苯基D/A分子器件电子输运性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,分子电子学的发展取得了巨大的进步,尤其是微观表征和操控技术的快速发展,极大地提高了分子器件的研究能力,可在纳米尺度观察研究并操控单个分子来构筑具有特定功能的分子器件。有机共轭分子具有结构可设计、易于合成、结构丰富及良好的半导体性能等特点,成为分子器件中研究的热点。
     本文采用基于密度泛函理论和非平衡格林函数方法相结合的第一性原理方法,对苯基D/A分子器件的电荷输运性质进行了计算模拟,并对其分子器件的设计提出了构想。详细考察了影响分子器件设计的一些关键物理和化学因素,如分子与电极间的键合方式、分子的化学修饰、电子给体-受体功能分子中共轭桥的选择以及分子间相互作用等对分子器件导电性的影响,得到了一些有意义的结论。主要研究内容如下:
     首先,本文研究了Donor-Bridge-Acceptor (D-B-A)结构分子器件中桥键极性与长度对电子输运性质的影响。选用四种不同桥键连接电子给体(苯胺)-受体(硝基苯)构建异质结分子器件,探讨不同极性和不同长度的桥键对分子器件输运性能的影响。研究发现,在D-A-B结构的单分子器件中,桥键的极性对分子器件的导电性起着重要作用。极性桥键连接的分子器件比非极性桥键连接的分子器件能提供更多更好的电子输运通道,并且还出现了负微分电阻现象;对于相同非极性桥键组成的分子器件,随着桥键长度的增加,电流减小,分子器件的传输性能减弱。
     其次,本文选取四组不同锚定基团将NBPDA分子为中心的分子异质结连接到两个半无限长金电极上,计算模拟分子与电极之间键合方式不同对分子器件电荷输运性质的影响。研究发现,分子导电性对分子和电极间的键合方式比较敏感。电极-分子间的耦合的不同导致分子轨道的能量和空间分布发生改变,产生了负微分电阻现象。
     接着,本文采用化学修饰的手段,研究了氟化反应对DT-TTF分子器件电荷输运性能的影响。研究发现氟原子基团的引入调整了分子器件的结构和电子特性。氟原子基团由于其强吸收电子能力,降低电荷注入势垒,利于电子的注入与传输,并改变分子与电极间的耦合,从而影响分子与电极间的电荷转移。高度氟化后分子器件的透射峰向低能区移动,并调整了分子轨道的局域化。氟化减弱了分子与电极间的耦合,弱化了电流,出现库仑阻塞现象,导致负微分电阻现象的产生。
     最后,本文研究了两个平行分子结不同相互作用对分子器件输运性质的影响。研究发现分子间耦合作用的强弱显著影响分子器件的输运性能,分子间距离较近,相互作用较强时,更多的输运通道被打开,引起分子轨道分裂,导致出现负微分电阻现象。
     希望以上计算结果能对有机分子器件的设计提供有益的参考。
TIn recent years, molecular electronics has become a significant and rapidly growing field, which made tremendous progress. With to the fast development of microscopic characterization and manipulation technology, the research of molecular device is greatly improved. People can observe and manipulate single molecules at the nanometer scale, which can be built into the specific functional molecular device. Due to their designable and rich structures, easy synthesis and good semiconductor properties, organic conjugated molecules has drawn great attention in research of the molecular device research.
     Using the approach of density functional theory (DFT) combined with nonequilibrium Green's functions (NGF), the electronic transport properties of benzene-based D/A molecule have been investigated and the design of molecular devices are proposed in this thesis. Considering some key physical and chemical factors that impact the charge transport properties of the molecular device, such as anchoring groups, molecular chemical modification, donor-acceptor molecular conjugated bridge selection and intermolecular interaction, some useful conclusions has been obtained. The main contents are listed as follows.
     First, the electronic transport properties of different bridges connected to benzene-based heterostructure molecular devices have been studied. Focusing on the effects of the polarity and length of the bridge bond on the molecular device of Donor-Bridge-Acceptor (D-B-A), it is found that the polarity of the bridging bond in the molecular device plays a significant role in charge transport in D-B-A molecular junction. The molecular device with connection of the polar bond has higher conductivity than that with connection of the non-polar bond. The NDR behavior and current platform are observed within a certain bias voltage range for the polar bonding systems.
     Second, the electronic transport characteristics of NBPDA molecular heterojunction, wihich connected by four different anchoring groups, are discussed. The molecular heterojunction is positioned between two semi infinite gold electrodes. Results show that the anchoring group plays a crucial role in determining the overall conductivity of the molecular junctions. The NDR behavior originates from the changes of transferred charges and redistribution of the frontier molecular orbitals at different bias.
     Third, fluorination effects on the electronic transport in DT-TTF are explored based on the first-principle calculation and theoretical analysis. It is found that the structure and electronic properties of the molecular device have been modified. The fluorine atoms group can decrease charge injection barriers and then do good to the electron injection and transmission due to their strong electronic absorbing ability. Meanwhile, the addition of fluorine atoms can modify the couple of DT-TTF molecular junction and the electrodes, thereby affecting the charges transfer between them. The transmission peaks of fully fluorated molecular shift to the low energy region, and adjust the localization of molecular orbit. At the same time, the Coulomb Blockade effect and NDR behavior can be observed within a certain bias voltage range since the coupling between molecular junction and the electrodes has decreased and the current becomes weak.
