新型含铌渗氮钢的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,我国国家标准中只有唯一一种专用渗氮钢38CrMoAl, 38CrMoAl存在以下不足:强度和热稳定性满足不了高要求基体支撑强度要求;淬透性不高,热处理温度相对较高;由于含铝铁素体稳定性高,不易溶入奥氏体中,所以保温时间要比一般合金结构钢长0.5倍左右等,远不能满足高标准零件的要求。而欧标EN10085中就包含了9种专用渗氮钢,新型高性能专用渗氮钢在我国亟待开发。
     本文在对比国内外学者开发研究渗氮钢的合金成分特点后,提高Si、Mn含量,以提升渗氮钢淬透性及耐热性能,Cr、Mo为主要合金化元素,V、Nb作为微合金元素加入,控制钢中S、P含量和有害元素含量,以提高渗氮件的力学性能和渗氮工艺性能,发挥微合金元素的作用,研发出细晶粒新型渗氮钢。深入研究了新材料的相变特性、宏观力学性能、热加工性能及渗氮性能,利用相图软件进行模拟计算,并使用OM、SEM、TEM、EDS、3DAP等微观分析手段,对新型渗氮钢BTHJ钢的性能和微观机理进行了深入的分析研究,得出了以下结论:
     1、BTHJ钢在冷速为0.1~0.3℃/s时得到粒状贝氏体,马氏体临界冷速为3℃/s,在0.1℃/s以下是珠光体与贝氏体的混合组织。利用JMA公式求得其贝氏体转变激活能为54.5KJ/mol。等温转变时,贝氏体转变表现出更加明显的不完全转变特征,BTHJ钢的贝氏体转变温度在425℃~Ms之间。珠光体等温转变动力学可用Johnson-Mehl公式x = 1-exp[-K (T )t~n /d~m]表示。
     2、BTHJ钢淬透性较高,在880℃~960℃内均能淬硬,并且在900℃~960℃其淬透半径超过了100mm;晶粒度测试表明,BTHJ钢在880℃~940℃淬火时,其晶粒度在9级以上;与38CrMoAl相比,BTHJ钢的淬透性有大幅度的提升,并且在较宽淬火温度内,晶粒还是非常细小的。
     3、BTHJ钢具有较好强度、塑性、韧性,其综合力学性能明显优于38CrMoAl钢。经光学显微镜和扫描电镜观察,BTHJ钢调质后组织均匀,碳化物细小弥散,在个别处发现少量未溶Nb的碳化物;通过透射电镜观察,BTHJ钢调质后的马氏体板条宽度在150nm左右,在基体上可以观察到多种形态的碳化物,这些碳化物主要含Cr、Mn、V等元素而含Mo碳化物很少,这表明大部分Mo溶入基体,提高了材料的抗回火软化能力。3DAP研究结果知,淬火态的BTHJ钢合金元素基本固溶在基体中,在回火后,Cr、Mn、V等合金元素形成M2C型细小碳化物,而Mo、Nb元素还是基本固溶在基体中且分布均匀,有效起到了固溶强化作用,提高其热强性。
     4、经过550℃保温60小时后,BTHJ钢硬度从41.4HRC降至37.6HRC,表现出良好的热稳定性,由光学显微镜和扫描电镜观察可知,在热稳定后基体发生了一定程度的回复再结晶,基体中析出碳化物明显增多,由碳化物萃取结果可知,BTHJ钢热稳定前后碳化物类型并没有发生明显的变化,主要有M23C6、M7C3、M3C型三种碳化物,结合透射电镜观察可知,材料硬度的下降主要由碳化物的粗化以及Mo元素的析出引起的。
     5、BTHJ钢在1100℃,0.01 s~(-1)的变形条件下发生了明显的动态再结晶,随着变形温度的降低,变形速率的增加,变形抗力逐渐增加,动态再结晶越来越不明显;通过计算得到BTHJ钢的热变形方程为: (ε|&) = 2. 42e~(54) [sinh(0.0065σ)]~(7.26)exp(-591570/RT);利用加工硬化率确定了BTHJ钢的在各变形条件下的动态再结晶临界条件,通过计算得出临界应变随lnZ的增大而增大,对其进行线性拟合得到他们拟合函数关系为ε_c = 0.01366lnZ-0.53.
