自噬在严重烧伤早期心肌损害中的作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     严重烧伤早期,在毛细血管通透性增加造成血容量显著下降之前,就已出现了明显的心肌损害。这种即早出现的心肌损害,不仅诱发或加重休克,而且是其它脏器如肝、肾、肠等缺血缺氧性损害的重要因素之一。但严重烧伤早期心肌损害的机制尚不完全清楚。自噬是真核细胞高度保守的自我保护机制,它通过对细胞内长寿命蛋白质、细胞器等进行消化降解,以实现氨基酸、脂肪酸等原料的循环利用。自噬也会导致细胞死亡,自噬性细胞死亡被称第二型程序性细胞死亡,是区别于坏死和凋亡的第三种细胞死亡方式。本研究旨在观察自噬在严重烧伤后心肌损害中的作用,并探讨在缺氧和/或Ang II刺激条件下自噬发生的调控机制。
     材料和方法
     1.以30%III度烫伤S-D大鼠为烧伤模型,以颈总动脉插管的方式检测烧伤后1小时、3小时、6小时和12小时活体心功能;同样时相点剖取大鼠心脏,以Langendorff装置行游离心脏体外灌流,检测体外心功能的变化。
     2.各时相点留取心肌标本,提取总蛋白,行免疫印迹实验(Western Blotting)观察自噬标志性蛋白质LC3和Beclin1表达,以反映烧伤后心肌细胞自噬活性的变化。
     3.对各时相点心肌组织标本行免疫荧光染色,观察烧伤后心肌细胞自噬性死亡(Ubiquitin标记)、凋亡(TUNEL标记)和坏死(C5b9标记)的变化。
     4.以加入自噬激活剂或抑制剂的K-H液对烧伤大鼠游离心脏进行灌流,观察心功能的变化、心肌细胞自噬活性和自噬性细胞死亡的变化;同样以ACEI、AT1受体阻滞剂和ROS抑制剂来灌流游离心脏,观察其对自噬和心功能的影响。
     5.原代培养S-D大鼠乳鼠心肌细胞,以缺氧和/或Ang II刺激来模拟烧伤后心肌细胞的应激条件,首先以透射电镜确认此条件下心肌细胞自噬活性的变化。
     6.再以DHE活细胞荧光染色来半定量缺氧和/或Ang II刺激条件下心肌细胞ROS含量;以MDC活细胞荧光染色以及Western Blotting方法来确定心肌细胞自噬活性的改变。抑制ROS后观察以上指标变化,明确ROS与自噬间的关系。
     7.以ELISA的方法来定量缺氧和/或Ang II刺激条件下心肌细胞内PKCδ和PKCε表达量的变化,同时确认重组慢病毒siRNA调低PKCε表达的效果。
     8.通过PKCδ特异性的抑制剂及PKCε慢病毒siRNA干扰,观察病缺氧和/或Ang II刺激条件下心肌细胞ROS含量和自噬活性的变化,明确PKCδ和PKCε在这些应激条件下的作用。
     结果
     1.严重烧伤后早期心肌细胞自噬活性即显著增强,伤后3小时,即可发现心肌细胞自噬性死亡的组织学变化,早于细胞凋亡和细胞坏死,并且其发生率高于凋亡,表明自噬性细胞死亡是烧伤后心肌细胞死亡的重要途径。
     2.在游离心脏体外灌流模型上对自噬施加正负调控的结果表明,在烧伤后的特定时间段(伤后3小时以后),心肌细胞自噬可能发挥有害作用,抑制自噬能减少心肌细胞自噬性死亡数量,增强心功能。
     3.30%III度烧伤后6小时大鼠游离心脏灌流实验提示,在烧伤这种应激条件下,AngII和ROS可能是诱发和激活心肌细胞自噬的重要信号转导分子。
     4.体外培养的乳鼠心肌细胞,在缺氧和/或Ang II刺激条件下自噬活性增强,同时伴有细胞内ROS含量升高。
     5.无论是在缺氧和/或Ang II刺激条件下,抑制ROS都能明显抑制原代培养心肌细胞自噬活性,提示ROS可能是诱导自噬的直接原因。
     6.以特异性的抑制剂Rottlerin抑制PKCδ活性,在缺氧或混合Ang II刺激条件下细胞ROS含量和自噬活性明显降低,而在单独Ang II刺激条件下对ROS和自噬无影响。该结果提示,心肌细胞缺氧诱导自噬可能是经由PKCδ而发挥作用,但PKCδ不参与调控AngII诱导自噬的过程。
     7.通过慢病毒载体对心肌细胞PKCε进行siRNA干扰,致使其PKCε蛋白表达水平降低,发现调低PKCε在Ang II刺激或合并缺氧的条件下能使心肌细胞ROS含量下降并调低自噬活性,而在单纯缺氧条件下对ROS和自噬活性无影响。这提示PKCε是Ang II诱导心肌细胞自噬的重要介导分子。
     结论
     严重烧伤后,缺氧和Ang II刺激都能使心肌细胞内ROS含量升高,ROS通过氧化损伤胞内大分子蛋白质以及破坏线粒体而诱发细胞自噬增强。然而,两者是通过不同信号通路来发挥作用的:单纯缺氧诱导自噬可能依赖PKCδ/NADPH oxidase/ROS途径,而Ang II则首先与AT1受体结合,然后激活下游的PKCε/NADPH oxidase/ROS而增强细胞自噬活性。烧伤初期,机体尚能通过代偿机制而保持内环境的相对稳定,在适度缺氧和/或适度Ang II刺激条件下,被激活的心肌细胞自噬发挥保护作用,同时自噬本身也是代偿机制的重要组成部分。但随着缺氧和Ang II刺激条件的持续,心肌细胞进入失代偿期,此时的自噬增强则有害,可导致自噬性细胞死亡数量增加,成为烧伤早期心肌损害/心功能降低的重要机制。