     Finally, the intermolecular coupling effects on the electronic transport have been investigated towards the dimolecule device. It is found that the intermolecular coupling effect plays an important role in the conducting behavior of the system. The nearer distance among the molecular, the more transport channels will be opened so leading to the split-up of molecular orbits and thus appears negative differential resistance within a certain bias voltage range.
     These results will shed light on establishment of the structural properties of organic molecular devices.
引文
[1]Moore GE. Cramming more components onto integrated circuits, Electronics 38. Number; 1965.
    [2]Tour JM. Molecular electronics. Synthesis and testing of components. Accounts of Chemical Research.2000; 33(11):791-804.
    [3]Flood AH, Stoddart JF, Steuerman DW, Heath JR. Whence molecular electronics? Science. 2004; 306(5704):2055-6.
    [4]Heath JR, Ratner MA. Molecular electronics.2003.
    [5]Aviram A, Ratner MA. Molecular rectifiers. Chemical Physics Letters.1974; 29(2):277-83.
    [6]Ratner MA. Introducing molecular electronics. Materials today.2002; 5(2):20-7.
    [7]Joachim C, Gimzewski J, Aviram A. Electronics using hybrid-molecular and mono-molecular devices. Nature.2000; 408(6812):541-8.
    [8]Sheats JR, Antoniadis H, Hueschen M, et al. Organic electroluminescent devices. Science. 1996; 273(5277):884-8.
    [9]Alivisatos P, Barbara PF, Castleman AW, et al. From molecules to materials:Current trends and future directions. Advanced Materials.1999; 10(16):1297-336.
    [10]Chiabrera A, Zitti ED, Costa F, et al. Physical limits of integration and information processing in molecular systems. Journal of Physics D:Applied Physics.1989; 22(11):1571.
    [11]Feynman RP. There's plenty of room at the bottom. Engineering and Science.1960; 23(5): 22-36.
    [12]Carter FL. Molecular electronic devices:M. Dekker; 1982.
    [13]Carter F. Molecular Electronic Devices ⅡDekker. New York.1987.
    [14]Lehn JM. Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization. Angewandte Chemie International Edition in English.1990; 29(11):1304-19.
    [15]Service RF. Molecules get wired. Science.2001; 294(5551):2442-3.
    [16]Kennedy D. Breakthrough of the year. Science.2001; 294(5551):2429.
    [17]Cao Y, Steigerwald ML, Nuckolls C, et al. Current trends in shrinking the channel length of organic transistors down to the nanoscale. Advanced Materials.2009; 22(1):20-32.
    [18]薛增泉.分子电子学.北京大学出版社.2003.
    [19]付磊,刘云坎,朱道本.分子电学简介.半导体学报.2003;第24卷增刊:22-7.
    [20]董浩,邓宁,陈培毅.分子电子学.世界科技研究与发展.2005;27(3):1-6.
    [21]刘云坎.有机纳米与分子器件.科学出版社.2010.
    [22]韩汝珊.分子纳电子器件学科导论.科学出版社.2009.
    [23]Jones RAL. Soft machines:nanotechnology and life:Oxford University Press Oxford; 2004.
    [24]Agrait N, Yeyati AL, Van Ruitenbeek JM. Quantum properties of atomic-sized conductors. Physics Reports.2003; 377(2):81-279.
    [25]Reed MA, Zhou C, Muller CJ. Conductance of a Molecular Junction. Science.1997; 278(5336):252-4.
    [26]Song H, Reed MA, Lee T. Single molecule electronic devices. Advanced Materials.2011; 23(14):1583-608.
    [27]Liang W, Shores MP, Bockrath M, et al. Kondo resonance in a single-molecule transistor. Nature.2002; 417(6890):725-9.
    [28]Klein DL, McEuen PL, Katari JEB, et al. An approach to electrical studies of single nanocrystals. Applied Physics Letters.1996; 68(18):2574-6.
    [29]Clemente-Leon M, Credi A, Martinez-Diaz MV, et al. Towards Organization of Molecular Machines at Interfaces:Langmuir Films and Langmuir"CBlodgett Multilayers of an Acid"CBase Switchable Rotaxane. Advanced Materials.2006; 18(10):1291-6.
    [30]Nitzan A, Ratner MA. Electron transport in molecular wire junctions. Science.2003; 300(5624):1384-9.
    [31]Eigler DM, Schweizer EK. Positioning single atoms with a scanning tunnelling microscope. Nature.1990; 344(6266):524-6.
    [32]Hansma P, Elings V, Marti O, et al. Scanning tunneling microscopy and atomic force microscopy:application to biology and technology. Science (New York, NY).1988; 242(4876): 209.
    [33]Cui X, Primak A, Zarate X, et al. Reproducible measurement of single-molecule conductivity. Science.2001; 294(5542):571-4.