     6、BTHJ钢渗氮后,表面最高硬度在950HV以上,离子渗氮试验表明,BTHJ钢能在较短时间内得到较深渗层,而气体渗氮表明,在较长时间渗氮后,BTHJ钢和38CrMoAl钢渗层深度相差不大,但是由于BTHJ钢晶粒细小,在渗氮后并不会出现脉状组织等缺陷,离子渗氮和气体渗氮均表明,BTHJ钢渗层硬度梯度平缓,从而能提高残余应力层的稳定性,提高其疲劳寿命。综合来说,BTHJ钢具有更佳的渗氮性能。
For a long time, 38CrMoAl steel is the unique dedicated nitriding steel in Chinese standard. There are lots of deficiencies exist in 38CrMoAl steel:strength and heat resistance can not be meet the high demand of the substrate; low hardenability; relatively, the heat treatment temperature is too high. Since the stability of aluminum-containing ferritic is very high and the aluminum is difficult to dissolve in austenite, the holding time is longer than that of alloy steel for about 0.5 times, all of those make 38CrMoAl steel can not meet the demands of high-standard parts. While there are 9 kinds of nitriding steels in Euro standard, new high-performance dedicated nitriding steels urgently need to be developed in China.
     While contrast the characters of composition of nitriding steels developed by domestic and foreign scholars, a new fine grain nitriding steel was developed in this paper. The content of Si and Mn were increased to enhance the hardenability and heat resistance; Cr and Mo are the main alloy elements, V and Nb were added as micro-alloying elements in order to improve the mechanical properties and nitriding performance; the content of S, P and other harmful elements were controled. The phase transformation performance, mechanical properties, hot deformation property and nitriding performance of new steel were studied. Simulated by thermodynamic software-Jmatpro, OM, SEM, TEM, EDS, 3DAP and some other micro-analytical techniques were used to investigate the microstructures and micro-mechanism of new nitriding steel BTHJ. Main research results are listed as following:
     1. Granular bainite were obtained when cooling rate between 0.1and 0.3℃/s, and the critical cooling rate of mantensite is 3℃/ s, while cooling rate was under 0.1℃/s, the microstructures of BTHJ is bainite and pearlite. The bainite transformation activation enegy of BTHJ is 54.5KJ/mol caculated by JMA formula. The bainite transformation showed more obvious character of incomplete transformation while isothermal transformation, the bainite transformation temperature is 425℃-Ms. Isothermal transformation kinetics of pearlite can be expressed by Johnson-Mehl formula.
     2. The hardenibility of BTHJ is excellent, it can be hardend between 880℃and 960℃and the harden radius is more than 100mm while austenite temperatue between 900℃and 960℃. The grain size of BTHJ is over 9 grade while quenched at 880℃~960℃. Compared to 38CrMoAl steel, the hardenibility of BTHJ is improved significantly.
     3. The mechanical properties of BTHJ is better than that of 38CrMoAl for its excellent strength, ductility and toughness. The microstructure of BTHJ after quenching and tempering is quite fine, and fine carbides were dispersed in matrix investigated by OM and SEM, a small amount of undissolved MC carbide which contained Nb were found, too. The TEM results showed that the width of martensite lath of BTHJ is about 150nm and various forms of carbides which contain Cr, Mn and V dispersed in matrix, but the carbides contained Mo is rare, which suggests that most of Mo dissolved in matrix, thereby enhanced the tempring resistance. The 3DAP results showed that the most of alloy element dissolved in matrix after quenching, after tempering, M2C type fine carbides which contain Cr, Mn, V were precipitated, while most of Mo and Nb were still dissolved in matrix which played a role in the effect of solid solution strengthening and enhancing heat resistance.
