用户名: 密码: 验证码:
Al/TiAl_3复合材料的连续等通道角挤压技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒增强铝基复合材料因具有制备工艺简单、增强体成本低廉、性能高等优点,已成为当今世界金属基复合材料研究领域中的一个最为重要的热点。但制备出的颗粒增强复合材料也有一些不易克服的缺点:如致密度比较低,工件中密度分布不均匀等。因此,严重地影响了材料的力学性能,从而影响了它应用生产的潜能。
     本文利用一种连续等通道角挤压(Conform-ECAP)新技术对Al/TiAl3颗粒增强铝基复合材料进行8道次的挤压,实现Al/TiAl3复合材料的连续大挤压变形,制备了超细晶结构材料。运用光学显微镜(0M)和透射电镜(TEM)等先进的显微分析手段,观察并研究了变形前后Al/TiAl3复合材料微观结构的变化,探讨了基体金属晶粒细化的一般过程,测试了挤压后各道次的硬度和强度及耐磨性,研究了TiAl3增强颗粒在Conform-ECAP变形中的变化、与形变的交互作用以及对细晶形成的影响。
     实验发现,Conform-ECAP工艺可以有效细化Al/TiAl3复合材料的基体金属,Al/TiAl3复合材料经8次挤压后,基体金属晶粒尺寸由原始退火态的~35μm减小到0.4~0.8μm。形变诱导是Al/TiAl3复合材料在Conform-ECAP工艺过程中最主要的晶粒细化机理。
     在经过Conform-ECAP挤压之后,Al/TiAl3复合材料的强度和硬度明显提高,耐磨性也显著增强,综合机械性能得到了很大改善。增强颗粒TiAl3的尺寸被大幅减小,平均尺寸从原始的8~10μm破碎到3~4μm,且在基体组织上分布的均匀度也有了很大的改善。在挤压8道次试样中发现,TiAl3颗粒出现了孪晶组织,增强颗粒TiAl3与基体金属形变相互协调,发生了孪生变形,大颗粒TiAl3不可能被完全消除,挤压8道次后的组织仍是由大量细小的TiAl3颗粒和少量相对较大的TiAl3颗粒组成。
     使用Conform-ECAP技术对Al/TiAl3复合材料进行挤压后,得到的超细晶组织在热力学上处于不稳定状态,通过对热处理后Al/TiAl3复合材料试样硬度的测定,确定出挤压后Al/TiAl3复合材料的热稳定性参数:1道次的材料选择250℃为去应力退火温度,退火保温时间为4h;4道次的材料选择250℃为去应力退火温度,退火保温时间为2h。
The particulate reinforcing Al metal matrix composites have some advantages such as simple produce technics, low cost and high performance et al, which has been a hot topic on researching in the MMCs. But there have some disadvantages such as lower density and unequable destributing, which has impaired the mechanics property and limited the apply in the industry.
     This paper developed a new continuous equal channel angular pressing (Conform-ECAP) technique, which successfully produced severe plastic deformation (SPD) of Al/TiAl3 composite with ultra-fine grains (UFG), Al/TiAl3 composite was pressed by eight passes. The evolutions of Al/TiAl3 composite before and after deformation were researched by using optical microscope and transmission electron microscopy. The grain refinement mechanism was further researched. The ultimate hardness and wear-resisting property were tested after pressing. The change of TiAl3 particulates and deformation inter-action in the Conform-ECAP were studied.
     The results indicate that the grains of Al/TiAl3 composite were reduced effectively by the Conform-ECAP technique. The grain sizes were reduced from original annealing~35μm to 0.4~0.8μm after pressing by eight passes. The deformation induction is the most important grains refinement mechanism of Conform-ECAP.
     After Conform-ECAP deformation, the hardness and the strength were increased consumedly and improved the mechanics property. The proportion of the big TiAl3 reinforcing particulates reinforcement was suddenly decreased, and the reinforcing particulate sizes were broken from the original annealing 8~10μm to 3~4μm, and the distribution of the reinforcing particulates in the Al/TiAl3 composite were improved awfully. However, twinning TiAl3 was found after pressing by eight passes, which suggested that some larger reinforcing particulates could not be eliminated entirely, and some compatibility of deformation mechanism was presented. The microstructure after eight passes was composed of large quantity of small reinforcing particulates and small quantity of big reinforcing particulates.