    [34]Xu SH, Li YM, Lou LR, et al. Steady patterns of microparticles formed by optical tweezers. Japanese journal of applied physics.2002; 41:166.
    [35]Reed MA, Zhou C, Deshpande M, et al. The electrical measurement of molecular junctions. Annals of the New York Academy of Sciences.1998; 852(1):133-44.
    [36]Kushmerick J, Holt D, Yang J, et al. Metal-molecule contacts and charge transport across monomolecular layers:Measurement and theory. Physical review letters.2002; 89(8):86802.
    [37]Cholet S, Joachim C, Martinez J, et al. Fabrication of co-planar metal-insulator-metal solid state nanojunctions down to 5nm. EPJ APPLIED PHYSICS.1999; 8(2):139-46.
    [38]Mujica V, Kemp M, Ratner M. Electron conduction in molecular wires. II. Application to scanning tunneling microscopy. The Journal of Chemical Physics.1994; 101(8):6856.
    [39]Mujica V, Ratner MA. Current-voltage characteristics of tunneling molecular junctions for off-resonance injection. Chemical Physics.2001; 264(3):365-70.
    [40]Tian W, Datta S, Hong S, et al. Conductance spectra of molecular wires. The Journal of chemical physics.1998; 109:2874.
    [41]Di Ventra M, Pantelides S, Lang N. The benzene molecule as a molecular resonant-tunneling transistor. Applied Physics Letters.2000; 76(23):3448-50.
    [42]Damle P, Ghosh A, Datta S. Unified description of molecular conduction:From molecules to metallic wires. Physical Review B.2001; 64(20):201403.
    [43]Wang CK, Fu Y, Luo Y. A quantum chemistry approach for currenfCvoltage characterization of molecular junctions. Phys Chem Chem Phys.2001; 3(22):5017-23.
    [44]Luo Y, Wang CK, Fu Y. Effects of chemical and physical modifications on the electronic transport properties of molecular junctions. The Journal of chemical physics.2002; 117:10283.
    [45]Xue YQ, Datta S, Ratner MA. First-principles based matrix Green's function approach to molecular electronic devices:general formalism. Chemical Physics.2002; 281(2-3):151-70.
    [46]Wang LW. Elastic quantum transport calculations using auxiliary periodic boundary conditions. Physical Review B.2005; 72(4):045417.
    [47]Brandbyge M, Mozos J, eacute, et al. Density-functional method for nonequilibrium electron transport. Physical Review B.2002; 65(16):165401.
    [48]Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices. Physical Review B.2001; 63(24):245407.
    [49]Taylor J, Guo H, Wang J. Ab initio modeling of open systems:Charge transfer, electron conduction, and molecular switching of a C-60 device. Physical Review B.2001; 63(12):121104.
    [50]Mehrez H, Taylor J, Guo H, et al. Carbon nanotube based magnetic tunnel junctions. Physical Review Letters.2000; 84(12):2682-5.
    [51]Larade B, Taylor J, Mehrez H, Guo H. Conductance, IV curves, and negative differential resistance of carbon atomic wires. Physical Review B.2001; 64(7):075420.
    [52]Waldron D, Haney P, Larade B, et al. Nonlinear spin current and magnetoresistance of molecular tunnel junctions. Physical Review Letters.2006; 96(16):166804.
    [53]Maassen J, Zahid F, Guo H. Effects of dephasing in molecular transport junctions using atomistic first principles. Physical Review B.2009; 80(12):125423.
    [54]Chen H, Shi Y, Yu J, et al. Phonon-associated conductance through a quantum point contact. Physical Review B.1997; 55(15):9935-40.
    [55]Faleev SV, Lionard F, Stewart DA, et al. Ab initio tight-binding LMTO method for nonequilibrium electron transport in nanosystems. Physical Review B.2005; 71(19):195422.
    [56]Havu P, Havu V, Puska M, et al. Nonequilibrium electron transport in two-dimensional nanostructures modeled using Green's functions and the finite-element method. Physical Review B.2004; 69(11):115325.
    [57]Kosov D. Lagrange multiplier based transport theory for quantum wires. The Journal of Chemical Physics.2004; 120:7165.
    [58]Park J, Pasupathy AN, Goldsmith JI, et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature.2002; 417(6890):722-5.
    [59]Long MQ, Chen KQ, Wang L, et al. Negative differential resistance induced by intermolecular interaction in a bimolecular device. Applied Physics Letters.2007; 91(23):233512.
    [60]Park J, Pasupathy AN, Goldsmith JI, et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature.2002; 417(6890):722-5.
    [61]Goldhaber-Gordon D, Shtrikman H, Mahalu D, et al. Kondo effect in a single-electron transistor. Nature.1998; 391(6663):156-9.
    [62]Ng MK, Yu L. Synthesis of amphiphilic conjugated diblock oligomers as molecular diodes. Angewandte Chemie.2002; 114(19):3750-3.
    [63]Martin A, Sambles J, Ashwell G. Molecular rectifier. Physical review letters.1993; 70(2): 218-21.