     4. After holding at 550℃for 60 hours, the hardness of BTHJ steel droped from 41.4HRC to 37.6HRC, exhibited excellent thermal stability. OM and SEM investigation showed that the matrix recrystallized and the quantity of carbides increased significantly. The carbides extraction results suggested that the type of carbides did not changed before and after thermal stability test, the types of carbides were M23C6, M7C and M3C, the TEM results showed that of decreasing of hardness is mainly caused by the coarsening of carbides and the precipitation of Mo.
     5. The obvious dynamic recrystallization were occurenced when the BTHJ steel deformed at 1100℃,0.01 s~(-1), with the decreasement of deformation temprature and increasement of deformation rate, the deformation resistance increased and the dynamic recrystallization turned to be not obvious. The hot deformatin formula of BTHJ as following: (ε|&) = 2. 42e~(54) [sinh(0.0065σ)]~(7.26)exp(-591570/RT); The harden rate was used to determine the critical deformation condition, the critical strain increased with the increasement of lnZ, the relation between critical strain and lnZ can be express by the following function:ε_c = 0.01366lnZ-0.53.
     6. After nitriding, the highest surface microhardness was over 950HV, the results of plasma nitriding test showed that BTHJ steel can obtained deeper nitriding case than 38CrMoAl in short period of time, while gas nitriding showed that after long time nitriding, the depth of BTHJ and 38CrMoAl almost similar, but due to the fine grain, the nitriding case of BTHJ did not exist nervatied microstructure, and the hardness gradient of BTHJ was much more gentle, which can improve the stability of residual stress, thereby improve the fatigue life. Totally, the nitriding performance of BTHJ is much better.
引文
[1]刘佐仁.喷油嘴偶件的选材与热处理[J].金属热处理, 2001, 6: 38~40.
    [2]李海波.对机车柴油机喷油泵用GCr15钢淬、回火工艺的研究[J].内燃机车. 2008, 9: 20~25.
    [3]国家机械工业局. JB/T9730-1999,柴油机喷油嘴偶件、喷油泵柱塞偶件、喷油泵出油阀偶件金相检验[S].北京:机械科学研究院出版发行, 9.17,1999.
    [4]高振庚.提高喷油嘴体用渗碳钢的热稳定性[J].车用发动机, 1995, 3: 29~35.
    [5]杨凌平,李冰伦. GCr15模具钢热处理工艺分析[J].模具制造, 2002, 2: 46~50.
    [6]杨信,陈海英.深冷处理对GCr15钢组织性能的影响[J].焊接技术, 2001, 30(6): 12~13.
    [7]刘昌隆,潘勇.改善GCr15钢的强韧性[J].中国有色金属学报, 1994, 4(2): 90~94.
    [8]潘邻.化学热处理应用技术[M].北京:机械工业出版社, 2004.
    [9]杨飞龙.金属材料的尺寸稳定性[J].河南科技, 1997, 11: 36~37.
    [10]干勇,田志凌,董翰等.中国材料工程大典第3卷[M],北京:化学工业出版社, 2006.
    [11]王占华,陆长河. 38CrMoAl钢成分及点状偏析控制[J].大型铸锻件, 2007, 4:35~37.
    [12]高桂芬,陈永刚,关德保.新型低铝渗氮钢─30CrMoAl[J].制造技术与机床, 1983.
    [13]张汝华,张志明. 30CrMnAl钢的离子渗氮及应用[J].金属热处理, 1987, 4: 33~34.
    [14]Isokawa, K,Watanabe, T,Kato.Fatigue Strength of RDK401 Nitrocarburized at Low Temperature[J]. Denki-Seiko (Electr. Furn. Steel). 1978, 49(1): 19~25.