     The tissue of the Al/TiAl3 composite was instable by the Conform-ECAP, the parameter of heating stability was ensured by testing the hardness after pressing:the annealing for four hours at 250℃and two hours at 250℃respectively after pressing by one pass and four passes.
引文
[1]冯端,师昌绪,刘治国.材料科学导论[M].北京:化学工业出版,2002:12-14.
    [2]王经涛.亚微晶材料发展概况.中国材料研究学会.94秋季中国材料研讨会论文集.2(2)化学工业出版社,1995:376.
    [3]卢柯.纳米结构材料及其研究现状.94秋季中国材料研讨会论文摘要集.北京:中国材料研究学会,1994:1549.
    [4]Koch C C. The synthesis and structure of nanocrystalline materials produced by mechanical attition a review [J], Nanostruct. Mater.,1993,1(2):109-120.
    [5]梁国宪,王尔德,王晓林.高能球磨制备非晶态合金研究的进展[J],材料科学与工程,1994,12(1):47-52.
    [6]Lu K. Nanocrystalline metals crystallized from amorphous solids nanocrystallization, structure and properties [J], Mater. Sci. Eng.,1996, R16:161-221.
    [7]陈振华.快速凝固制备微细金属粉末的理论和装置[J],物理,1999,28(4):227-230.
    [8]Erb V, El-Sherik A M, Palumbo G, et al. Synthesis. Structure and properties of electroplated nanocrystalline materials[J], Nanostruct. Mater.,1993,2(4):383-390.
    [9]H. Gleiter. Nanocrystalline materials[J]. Prog. Mater. Sci.,1989,33:223-315.
    [10]V.V.Stolyarov Y.Z.Zhu, T.C.Lowe, R.K.Islamgaliev, and R.Z.Valiev. Two step SPD processing of ultrafine-grained titanium. Nanostruct Mater.1999(11):947-954.
    [11]Y.Staito, H.Utsunomiya, N.Tsuji, and T.Aakai, Novel ultra-high straining process for bulk matericals development of the accumulative roll-bonding (ARB) process. Acta Mater.1999(47):579-583.
    [12]V.M.Segal, V.I.Rexnikov, A.E.Drobushevskiy, and V.I.Kopylov. Plastic Metal Working bu Simple Shear. Russ Metall.1998(1):99-105.
    [13]SEGALVM, REZNIKOV V I, DROBYSHEVSKII A E, et al. Plastic working of metals by simple shear[J].Russian Metallurgy,1981, (1):99-105.
    [14]VALIEV R Z, KRASILNIKOV N A, TSENEV N K. Plastic deformation of alloys with submicron-grained structure[J]. Materials Science&Engineering A,1991,137,35~40.
    [15]VALIEV R Z, KORZNIKOV A V, MULYUKOV R R. Structure and properties of a ultrafine-grained materials produced by severe plasticdeformation[J]. Materials Science&Engineering A,1993,168(2): 141-148.
    [16]ZHILYAEV A P, GUBICZAJ,SURINACH, et al. Calorimetric and X-ray measurements in ultrafine-grained nickel[J].Material Science Forum,2003,426-432(5):4507-4512.
    [17]KORCHEF A, NJAHN, MASMOUDIJ, et al. Evolution of the mechanical properties of aluminum containing Al8Fe2Si precipitates during equal channel angular pressing[J]. Advanced Engineering Materials,2004,6(8):639-643.
    [18]WANGJT, CAOXF, DUZZ, et al. The effect of equal channel angular pressing routes on structure evolution in a commercial low carbon steel[A]. Materials Processing and Manufacturing Division. Ultrafine Grained Materials III[C]. harlotte, NC, USA:TMS,2004,345-350.
    [19]KIM S M, KIM J, SHIN D H, et al. Microstructure development and segment formation during ECA pressing of Ti-6A1-4V alloy[J]. Scripta Materialia,2004,50(7):927-930.
    [20]R.Z.Valiev, R.K.Ilamgaliev, I.V.Alexandrov. Bulk nanostrucrured materials from severe plastic deformation[J], Progress in Materials Science.2000,45(2):103-189.
    [21]R.Z.Valiev. Ultrafine-grained materials prepared by severe plastic deformation. Vol.21, Annales des Chimie. Science des Materials,1996,369, Special issue.