    [64]Blum AS, Kushmerick JG, Long DP, et al. Molecularly inherent voltage-controlled conductance switching. Nature materials.2005; 4(2):167-72.
    [65]Kasumov AY, Kociak M, Gueron S, et al. Proximity-induced superconductivity in DNA. Science.2001; 291(5502):280-2.
    [66]Tsuda A, Osuka A. Fully conjugated porphyrin tapes with electronic absorption bands that reach into infrared. Science.2001; 293(5527):79-82.
    [67]Kong J, Franklin NR, Zhou C, et al. Nanotube molecular wires as chemical sensors. Science. 2000; 287(5453):622-5.
    [68]Wang X, Ouyang Y, Jiao L, et al. Graphene nanoribbons with smooth edges behave as quantum wires. Nature nanotechnology.2011; 6(9):563-7.
    [69]Steenwinkel P, Kooijman H, Smeets WJJ, et al. Intramolecularly Stabilized 1, 4-Phenylene-Bridged Homo-and Heterodinuclear Palladium and Platinum Organometallic Complexes Containing N, C, N-Coordination Motifs; η1-SO2 Coordination and Formation of an Organometallic Arenium Ion Complex with Two Pt-Cσ-Bonds. Organometallics.1998; 17(24): 5411-26.
    [70]Miller SE, Lukas AS, Marsh E, et al. Photoinduced Charge Separation Involving an Unusual Double Electron Transfer Mechanism in a Donor-Bridge-Acceptor Molecule. Journal of the American Chemical Society.2000; 122(32):7802-10.
    [71]Collier CP, Mattersteig G, Wong EW, et al. A catenane-based solid state electronically reconfigurable switch. Science.2000; 289(5482):1172-5.
    [72]O'Neil MP, Niemczyk MP, Svec WA, et al. Picosecond optical switching based on biphotonic excitation of an electron donor-acceptor-donor molecule. Science (New York, NY).1992; 257(5066):63-5.
    [73]Debreczeny MP, Svec WA, Wasielewski MR. Optical control of photogenerated ion pair lifetimes:An approach to a molecular switch. Science.1996; 274(5287).
    [74]Smit R, Noat Y, Untiedt C, et al. Measurement of the conductance of a hydrogen molecule. Nature.2002; 419:906-9.
    [75]Elbing M, Ochs R, Koentopp M, et al. A single-molecule diode. Proceedings of the National Academy of Sciences of the United States of America.2005; 102(25):8815-20.
    [76]Troisi A, Ratner MA. Molecular rectification through electric field induced conformational changes. Journal of the American Chemical Society.2002; 124(49):14528-9.
    [77]Krzeminski C, Delerue C, Allan G, et al. Theory of electrical rectification in a molecular monolayer. Physical Review B.2001; 64(8):085405.
    [78]Chabinyc ML, Chen X, Holmlin RE, et al. Molecular rectification in a metal-insulator-metal junction based on self-assembled monolayers. Journal of the American Chemical Society.2002; 124(39):11730-6.
    [79]Kim SW, Park J, Jang Y, et al. Synthesis of monodisperse palladium nanoparticles. Nano Letters.2003; 3(9):1289-91.
    [80]Ashwell GJ, Gandolfo DS. Molecular rectification:dipole reversal in a cationic donor-(π-bridge)-acceptor dye. J Mater Chem.2002; 12(3):411-5.
    [81]McCreery R, Dieringer J, Solak AO, et al. Molecular rectification and conductance switching in carbon-based molecular junctions by structural rearrangement accompanying electron injection. Journal of the American Chemical Society.2003; 125(35):10748-58.
    [82]Fu L, Liu ZM, Liu YQ, et al. Beaded cobalt oxide nanoparticles along carbon nanotubes: Towards more highly integrated electronic devices. Adv Mater.2005; 17(2):217-21.
    [83]Zhao J, Zeng C, Cheng X, et al. Single C59N Molecule as a Molecular Rectifier. Physical Review Letters.2005; 95(4):45502.
    [84]Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature.1998; 393(6680):49-52.
    [85]Mas-Torrent M, Durkut M, Hadley P, et al. High mobility of dithiophene-tetrathiafulvalene single-crystal organic field effect transistors. Journal of the American Chemical Society.2004; 126(4):984-5.
    [86]Mas-Torrent M, Hadley P, Bromley S, et al. Single-crystal organic field-effect transistors based on dibenzo-tetrathiafulvalene. Applied Physics Letters.2005; 86(1):012110-3.
    [87]Sun Y, Tan L, Jiang S, et al. High-performance transistor based on individual single-crystalline micrometer wire of perylo [1,12-b, c, d] thiophene. Journal of the American Chemical Society.2007; 129(7):1882-3.
    [88]Tang Q, Li H, He M, et al. Low Threshold Voltage Transistors Based on Individual Single‐Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine. Advanced Materials.2005; 18(1):65-8.
    [89]Niu Q, Zhou Y, Wang L, et al. Enhancing the Performance of Polymer Light-Emitting Diodes by Integrating Self-Assembled Organic Nanowires. Advanced Materials.2008; 20(5):964-9.