    [15]张振宇,杜熟芳.新渗氮钢30Cr2MoV的耐磨性研究[J].金属热处理学报, 1994, 15(1): 61~64.
    [16]陈波,王继新.新型氮化钢25Cr5MoA的试制[J].热加工工艺, 2005, 2: 59~64.
    [17]张玉琢,吴贞国. 25Cr3MoA氮化钢的试制[J].特殊钢, 1996, 17(6): 36~37.
    [18]Rademacher, L.Hoock, M.Mehta, K K.The Importance of Steel Composition for Aging During Nitriding in Gaseous Ammonia[J]. Thyssen Edelstahl Tech,1979, 5(3): 162~169.
    [19]E. Rolin′ski and G.Sharp. The effect of sputtering on kinetics of compound zone formation in the plasma nitriding of 3% Cr-Mo-V Steel[J]. Journal of Materials Engineering and Performance, 2001, 10(4): 444~448.
    [20]Zdravecka, E.Tracova, J,Solfronk, P.et al.Influence of pulse plasma nitriding on surface andsubstrate system of 31CrMoV9 steel[J]. Problemy Eksploatacji, 2005, 2:161~170.
    [21]Bennett, K.Advances in Nitrogen Based Nitro-Carburizing[C].18th International Conference on Heat Treatment of Materials, 1980: 146~160.
    [22]Michel.E ,Gantois.M. Possibility of the Thermochemical Surface Treatment of Alloys by Ion Bombardment[C]. Simpozion 1979 Romania, 1979: 406~412.
    [23]夏立芳.金属热处理工艺学[M].哈尔滨:哈尔滨工业大学出版社, 1986.
    [24]夏立芳,高彩桥.钢的渗氮[M].北京:机械工业出版社, 1989.
    [25]J.Zyskt,氮化层的分类和评定[M].《HTM》, No.I, 1980.
    [26]李志明,李志,佟小军.快速渗氮工艺的最新进展[J].热处理技术与装备, 2007, 28(2): 11~16.
    [27]沈思特,潭昌瑶.合金元素在快速渗氮中的行为[J].四川工业学院学报, 1992, (11)3、4: 164~174.
    [28]陈方生,王成国,刘玉先.稀土对38CrMoAl钢离子渗氮层结构和性能的影响[J].钢铁, 2000, 35(8): 48~55.
    [29]上官倩芡,程先华.稀土对38CrMoAl钢软氮化层抗冲蚀磨损性能的影响[J].中国稀土学报,2004, 22(1): 138~141.
    [30]Yu-kui Gao. Influence of Deep-Nitriding and Shot Peening on Rolling Contact Fatigue Performance of 32Cr3MoVA Steel[J]. Journal of Materials Engineering and Performance, 2008, 17(4): 455~459.
    [31]P.C.Van Wiggen, H.C.F.Rozendall, E.J.Mittemeijer. The nitriding behaviour of iron-chromium-carbon alloys[J]. Journal of Materials Science, 1985, 20: 4561~4582.
    [32]T.Bell, N.L.Loh. The fatigue characteristics of Plasma Nitrided three Pct Cr-Mo steel[J]. J.Heat Treating, 1982, 2(3): 232~237.
    [33]BRITISH STANDARD. BS EN 10085:2001, Nitriding steel-Technical delivery conditions[S]. Authority of the Standards Committee,15 May 2001.
    [34]HE Y, YANG K, L IU K. Age hardening and mechanical properties of a 2400MPa grade cobalt-free maraging steel[J]. Metallurgical and Materials Transactions A, 2006, 37(4): 110~1116.
    [35]CAO X, SAUNDERS N, CAMPBELL J.Effect of iron and manganese contents on convection-free precipitation and sedimentation of primaryα-2Al(FeMn)Si phase in liquid Al-11.5Si-0.4Mg alloy[J]. Journal of Materials Science, 2004, 39 (7): 2303~2314.