Background: The prompt myocardial damage and cardiac dysfunction are key pointsto initiate the ischemic/hypoxic injuries to other organs at early stages in severe burns.However, the exact mechanisms of the prompt myocardial damage are still not totallyclarified. Autophagy acts as a highly conservative mechanism of self-protection bydigesting the long-life proteins and damaged organelles to recycle nutrients in eukaryocytes.And the autophagic cell death is described as a second type of programmed cell deathwhich differs from apoptosis and necrosis. The present study is designed to investigate theroles of autophagy in the myocardial damage after severe burns and further to explore theregulation mechanisms of autophagy under the conditions of hypoxia and Ang IIstimulation.
     Methods: Firstly, based on the burn model of30%TBSA third degree scald rats, wedetected the cardiac function in vivo and in vitro on a Langendorff apparatus at1,3,6, and12h post-burn. Western blotting was used to determine the expressions of LC3and Beclin1proteins which indicated the autophagic activity in myocardium after burns.Immunofluorescence staining was performed to label myocardial cell death includingautophagic cell death (ubiquitin labeling), apoptosis (TUNEL labeling), and oncosis (C5b9labeling). For the perfusion hearts isolated at6h post-burn, the autophagy activator andinhibitor, ACEI, AT1blocker, and ROS inhibitor were added to the K-H perfusion bufferand the following changes in myocardial autophagy and cardiac function were thendetermined. Further, transmission electron microscope was used to confirm the changes ofautophagic status in the cultured neonatal cardiomyocytes of S-D rats under hypoxia and/orAng II stimulation. Based on the cultured cell model, in vivo fluorescence staining of DHE(ROS detection) and MDC (autophagosome vacuole labeling) were performed to explorethe relationship between ROS and autophagy in the setting of ROS inhibition. Expression of PKCδ and PKCε in the cultured cardiomyocytes under stress of hypoxia and Ang II werequantified by an ELISA method. Using the same method, we confirmed the downregulationeffect of the recombined lentivirus with siRNA on PKCε. In order to shed light on the rolesof PKCδ and PKCε under these stress conditions, we investigated the changes of cellularROS and autophagy in the setting of PKCδ specific inhibition and PKCε RNA interferingby the recombined lentivirus.