    [22]R.Z.Valiev, R.Z.Islamgaliev. Superplasticity and superplastic forming In:Ghosh AK, Bieler,TR, editors. The Minerals, Metals and Materials Society,1998,117-120.
    [23]V.S.Zhernakov, V.V.Latysh, A.I.Zharikov, R.Z.Valiev. The developing of nanostruc-tured SPD Ti for structural use[J]. Scripts mater.,2001,44:1771-1774.
    [24]卢柯等.金属纳米材料力学性能的研究进展[J],金属学报,2000,36(8):785-788.
    [25]杨玉芬,陈清如.纳米材料的基本特征与纳米科技的发展[J],中国粉体技术,2002,8(3):22-26.
    [26]毕见强.大塑性变形法制备块体纳米材料[J],金属成形工艺,2002,12:43-45.
    [27]CABIBBO M, EVANGELISTA E, LATINI V, et al. Development of nano-structured 1200 and 3103 aluminumalloys by equal channel angular pressing[J]. Materials Science Forum,2003,426-432(3): 2673-2680.
    [28]Aida T, Matsuki K, Horita Z, et al. Estimation the quivalent straining equal channel angular pressing[J]. ScriptaMater,2001,44(4):575-579.
    [29]Suh J Y, Kim H S, Park J W, et al. Finite elementanals is of material flow in equal channel angular pressing[J]. ScriptaMater,2001,44(4):677-681.
    [30]居志兰,戈晓岚,许晓静.ECAP细化晶粒法的仿真与分析[J].材料科学与工程学报,2003,21(2):254-258.
    [31]M. FURUKAWA, Z. HORITA, M. NEMOTO, T. G LANGDON. Review processing of metals by equal-channel-angular pressing[J]. Journal of materials science,2001,36:2835-2843.
    [32]Iwahashi Y, Horita Z, Nemoto M, et al.The processo grain refinement in equal-channel angular pressing[J]. ActaMater,1998,46(9):3317-3331.
    [33]A. Gholinia, P. B. Prangnell, M. V. Markushev. The effect of strain on the development of deformation structures in severely deformed aluminum alloys processed by ECAE [J], Acta Mater,2000,48: 1115-1130.
    [34]K. Ohishi, Z. Horita, M. Furukawa, et al. Optimizing the rotation condition for grain refinement in equal channel angular processing[J]. Metallurgical and Materials Transactions A,1998,29: 2011-2013.
    [35]Berbon P B, Furukawa M, Horita Z, et al. Influence of Pressing Speed on microstructural Development in Equal-Channel Angular Pressing. Metal. Mater Trans.,1999,30A(8):1989-1997.
    [36]Kamachi M, Furukawa M, Horita Z, et al. A Model Investingation of the Shearing Characteristics in Equal-channel Angular Pressing. Mater. Sci. Eng.,2002, A347(122):223-230.
    [37]Lee J C, Seok H K, Suh J Y. Microstructural Evolutions of the Al Strip Prepared by Cold Rolling and Continuous Equal Channel Angular Pressing. Acta Mater.,2002,50:4005-4019.
    [38]Shin H D, Pak J J, Kim Y K. et al. Effect of Pressing Temperature on Microstructure and Tensile Behavior of Low Carbon Steels Processesd by Equal Channel Angular Pressing. Mater. Sci. Eng., 2002, A325(1):31-37.
    [39]郝南海,王全聪.等径侧向挤压变形均匀程度的有限元分析[J].中国有色金属学报,2001,11(S2):230-233.
    [40]刘祖岩,王尔德,王仲.等径侧向挤压应变分析[J].材料科学与工艺,1998,16(2):21-23.
    [41]刘祖岩,刘钢,王尔德.等径侧向挤压等效应变分布的有限元模拟[J].哈尔滨工业大学学报,1999,31(3):5-67.
    [42]张建,崔宏祥,赵润娴,毕大森,李国刚.等通道转角挤压过程有限元模拟[J].重型机械,2002,(3):43-46.
    [43]Minou Furukawa, Zenji Horita, Terence G Langdon, Processing by equal-channel angular pressing: Application to grain boundary engineering[J]. Journal of Materials Science,2005,40(4):909-917.