    [90]Briseno AL, Mannsfeld SCB, Reese C, et al. Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters. Nano Letters.2007; 7(9): 2847-53.
    [91]Wolkow RA. Controlled molecular adsorption on silicon:laying a foundation for molecular devices. Annual Review of Physical Chemistry.1999; 50(1):413-41.
    [92]Stokbro K, Taylor J, Brandbyge M, et al. Theoretical study of the nonlinear conductance of Di-thiol benzene coupled to Au (111) surfaces via thiol and thiolate bonds. Computational Materials Science.2003; 27(1):151-60.
    [93]Delaney P, Greer J. Correlated electron transport in molecular electronics. Physical Review Letters.2004; 93(3):36805.
    [94]Tao N. Electron transport in molecular junctions. Nature nanotechnology.2006; 1(3):173-81.
    [95]Agapito LA, Cao C, Cheng HP. First-principles determination of the effects of intermolecular interactions on the electronic transport through molecular monolayers. Physical Review B.2008; 78(15):155421.
    [96]Perez-Jimenez AJ, Sancho-Garcia JC. Conductance Enhancement in Nanographene-Gold Junctions by Molecular pi-Stacking. Journal of the American Chemical Society.2009; 131(41): 14857-67.
    [97]Li B, Yoo JW, Kao CY, et al. Impact of electrode metals on a pentacene-based write-once read-many memory device. Synthetic Metals.2010; 160(21):2385-8.
    [98]Cai L, Skulason H, Kushmerick J, et al. Nanowire-based molecular monolayer junctions: Synthesis, assembly, and electrical characterization. The Journal of Physical Chemistry B.2004; 108(9):2827-32.
    [99]Barbarella G, Melucci M, Sotgiu G. The Versatile Thiophene:An Overview of Recent Research on Thiophene-Based Materials. Advanced Materials.2005; 17(13):1581-93.
    [100]Horowitz G. Organic thin film transistors:From theory to real devices. Journal of materials research.2004; 19(07):1946-62.
    [101]Zhang LZ, Chen CW, Lee CF, et al. Non-amine-based furan-containing oligoaryls as efficient hole transporting materials. Chemical Communications.2002; (20):2336-7.
    [102]Udupa AH, Erlig H, Tsap B, et al. High-frequency, low-crosstalk modulator arrays based on FTC polymer systems. Electronics Letters.1999; 35(20):1702-4.
    [103]Kim YH, Jang SS, Jang YH, et al. First-principles study of the switching mechanism of 2 catenane molecular electronic devices. Physical Review Letters.2005; 94(15).
    [104]Geng H, Hu Y, Shuai Z, et al. Molecular design of negative differential resistance device through intermolecular interaction. Journal of Physical Chemistry C.2007; 111(51):19098-102.
    [105]Ho G, Heath JR, Kondratenko M, et al. The first studies of a tetrathiafulvalene-sigma-acceptor molecular rectifier. Chemistry-a European Journal.2005; 11(10): 2914-22.
    [106]邹斌,李宗良,马勇,闫循旺,王传奎.分子构型对分子器件伏安特性的影响.原子与 分子物理学报.2006;增刊:253-5.
    [107]http://wenku.baidu.com/view/7b78861eb7360b4c2e3f648b.html.
    [108]Kohn W, Geneva C. Electronic structure of matter:wave functions and density functional. Nobel Lectures, Chemistry 1996"C2000.1999.
    [109]Hartree DR. The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society; 1928: Cambridge Univ Press; 1928. p.89-110.
    [110]Hartree D. The wave mechanics of an atom with a non-Coulomb central field. Part II. Some results and discussion. Mathematical Proceedings of the Cambridge Philosophical Society; 1928: Cambridge Univ Press; 1928. p.111-32.
    [111]Fock V. N herungsmethode zur L sung des quantenmechanischen Mehrk rperproblems. Zeitschrift f'r Physik A Hadrons and Nuclei.1930; 61(1):126-48.
    [112]Fock V, Petrashen M. On the numerical solution of generalised equations of the self-consistent field. Phys Z Sowjetunion.1934; 6:368-414.
    [113]Thomas LH. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society; 1927:Cambridge Univ Press; 1927. p.542-8.
    [114]Fermi E. Un metodo statistico per la determinazione di alcune priorieta dell'atome. Rend Accad Naz Lincei.1927; 6(602-607):32.
    [115]Dirac PAM. Note on exchange phenomena in the Thomas atom. Proceedings of the Cambridge Philosophical Society; 1930; 1930. p.376.
    [116]Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review.1964; 136(3B): B864.
    [117]Kohn V, Sham L. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review.1965; 140(4A):1-5.
    [118]Becke AD. A new mixing of Hartree"CFock and local density(?)\functional theories. The Journal of chemical physics.1993; 98:1372.
    [119]Perdew JP, Kurth S, Zupan A, Blaha P. Accurate density functional with correct formal properties:A step beyond the generalized gradient approximation. Physical review letters.1999; 82(12):2544-7.