     Results: Myocardial autophagy was remarkably enhanced early after severe burns.Autophagic cardiomyocyte death was found3h post-burn, preceding apoptosis andnecrosis with a higher incidence rate, which indicated that autophagic cell death play animportant role in cardiomyocyte loss in severe burns. At the decompensation stage, e.g.after3h post-burn, autophagy was detrimental and its inhibition resulted in improvement ofheart function. ROS and Ang II participated in arousing myocardial autophagy. Resultsfrom cultured cardiomyocytes also indicated that autophagy was significantly enhancedunder the conditions of hypoxia and Ang II stimulation, accompanied with the increase ofcellular ROS. Inhibition of ROS caused to a sharp decrease of autophagic activity,suggesting that ROS may induce myocardial autophagy in a direct way. Under hypoxia orcombined with Ang II stimulation, PKCδ specific inhibition decreased cellular ROS contentand autophagic activity, while with Ang II stimulation alone, inhibition of PKCδ did not affectROS and autophagy. Interestingly, downregulation of PKCε by siRNA interfering decreased ROSamount and autophagic activity under Ang II stimulation or combined hypoxia, but it failed withhypoxia alone.
     Conclusion: In severe burns, hypoxia and Ang II stimulation cause to an increase of ROSin cardiomyocytes, and ROS enhance autophagy by damage to cellular macromolecules andorganelles. However, hypoxia induces autophagy through a PKCδ/NADPH oxidase/ROSapproach, while Ang II inducing autophagy depends on an AT1/PKCε/NADPHoxidase/ROS way. Before decompensation, the internal environment can be maintained in arelatively stable level. Under moderate hypoxia and Ang II stimulation, autophagy isaroused to protect cardiomyocytes, which is also a part of cellular compensationmechanisms. However, with the hypoxia prolonged and Ang II accumulated, the internalenvironment homeostasis is broken, and autophagy turns to be detrimental, causingautophagic cell death and being an important mechanism of the prompt myocardial damage and cardiac dysfunction soon after a severe burn.
引文
1. Xiao R, Lei ZY, Dang YM, Huang YS: Prompt myocardial damage contributes tohepatic, renal, and intestinal injuries soon after a severe burn in rats. J Trauma2011,71(3):663-672.
    2. Huang YS, Yang ZC, Liu XS, Chen FM, He BB, Li A, Crowther RS: Serialexperimental and clinical studies on the pathogenesis of multiple organ dysfunctionsyndrome (MODS) in severe burns. Burns1998,24(8):706-716.
    3. Sheng Z: Prevention of multiple organ dysfunction syndrome in patients with extensivedeep burns. Chin J Traumatol2002,5(4):195-199.
    4. Zhang JP, Ying X, Liang WY, Luo ZH, Yang ZC, Huang YS, Wang WC: Apoptosis incardiac myocytes during the early stage after severe burn. J Trauma2008,65(2):401-
    408.
    5. Xiang F, Huang YS, Shi XH, Zhang Q: Mitochondrial chaperone tumour necrosis factorreceptor-associated protein1protects cardiomyocytes from hypoxic injury by regulatingmitochondrial permeability transition pore opening. FEBS J,277(8):1929-1938.
    6. Hu JY, Chu ZG, Han J, Dang YM, Yan H, Zhang Q, Liang GP, Huang YS: Thep38/MAPK pathway regulates microtubule polymerization through phosphorylation ofMAP4and Op18in hypoxic cells. Cell Mol Life Sci,67(2):321-333.
    7. Olivetti G, Giordano G, Corradi D, Melissari M, Lagrasta C, Gambert SR, Anversa P:Gender differences and aging: effects on the human heart. J Am Coll Cardiol1995,26(4):1068-1079.
    8. Baehrecke EH: Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol2005,6(6):505-510.
    9. Levine B, Kroemer G: Autophagy in the pathogenesis of disease. Cell2008,132(1):27-42.
    10. Klionsky DJ, Emr SD: Autophagy as a regulated pathway of cellular degradation.Science2000,290(5497):1717-1721.
    11. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E,Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized inautophagosome membranes after processing. EMBO J2000,19(21):5720-5728.
    12. Mazure NM, Pouyssegur J: Hypoxia-induced autophagy: cell death or cell survival?Curr Opin Cell Biol2010,22:177-180.
    13. Jin Y, Wang H, Cui X, Xu Z: Role of autophagy in myocardial reperfusion injury. FrontBiosci (Elite Ed)2010,2:1147-1153.
    14. Levine B, Yuan J: Autophagy in cell death: an innocent convict? J Clin Invest2005,115(10):2679-2688.
    15. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A,Ruberg M, Hirsch EC, Agid Y: Apoptosis and autophagy in nigral neurons of patientswith Parkinson's disease. Histol Histopathol1997,12(1):25-31.