    [44]张忠明,王锦程,田景来等.等通道转角挤压对L2工业纯铝力学性能的影响[J].热加工工艺,2004,27(8):1-2.
    [45]索涛,李玉龙.等径通道挤压中晶粒细化影响因素的研究进展[J].材料科学与工程学报,2004,22(1):132-137.
    [46]VALIEV R Z, SALIMONENKO D A, TSENEV N K, et al. Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes[J]. Scripta Mater,1997, 37(12):1945-1950.
    [47]MARKUSHEV M V, BAMPTON C C, MURASHKIN M Y, Structure and properties of ultra-fine grained aluminum alloys produced by severe plastic deformation[J]. Hardwick DA. Mater. Sci. Eng., 1997, A234:927-931.
    [48]LEE S, BERBON P B, FURUKAW A M, et al. Developing superplastic properties in an aluminum alloy through severe plastic deformation[J]. Mater. Sci. Eng.,1999, A272:63-72.
    [49]SHIN D H, KIM W J, CHOO W Y. Grain refinement of a commercial 0.15%C steel by equal-channel angular pressing[J]. Scr Mater,1999,41(3):259-262.
    [50]YAMASHITA A, HORITA Z, LANGDON T G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J]. Mater. Sci. Eng.,2001, A300:142-147.
    [51]付尔聪.连续等通道角挤压通道方法细化铜材晶粒的研究[D],大连交通大学,2005.
    [52]谢建新,刘静安.金属挤压理论与技术[J],第一版.冶金工业出版社,2001:270-280.
    [53]杨如柏,张胜华.连续挤压译文集[J].第一版.中南工业大学出版社,1990:220-235.
    [54]运新兵,宋宝韫,陈莉.连续等径角挤压制备超细晶粒铜[J],中国有色金属学报,2006,16(9):1563-1570.
    [55]宋宝韫,樊志新,陈吉光,刘元文,贾春博.铜、铝连续挤压技术特点及工业应用[J],稀有金属,2006,28(1):257-261.
    [56]陈彦博,赵晶磊,李英龙等.连续ECAP技术制备超细晶铝的实验研究[J],中国有色金属学报,2006,16(12):2054-2059.
    [57]赵晶磊.纯铝的连续ECAP技术的实验研究[D],沈阳东北大学,2007.
    [58]Mortenson A. Jml. Solidification processing of metal matrix composites, Inter. Mater. Rev.,1992. 37(3):101-128
    [59]V. C. Nardone and K. W. Perwe. On the strength of discontinuous silicon carbide reinforced aluminum composites Seripta Metal,1986(20),43-45.
    [60]S.G. Fishman. J. of Metals, Conference Proceedings ASM International,1990,157-159.
    [61]T. W. Chon. Composites,1985(16),127-130.
    [62]武振生.TiC颗粒增强铝基复合材料制备及其性能研究[D],江苏大学,2006.
    [63]李英龙,曹富荣,温景林等.液固反应法合成Al-Ti-C晶粒细化剂的研究[A],铸造,2005,54(11):1117-1120.
    [64]程羽,郭生武,郭成等.热挤压对颗粒增强金属基复合材料组织和性能的影响,兵器材料科学 与工程,2003:Vol.23,No.2.
    [65]贾树卓.原位生成Mg2Sip/Mg-Al基复合材料及其挤压变形的组织与性能[D],西安理工大学硕士学位论文,2007.
    [66]田景来.ECAP纯铝L2的组织与性能研究[D],西安理工大学硕士学位论文,2005.
    [67]Iwahashi Y, Horita Z, Nemoteo M and Langdon T G An inverstigation of microstructual evolution during equal-channel angular pressing. Acta Mater,1997, Vol.45, No.11,4733-4741.
    [68]伍来智.等经弯曲通道变形制备超细晶FeCoV合金及磁性能研究[D],西安建筑科技大学硕士学位论文,2006.
    [69]毕见强.2Al2铝块体超细晶材料的制备模拟及细化机制的研究[D],山东大学,2005.
    [70]李洪达,胡治流,刘玉伟等.等径角挤压Al-Ti-B合金显微组织及细化机理的研究.中国铸造装备与技术,2005:16-19.
    [71]崔忠圻主编,金属学与热处理[M].北京:机械工业出版社,2000:177-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700