.
    [121]张永锋,骆清国.装甲车辆柴油机整机性能的综合评价[J].机械工程学报,2006,42(B05):205-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700