    16. Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, Hayakawa Y, ZimmermannR, Bauer E, Klovekorn WP et al: Myocytes die by multiple mechanisms in failinghuman hearts. Circ Res2003,92(7):715-724.
    17. Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y,Sadoshima J, Vatner SF: Autophagy in chronically ischemic myocardium. P Natl AcadSci USA2005,102(39):13807-13812.
    18. Hamacher-Brady A, Brady NR, Gottlieb RA: Enhancing macroautophagy protectsagainst ischemia/reperfusion injury in cardiac myocytes. J Biol Chem2006,281(40):29776-29787.
    19. Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA,Gottlieb RA, Gustafsson AB: Response to myocardial ischemia/reperfusion injuryinvolves Bnip3and autophagy. Cell Death Differ2007,14(1):146-157.
    20. Aki T, Yamaguchi K, Fujimiya T, Mizukami Y: Phosphoinositide3-kinase acceleratesautophagic cell death during glucose deprivation in the rat cardiomyocyte-derived cellline H9c2. Oncogene2003,22(52):8529-8535.
    21. Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, Scarabelli TM, KnightRA, Latchman DS, Stephanou A: Urocortin inhibits Beclin1-mediated autophagic celldeath in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol2006,40(6):846-852.
    22. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J:Distinct roles of autophagy in the heart during ischemia and reperfusion: roles ofAMP-activated protein kinase and Beclin1in mediating autophagy. Circ Res2007,100(6):914-922.
    23. Yin ZG, Huang YS, Li BX: Changes and relations between heart function and organblood flow in rats at early stage of severe burn. Chin J Burns,26(1):10-13.
    24. Yang J, Yang Z, Chen F: Changes in cardiac renin-angiotensin system after severe burninjury in rats. Chin J Burs Plast Surg1999,15(2):102-104.
    25. Paul M, Poyan Mehr A, Kreutz R: Physiology of local renin-angiotensin systems.Physiol Rev2006,86(3):747-803.
    26. Mackins CJ, Kano S, Seyedi N, Schafer U, Reid AC, Machida T, Silver RB, Levi R:Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrinerelease, and arrhythmias in ischemia/reperfusion. J Clin Invest2006,116(4):1063-1070.
    27. Peters H, Unger T: Mast cells and the power of local RAS activation. Nephrol DialTransplant2007,22(1):40-42.
    28. Porrello ER, D'Amore A, Curl CL, Allen AM, Harrap SB, Thomas WG, Delbridge LM:Angiotensin II type2receptor antagonizes angiotensin II type1receptor-mediatedcardiomyocyte autophagy. Hypertension2009,53(6):1032-1040.
    29. Steckelings UM, Unger T: Angiotensin receptors and autophagy: live and let die.Hypertension2009,53(6):898-899.
    30. Garrido AM, Griendling KK: NADPH oxidases and angiotensin II receptor signaling.Mol Cell Endocrinol2009,302(2):148-158.
    31. Scherz-Shouval R, Elazar Z: ROS, mitochondria and the regulation of autophagy.Trends Cell Biol2007,17(9):422-427.
    32. Nishizuka Y: The role of protein kinase C in cell surface signal transduction and tumourpromotion. Nature1984,308(5961):693-698.
    33. Nishizuka Y: Intracellular signaling by hydrolysis of phospholipids and activation ofprotein kinase C. Science1992,258(5082):607-614.
    34. Budas GR, Churchill EN, Mochly-Rosen D: Cardioprotective mechanisms of PKCisozyme-selective activators and inhibitors in the treatment of ischemia-reperfusioninjury. Pharmacol Res2007,55(6):523-536.
    35. Duquesnes N, Lezoualc'h F, Crozatier B: PKC-delta and PKC-epsilon: Foes of the samefamily or strangers? J Mol Cell Cardiol2011,51(5):665-673.
    36. Zhang Y, Wu Y, Tashiro S, Onodera S, Ikejima T: Involvement of PKC signal pathwaysin oridonin-induced autophagy in HeLa cells: a protective mechanism against apoptosis.Biochem Bioph Res Co2009,378(2):273-278.