    [120]Svane A, Gunnarsson O. Transition-metal oxides in the self-interaction"Ccorrected density-functional formalism. Physical review letters.1990; 65(9):1148-51.
    [121]Szabo A, Ostlund N. Modern quantum chemistry:introduction to advanced electronic structure theoryMacmillan Publishing. New York.1982.
    [122]Leach AR. Molecular modeling. Principles & Application, Person Education Limited.1996; 701.
    [123]Dreizler R, Gross E. Density Functional Theory:An Approach to the Quantum Many-Body Problem Springer. Berlin; 1990.
    [124]Huang F, Chen K-S, Yip H-L, et al. Development of New Conjugated Polymers with Donor-jc-Bridge-Acceptor Side Chains for High Performance Solar Cells. J Am Chem Soc.,2009; 131:13886-7.
    [125]Staykov A, Nozaki D, Yoshizawa K. Theoretical Study of Donor-π-Bridge-Acceptor Unimolecular Electric Rectifier. J Phys Chem C.2007; 111:11699-705.
    [126]Asai Y. Nonequilibrium phonon effects on transport properties through atomic and molecular bridge junctions. Physical Review B.2008; 78(4):045434.
    [127]Diez-Perez I, Hihath J, Lee Y, et al. Rectification and stability of a single molecular diode with controlled orientation. Nature Chemistry.2009; 1(8):635-41.
    [128]Guo C, Zhang Z, Kwong G, et al. Enormously Enhanced Rectifying Performances by Modification of Carbon Chains for D-a-A Molecular Devices. The Journal of Physical Chemistry C.2012; 116(23):12900-5.
    [129]Kim WY, Kim KS. Tuning molecular orbitals in molecular electronics and spintronics. Accounts of Chemical Research.2009; 43(1):111-20.
    [130]Zhang X-J, Long M-Q, Chen K-Q, et al. Electronic transport properties in doped C[sub 60] molecular devices. Applied Physics Letters.2009; 94(7):073503-3.
    [131]Long MQ, Chen KQ, Wang LL, et al. Negative differential resistance behaviors in porphyrin molecular junctions modulated with side groups. Applied Physics Letters.2008; 92(24):243303.
    [132]Fang C, Zhao P, Cui B, et al. Current rectification in single molecule C59N:Effect of molecular polarity induced dipole moment. Physics Letters A.2010; 374(43):4465-70.
    [133]Tsuji Y, Staykov A, Yoshizawa K. Molecular Rectifier Based on n-n Stacked Charge Transfer Complex. The Journal of Physical Chemistry C.2012; 116(3):2575-80.
    [134]Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C. Carbon nanotube single-electron transistors at room temperature. Science.2001; 293(5527):76-9.
    [135]Kondo M, Tada T, Yoshizawa K. A theoretical measurement of the quantum transport through an optical molecular switch. Chemical Physics Letters.2005; 412(1-3):55-9.
    [136]Zhou Y-h, Yuan L-z, Zheng X-h. Ab initio study of the transport properties of a light-driven switching molecule azobenzene substituent. Computational Materials Science.2012; 61:145-9.
    [137]Ren Y, Chen KQ, He J, et al. Mechanically and electronically controlled molecular switch behavior in a compound molecular device. Applied Physics Letters.2010; 97(10):103506.
    [138]Wu M, Jiang J, Weng M. Spin dynamics in semiconductors. Physics Reports.2010; 493(2): 61-236.
    [139]Li Y, Zhou G, Li J, et al. Ab initio Study of Half-Metallicity and Magnetism of Complex Organometallic Molecular Wires. The Journal of Physical Chemistry C.2011; 115(15):7292-7.
    [140]Hao H, Zheng X, Dai Z, et al. Gate-induced switching in single-molecule magnet MnⅢCuⅡ. Journal of Applied Physics.2011; 110(2):023702.
    [141]Fan ZQ, Chen KQ. First-principles study of side groups effects on the electronic transport in conjugated molecular device. Physica E.2010; 42(5):1492-6.
    [142]Han MY, Brant JC, Kim P. Electron transport in disordered graphene nanoribbons. Physical review letters.2010; 104(5):56801.
    [143]Joe YS, Lee SH, Hedin ER. Electron transport through asymmetric DNA molecules. Physics Letters A.2010; 374(23):2367-73.
    [144]Li M-J, Xu H, Chen K-Q, et al. Electronic transport properties in benzene-based heterostructure:Effects of anchoring groups. Physics Letters A.2012; 376(20):1692-7.
    [145]Pan JB, Zhang ZH, Ding KH, et al. Current rectification induced by asymmetrical electrode materials in a molecular device. Applied Physics Letters.2011; 98(9):092102.
    [146]Yaliraki SN, Kemp M, Ratner MA. Conductance of Molecular Wires:Influence of Molecule-Electrode Binding. J Am Chem Soc.1999; 121:3428-34.
    [147]Ricks AB, Solomon GC, Colvin MT, et al. Controlling Electron Transfer in Donor-Bridge-Acceptor Molecules Using Cross-Conjugated Bridges. Journal of the American Chemical Society.2010; 132(43):15427-34.