    [36]闵永安,刘湘江,毛远建.应用JMatPro软件对比研究两种抽油杆钢的合金化特点[J].上海大学学报(自然科学版), 2008, 14(5): 503~508.
    [37]KATTNER U R.Efficient phase diagram information and computational thermodynamics [J]. Journal of Phase Equilibria and Diffusion, 2006, 27(2): 126~132.
    [38]张明星,王军,康沫狂.硅在低碳合金钢中作用的研究(I)-硅对过冷奥氏体转变动力学的影响[J].金属热处理, 1992(8): 3~7.
    [39]陈朝阳,周清跃,张银花,周镇国.试验用贝氏体钢轨钢连续冷却曲线的测定及组织特征[J].铁道学报, 2005(27): 35~39.
    [40]L.C.CHANG. Microstructure and reaction kinetics of bainite transformation in Si-rich steels[J]. Materials Science & Engineering A, 2004(368): 175~182.
    [41]衣海龙,杜林秀,王国栋,等.含铌低碳钢的连续冷却转变[J].材料与冶金学报,2005, 4(4): 295~299.
    [42]ZX.Qiao, Y.C Liu, L.M.Yu,Z.M.Gao.Incompleted bainitic transformation characteristics in an isochronially annealed 30CrNi3MoV steel.Journal of Alloys and Conpounds, 2009(1): 334~340.
    [43]C. Gupta a,*, G.K. Dey a, J.K. Chakravartty,etc.A study of bainite transformation in a new CrMoV steel under continuous cooling conditions[J]. Scripta Materialia, 2005(53): 559~564.
    [44]刘宗昌,等.材料组织结构转变原理[M].北京:冶金工业出版社, 2006.
    [45]Mesplont C, Vandeputt S, De Cooman BC. Z Metallkd, 2002; 93: 11.
    [46]刘宗昌,王海燕,任慧平.钢中贝氏体相变热力学[J].包头钢铁学院学报, 2006, 25(4): 307-313.
    [47]Yongchang Liu, Dongjiang Wang, Ferdinand Sommer, etc. Isothermal austenite-ferrite transformation of Fe-0.04 at.%C alloy: Dilatometric measurement and kinetic analysis[J]. Acta Materialia 2008(56): 3833~3842.
    [48]C. Capdevila, F.G. Caballero, C. Garc?′a de Andre′s. Kinetics model of isothermal pearliteformation in a0.4C–1.6Mn steel[J].Acta Materialia, 2002, 50: 4629~4641.
    [49]Umemoto, M,Nishioka, N,Tamura, I.Kinetics of Proeutectoid Ferrite Reaction During Isothermal Holding and Continuous Cooling in Plain Carbon Steels[C].3rd International Congress on Heat Treatment of Materials, 7-11 Nov. 1983. pp5.35~5.43.1984.
    [50]陈騑遐,张伯春,李喜孟,等.亚共析合金钢40Cr铁素体和珠光体恒温转变动力学[J].大连理工大学学报, 1992, 32(1): 70~74.
    [51]周邦新,刘文庆.三维原子探针及其在材料科学研究中的应用[J].材料科学与工艺, 2007, 15(3): 405~408.
    [52]刘文庆,周邦新.中国材料工程大典[M].北京:化学工业出版社, 2006, 26: 1045~1051.
    [53]Hono K. Nanoscale microstructural analysis of metallic materials by atom probe field ion microscopy[J]. Progress in Materials Science, 2002, 47: 621~729.
    [54]Miller M K.Atom Probe Tomography: Analysis at the Atom iclevel[M]. New York:KluwerAcademic/Plenum Publishers, 2000: 12.
    [55]刘庆冬,褚于良,王泽民,等. Nb_V微合金钢中渗碳体周围元素分布的三维原子探针表征[J].金属学报, 2008, 44(11): 1281~1285.
    [56]刘庆冬,刘文庆,王泽民. Nb_V微合金钢中碳化物析出的三维原子探针表征[J].金属学报, 2008, 44(7): 786~790.