    37. Chen JL, Lin HH, Kim KJ, Lin A, Ou JH, Ann DK: PKC delta signaling: a dual role inregulating hypoxic stress-induced autophagy and apoptosis. Autophagy2009,5(2):244-246.
    38. Song KS, Kim JS, Yun EJ, Kim YR, Seo KS, Park JH, Jung YJ, Park JI, Kweon GR,Yoon WH et al: Rottlerin induces autophagy and apoptotic cell death through aPKC-delta-independent pathway in HT1080human fibrosarcoma cells: the protectiverole of autophagy in apoptosis. Autophagy2008,4(5):650-658.
    39. Ozpolat B, Akar U, Mehta K, Lopez-Berestein G: PKC delta and tissuetransglutaminase are novel inhibitors of autophagy in pancreatic cancer cells.Autophagy2007,3(5):480-483.
    40. Ferreira MA, Owen HE, Howie AJ: High prevalence of acute myocardial damage in ahospital necropsy series, shown by C9immunohistology. J Clin Pathol1998,51(7):548-551.
    41. Huang YS, Yang ZC, Yan BG, Yang JM, Chen FM, Crowther RS, Li A: Pathogenesis ofearly cardiac myocyte damage after severe burns. J Trauma1999,46(3):428-432.
    42. Huang Y, Li Z, Yang Z: Roles of ischemia and hypoxia and the molecular pathogenesisof post-burn cardiac shock. Burns2003,29(8):828-833.
    43. Mizushima N, Yoshimori T: How to interpret LC3immunoblotting. Autophagy2007,3(6):542-545.
    44. Dong Y, Undyala VV, Gottlieb RA, Mentzer RM, Jr., Przyklenk K: Autophagy:definition, molecular machinery, and potential role in myocardial ischemia-reperfusioninjury. J Cardiovasc Pharm T2010,15(3):220-230.
    45. Matsui Y, Kyoi S, Takagi H, Hsu CP, Hariharan N, Ago T, Vatner SF, Sadoshima J:Molecular mechanisms and physiological significance of autophagy during myocardialischemia and reperfusion. Autophagy2008,4(4):409-415.
    46. Wang GQ, Xia ZF, Yu BJ, Xiao SC, Chen YL: Cardiac apoptosis in burned rats withdelayed fluid resuscitation. Burns2001,27(3):250-253.
    47. Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM: Apoptoticversus autophagic cell death in heart failure. Cardiovasc Res2001,51(2):304-312.
    48. Narula J, Arbustini E, Chandrashekhar Y, Schwaiger M: Apoptosis and the systolicdysfunction in congestive heart failure. Story of apoptosis interruptus and zombiemyocytes. Cardiol Clin2001,19(1):113-126.
    49. Porrello ER, Delbridge LM: Cardiomyocyte autophagy is regulated by angiotensin IItype1and type2receptors. Autophagy2009,5(8):1215-1216.
    50. Seko Y, Takahashi N, Tobe K, Kadowaki T, Yazaki Y: Hypoxia andhypoxia/reoxygenation activate p65PAK, p38mitogen-activated protein kinase (MAPK),and stress-activated protein kinase (SAPK) in cultured rat cardiac myocytes. BiochemBioph Res Co1997,239(3):840-844.
    51. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL: Monitoring autophagy by electronmicroscopy in Mammalian cells. Methods Enzymol2009,452:143-164.
    52. Eskelinen EL, Reggiori F, Baba M, Kovacs AL, Seglen PO: Seeing is believing: theimpact of electron microscopy on autophagy research. Autophagy2011,7(9):935-956.
    53. Nadal M, Gold SE: Assessment of autophagosome formation by transmission electronmicroscopy. Methods Mol Biol2012,835:481-489.
    54. Peshavariya HM, Dusting GJ, Selemidis S: Analysis of dihydroethidium fluorescencefor the detection of intracellular and extracellular superoxide produced by NADPHoxidase. Free Radic Res2007,41(6):699-712.
    55. Biederbick A, Kern HF, Elsasser HP: Monodansylcadaverine (MDC) is a specific invivo marker for autophagic vacuoles. Eur J Cell Biol1995,66(1):3-14.