    [148]Kushmerick JG, Holt DB, Pollack SK, et al. Effect of bond-length alternation in molecular wires. Journal of the American Chemical Society.2002; 124(36):10654-5.
    [149]Sedghi G, Sawada K, Esdaile LJ, et al. Single molecule conductance of porphyrin wires with ultralow attenuation. Journal of the American Chemical Society.2008; 130(27):8582-3.
    [150]Lin Z, Lawrence CM, Xiao D, et al. Modulating unimolecular charge transfer by exciting bridge vibrations. Journal of the American Chemical Society.2009; 131(50):18060-2.
    [151]Maiti SK. Electron transport through molecular bridge systems. Journal of Nanoscience and Nanotechnology.2008; 8(8):4096-100.
    [152]Long MQ, Wang LL, Chen KQ. Effects of structural and central metal ions modification on the electronic transport properties of porphyrin molecular junctions. Modern Physics Letters B. 2008; 22(9):661-70.
    [153]Roland C, Meunier V, Larade B, et al. Charge transport through small silicon clusters. Physical Review B.2002; 66(3):035332.
    [154]Geng H, Yin SW, Chen KQ, et al. Effects of intermolecular interaction and molecule-electrode couplings on molecular electronic conductance. Journal of Physical Chemistry B.2005; 109(25):12304-8.
    [155]Huang J, Li Q, Li Z, et al. Rectifying Effect in Polar Conjugated Molecular Junctions:A First-Principles Study. Journal of Nanoscience and Nanotechnology.2009; 9(2):774-8.
    [156]Chen J, Wang W, Reed MA, et al. Room-temperature negative differential resistance in nanoscale molecular junctions. Applied Physics Letters.2000; 77(8):1224.
    [157]Lu J, Yin S, Peng LM, et al. Proximity and anomalous field-effect characteristics in double-wall carbon nanotubes. Applied Physics Letters.2007; 90(5):052109.
    [158]Basch H, Cohen R, Ratner MA. Interface Geometry and Molecular Junction Conductance: Geometric Fluctuation and Stochastic Switching. Nano Lett.2005; 5(9):1668-75.
    [159]Kaun C-C, Seideman T. Conductance, contacts, and interface states in single alkanedithiol molecular junctions. Physical Review B.2008; 77(3):033414.
    [160]Hong W, Manrique DZ, Moreno-Garcia P, et al. Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J Am Chem Soc.2012; 134(4):2292-304.
    [161]Ventra MD, Pantelides ST, Lang ND. First-Principles Calculation of Transport Properties of a Molecular Device. Phys Rev Lett.2000; 84(5):979-82.
    [162]Kim G, Wang S, Lu W, et al. Effects of end group functionalization and level alignment on electron transport in molecular devices. J Chem Phys.2008; 128(2):024708.
    [163]Wang RN, Zheng XH, Dai ZX, et al. Anchoring group effects in molecular devices:An ab initio study on the electronic transport of a carbon-dimer. Physics Letters A.2011; 375(3):657-60.
    [164]Yuan S, Wang S, Mei Q, et al. First-principles study of rectification in bis-2-(5-ethynylthienyl)ethyne molecular junctions. The journal of physical chemistry A.2011; 115(32):9033-42.
    [165]Venkataraman L, Klare JE, Tam IW, et al. Effects of end group functionalization and level alignment on electron transport in molecular devices. Nano Lett.2006; 6(3):458-62.
    [166]Chu C, Na J-S, Parsons GN. Conductivity in Alkylamine/Gold and Alkanethiol/Gold Molecular Junctions Measured in Molecule/Nanoparticle/Molecule Bridges and Conducting Probe Structures. Journal of the American Chemical Society.2007; 129:2287-96.
    [167]Wu HM, LSong Y, Zhao T, et al. Ultrahigh-density data storage on a novel organic thin film achieved using a scanning tunnelling microscope. Nanotechnology.2002; 13:733-5.
    [168]Wu H, Song Y, Du S. Nanoscale Data Recording on an Organic Monolayer Film. Adv Mater. 2003; 15(22):1925-9.
    [169]Tsumura A, Koezuka H, Ando T. Macromolecular electronic device:Field effect transistor with a polythiophene thin film. Applied Physics Letters.1986; 49(18):1210-2.
    [170]Baude P, Ender D, Haase M, et al. Pentacene-based radio-frequency identification circuitry. Applied Physics Letters.2003; 82(22):3964-6.
    [171]Sheraw C, Zhou L, Huang J, et al. Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates. Applied Physics Letters.2002; 80(6): 1088-90.
    [172]Guionneau P, Kepert C, Bravic G, et al. Determining the charge distribution in BEDT-TTF salts. Synthetic Metals.1997; 86(1):1973-4.
    [173]Bryce MR. Tetrathiafulvalenes as π-Electron Donors for Intramolecular Charge-Transfer Materials. Advanced Materials.1999; 11(1):11-23.