    [57]刘庆冬,刘文庆,王泽民,等.回火马氏体中合金碳化物的3D原子探针表征_形核[J].金属学报, 2009, 45(11): 1281~1287.
    [58]刘庆冬,彭剑超,刘文庆,等.回火马氏体中合金碳化物的3D原子探针表征_长大[J].金属学报, 2009, 45(11): 1288~1296.
    [59]刘庆冬,彭剑超,刘文庆,等.回火马氏体中合金碳化物的3D原子探针表征_粗化[J].金属学报, 2009, 45(11): 1297~1302.
    [60]王泽民,刘庆冬,刘文庆.回火温度对Nb-Mo-V微合金钢中的析出物的影响[J].材料热处理学报, 2009, 30(3): 123~126.
    [61]刘文庆,褚玉良,王泽民.铌-钒微合金钢中碳氮化合物的析出特点[J].理化检验-物理分册, 2008, 44(10): 540~543.
    [62]Y.FURUYA, H.HIRUKAWA, S.MATSUOKA, etc. Fatigue Properties of Nitrided UltrafineFerrite-Cementite Steels under Rotating Bending Fatigue Testing[J]. METALLURGICAL AND MATERIALS TRANSACTIONS A, 2008, 39A: 2068~2076.
    [63]拉施柯, H?,等.钢和合金的物理-化学相分析[M].北京:国防工业出版社, 1982: 67~70.
    [64]王英华. X光衍射技术基础[M].北京:原子能出版社, 1993.
    [65]W.In.Roberts, G.Kraussed., Deformation processing and structure, Metals Park, Ohio: ASM 1984:109.
    [66]Frost H J, Ashby M F. Deformation—mechanism maps[M]. Oxford:Pergamon Press,1982.
    [67]伍来智,陈军,张鸿冰. 40Cr钢奥氏体动态再结晶及晶粒细化[J].上海交通大学学报, 2008, 42(5): 786~790.
    [68]POLIAKEI, JONAS J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia, 1996, 44(1): 127~136.
    [69]POLIAKEI,JONAS J J.Initiation of dynamic recrystallization in constant strain rate hot deformation [J]. ISIJ International, 2003, 43(5): 684~691.
    [70]MARSUBARAY, TSUJIN, SAITOY. Dynamic recrystallization of ferrite in IF steel[C]∥International Conference on Thermomechanical Processing of Steels and Other Materials, Wollongong, Australia, 7~11, 1997: 653~659.
    [71]UUNT, ZEHETBAUER M. Stage IV work hardening in cell forming materials, part II:a new mechanism [J]. Scripta Materialia, 1996, 35(12): 1467~1473.
    [72]GOTTSTEING, FROMMERTM, GOERDELER M, etal. Prediction of the critical conditions for dynamic recrystallization in the austenitic steel 800H [J]. Materials Science and Engineering (A), 2004, 387~389.
    [73]ESTRINY, TOTHLS, MOLINARIA, et al. A dislocation based model for all hardening stages in large strain deformation[J]. Acta Materialia 1998, 46(15): 5509~5522.
    [74]KOCKUF. Laws for work-hardening and low-temperature creep[J]. J EngMater Technol, 1976, 98(1): 76~85.
    [75]MECKINGH. Dislocation modelling of physical systems[J]. Pergamon Press, 1981(4): 197~211.
    [76]罗承萍,赵方. 4Cr5MoV1Si (H13)钢合金氮化物的形貌和晶体学特征[J].金属学报, 1990, 26 (6): A420~425.
    [77]Sule Yildiz Sirin, Kahraman Sirin, Erdinc Kaluc. Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel[J]. Materials Characterization 2008, 59: 351~358.
    [78]M. Guagliano and L. Vergani. Effect of nitriding on low-cycle fatigue properties[J]. Int.J. Fatigue, 1997, I(19): 67~73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700