    56. Kiffin R, Bandyopadhyay U, Cuervo AM: Oxidative stress and autophagy. AntioxidRedox Signal2006,8(1-2):152-162.
    57. Edens WA, Sharling L, Cheng G, Shapira R, Kinkade JM, Lee T, Edens HA, Tang X,Sullards C, Flaherty DB et al: Tyrosine cross-linking of extracellular matrix is catalyzedby Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidasesubunit gp91phox. J Cell Biol2001,154(4):879-891.
    58. Lambeth JD: NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol2004,4(3):181-189.
    59. Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases:physiology and pathophysiology. Physiol Rev2007,87(1):245-313.
    60. Amanso AM, Griendling KK: Differential roles of NADPH oxidases in vascularphysiology and pathophysiology. Front Biosci (Schol Ed)2012,4:1044-1064.
    61. Adam-Vizi V, Chinopoulos C: Bioenergetics and the formation of mitochondrialreactive oxygen species. Trends Pharmacol Sci2006,27(12):639-645.
    62. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z: Reactive oxygenspecies are essential for autophagy and specifically regulate the activity of Atg4. EMBOJ2007,26(7):1749-1760.
    63. Xu Y, Kim SO, Li Y, Han J: Autophagy contributes to caspase-independent macrophagecell death. J Biol Chem2006,281(28):19179-19187.
    64. Chen L, Hahn H, Wu G, Chen CH, Liron T, Schechtman D, Cavallaro G, Banci L, Guo Y,Bolli R et al: Opposing cardioprotective actions and parallel hypertrophic effects ofdelta PKC and epsilon PKC. P Natl Acad Sci USA2001,98(20):11114-11119.
    65. Inagaki K, Chen L, Ikeno F, Lee FH, Imahashi K, Bouley DM, Rezaee M, Yock PG,Murphy E, Mochly-Rosen D: Inhibition of delta-protein kinase C protects againstreperfusion injury of the ischemic heart in vivo. Circulation2003,108(19):2304-2307.
    66. Inagaki K, Begley R, Ikeno F, Mochly-Rosen D: Cardioprotection by epsilon-proteinkinase C activation from ischemia: continuous delivery and antiarrhythmic effect of anepsilon-protein kinase C-activating peptide. Circulation2005,111(1):44-50.
    67. Huang A, Yan C, Suematsu N, Cuevas A, Yang YM, Kertowidjojo E, Hintze TH, KaleyG, Sun D: Impaired flow-induced dilation of coronary arterioles of dogs fed a low-saltdiet: roles of ANG II, PKC, and NAD(P)H oxidase. Am J Physiol Heart Circ Physiol2010,299(5):H1476-1483.
    68. Perry C, Blaine J, Le H, Grichtchenko, II: PMA-and ANG II-induced PKC regulationof the renal Na+-HCO3-cotransporter (hkNBCe1). Am J Physiol Renal Physiol2006,290(2):F417-427.
    69. Zhang Z, Rhinehart K, Kwon W, Weinman E, Pallone TL: ANG II signaling in vasarecta pericytes by PKC and reactive oxygen species. Am J Physiol Heart Circ Physiol2004,287(2):H773-781.
    70. Chiu T, Santiskulvong C, Rozengurt E: ANG II stimulates PKC-dependent ERKactivation, DNA synthesis, and cell division in intestinal epithelial cells. Am J PhysiolGastrointest Liver Physiol2003,285(1):G1-11.
    71. Li D, Yang B, Philips MI, Mehta JL: Proapoptotic effects of ANG II in human coronaryartery endothelial cells: role of AT1receptor and PKC activation. Am J Physiol1999,276(3Pt2):H786-792.
    72. White CN, Figtree GA, Liu CC, Garcia A, Hamilton EJ, Chia KK, Rasmussen HH:Angiotensin II inhibits the Na+-K+pump via PKC-dependent activation of NADPHoxidase. Am J Physiol-Cell Ph2009,296(4):C693-700.
    73. Kim MJ, Moon CH, Kim MY, Kim MH, Lee SH, Baik EJ, Jung YS: Role of PKC-deltaduring hypoxia in heart-derived H9c2cells. Jpn J Physiol2004,54(4):405-414.
    74. Cataldi A, Zingariello M, Rapino M, Zara S, Daniele F, Di Giulio C, Antonucci A:Effect of hypoxia and aging on PKC delta-mediated SC-35phosphorylation in ratmyocardial tissue. Anat Rec (Hoboken)2009,292(8):1135-1142.