    [174]Hotta S, Waragai K. Crystal structures of oligothiophenes and their relevance to charge transport. Advanced Materials.1993; 5(12):896-908.
    [175]Zhang W, Liang W, Zhao Y. Non-Condon effect on charge transport in dithiophene-tetrathiafulvalene crystal. J Chem Phys.2010; 133(2):024501.
    [176]Yuan S, Dai C, Weng J, et al. Theoretical studies of electron transport in thiophene dimer: effects of substituent group and heteroatom. The journal of physical chemistry A.2011; 115(17): 4535-46.
    [177]Yang X, Li Q, Shuai Z. Theoretical modelling of carrier transports in molecular semiconductors:molecular design of triphenylamine dimer systems. Nanotechnology.2007; 18(42):424029.
    [178]Mas-Torrent M, Masirek S, Hadley P, et al. Organic field-effect transistors (OFETs) of highly oriented films of dithiophene-tetrathiafulvalene prepared by zone casting. Organic Electronics.2008; 9(1):143-8.
    [179]Varma KS, Bury A, Harris NJ, et al. Improved Synthesis of Bis (ethylenedithio) tetrathiafulvalene(BEDT-TTF):π-Donor for Synthetic Metals. Synthesis.1987; 1987(9):837-8.
    [180]Pfattner R, Mas-Torrent M, Bilotti I, et al. High-performance single crystal organic field-effect transistors based on two dithiophene-tetrathiafulvalene (DT-TTF) polymorphs. Adv Mater.2010; 22(37):4198-203.
    [181]Yamashita Y, Kobayashi Y, Miyashi T. p-Quinodimethane Analogues of Tetrathiafulvalene. Angewandte Chemie International Edition in English.2003; 28(8):1052-3.
    [182]Yamashita Y, Tomura M. Highly polarized electron donors, acceptors and donor'Cacceptor compounds for organic conductors. Journal of Materials Chemistry.1998; 8(9):1933-44.
    [183]Oton F, Pfattner R, Pavlica E, et al. Electronic and structural characterisation of a tetrathiafulvalene compound as a potential candidate for ambipolar transport properties. CrystEngComm.2011; 13(22):6597-600.
    [184]Crivillers N, Oxtoby NS, Mas-Torrent M, et al. Improved Synthesis of the High-Mobility Organic Semiconductor Dithio-phene-Tetrathiafulvalene. Synthesis.2007; 11:1621-3.
    [185]Yang X, Zhang G, Li L, et al. Self-assembly of a dendron-attached tetrathiafulvalene:gel formation and modulation in the presence of chloranil and metal ions. Small.2012; 8(4):578-84.
    [186]Katz HE, Johnson J, Lovinger AJ, et al. Naphthalenetetracarboxylic diimide-based n-channel transistor semiconductors:structural variation and thiol-enhanced gold contacts. Journal of the American Chemical Society.2000; 122(32):7787-92.
    [187]Chen W, Wang L, Huang C, et al. Effect of functional group (fluorine) of aromatic thiols on electron transfer at the molecule-metal interface. Journal of the American Chemical Society.2006; 128(3):935-9.
    [188]Tang ML, Bao Z. Halogenated Materials as Organic Semiconductorst-Chemistry of Materials.2010; 23(3):446-55.
    [189]Facchetti A, Mushrush M, Yoon MH, H et al. Building blocks for n-type molecular and polymeric electronics. Perfluoroalkyl-versus alkyl-functionalized oligothiophenes (nT; n= 2-6). Systematics of thin film microstructure, semiconductor performance, and modeling of majority charge injection in field-effect transistors. Journal of the American Chemical Society.2004; 126(42):13859-74.
    [190]Sainova D, Janietz S, Asawapirom U, et al. Improving the stability of polymer FETs by introducing fixed acceptor units into the main chain:Application to poly (alkylthiophenes). Chemistry of Materials.2007; 19(6):1472-81.
    [191]Geramita K, Tao Y, Segalman RA, Tilley TD. Synthesis and Characterization of Fluorinated Heterofluorene-Containing Donor-Acceptor Systems. The Journal of organic chemistry.2010; 75(6):1871-87.
    [192]Long M-Q, Wang L, Chen K-Q, et al. Coupling effect on the electronic transport through dimolecular junctions. Physics Letters A.2007; 365(5-6):489-94.
    [193]Morales GM, Jiang P, Yuan S, et al. Inversion of the Rectifying Effect in Diblock Molecular Diodes by Protonation. Journal of the American Chemical Society.2005; 127(30):10456-7.
    [194]Geng H, Yin S, Chen K-Q, Shuai Z. Effects of Intermolecular Interaction and Molecule-Electrode Couplings on Molecular Electronic Conductance. The Journal of Physical Chemistry B.2005; 109(25):12304-8.
    [195]Liu R, Ke S-H, Baranger HU, Yang W. Intermolecular effect in molecular electronics. The Journal of Chemical Physics.2005; 122(4):044703-4.
    [196]Delaney P, Greer JC. Correlated Electron Transport in Molecular Electronics. Physical Review Letters.2004; 93(3):036805.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700