    75. Kolar F, Jezkova J, Balkova P, Breh J, Neckar J, Novak F, Novakova O, Tomasova H,Srbova M, Ost'adal B et al: Role of oxidative stress in PKC-delta upregulation andcardioprotection induced by chronic intermittent hypoxia. Am J Physiol Heart CircPhysiol2007,292(1):H224-230.
    76. Zhao Z, Wang W, Geng J, Wang L, Su G, Zhang Y, Ge Z, Kang W: Protein kinase Cepsilon-dependent extracellular signal-regulated kinase5phosphorylation and nucleartranslocation involved in cardiomyocyte hypertrophy with angiotensin II stimulation. JCell Biochem2010,109(4):653-662.
    1. Huang YS, Yang ZC, Yan BG, Yang JM, Chen FM, Crowther RS, Li A: Pathogenesis ofearly cardiac myocyte damage after severe burns. J Trauma1999,46(3):428-432.
    2. Huang Y, Li Z, Yang Z: Roles of ischemia and hypoxia and the molecular pathogenesisof post-burn cardiac shock. Burns2003,29(8):828-833.
    3. Huang Y, Zheng J, Fan P, Zhang X: Transfection of antisense p38alpha geneameliorates myocardial cell injury mediated by hypoxia and burn serum. Burns2007,33(5):599-605.
    4. Paul M, Poyan Mehr A, Kreutz R: Physiology of local renin-angiotensin systems.Physiol Rev2006,86(3):747-803.
    5. Mackins CJ, Kano S, Seyedi N, Schafer U, Reid AC, Machida T, Silver RB, Levi R:Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrinerelease, and arrhythmias in ischemia/reperfusion. J Clin Invest2006,116(4):1063-1070.
    6. Peters H, Unger T: Mast cells and the power of local RAS activation. Nephrol DialTransplant2007,22(1):40-42.
    7. Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K: The role of autophagy in theheart. Cell Death Differ2009,16(1):31-38.
    8. Gustafsson AB, Gottlieb RA: Autophagy in ischemic heart disease. Circ Res2009,104(2):150-158.
    9. Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, Hayakawa Y, ZimmermannR, Bauer E, Klovekorn WP et al: Myocytes die by multiple mechanisms in failinghuman hearts. Circ Res2003,92(7):715-724.
    10. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J:Distinct roles of autophagy in the heart during ischemia and reperfusion: roles ofAMP-activated protein kinase and Beclin1in mediating autophagy. Circ Res2007,100(6):914-922.
    11. Levine B, Yuan J: Autophagy in cell death: an innocent convict? J Clin Invest2005,115(10):2679-2688.
    12. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB,Tsujimoto Y: Role of Bcl-2family proteins in a non-apoptotic programmed cell deathdependent on autophagy genes. Nat Cell Biol2004,6(12):1221-1228.
    13. Porrello ER, D'Amore A, Curl CL, Allen AM, Harrap SB, Thomas WG, Delbridge LM:Angiotensin II type2receptor antagonizes angiotensin II type1receptor-mediatedcardiomyocyte autophagy. Hypertension2009,53(6):1032-1040.
    14. Steckelings UM, Unger T: Angiotensin receptors and autophagy: live and let die.Hypertension2009,53(6):898-899.
    15. Garrido AM, Griendling KK: NADPH oxidases and angiotensin II receptor signaling.Mol Cell Endocrinol2009,302(2):148-158.
    16. Scherz-Shouval R, Elazar Z: ROS, mitochondria and the regulation of autophagy.Trends Cell Biol2007,17(9):422-427.
    17. Murphy JT, Horton JW, Purdue GF, Hunt JL: Evaluation of troponin-I as an indicator ofcardiac dysfunction after thermal injury. J Trauma1998,45(4):700-704.
    18. Zhang JP, Ying X, Liang WY, Luo ZH, Yang ZC, Huang YS, Wang WC: Apoptosis incardiac myocytes during the early stage after severe burn. J Trauma2008,65(2):401-408.
    19. Yang JM, Yang ZC, Chen FM, He BB, Qi SZ, Sun ZG, Zhang XH: Roles ofrenin-angiotensin system in myocardial damage and cardiac dysfunction after burns.Chin J Trauma1999,15(2):136-138.
    1. Huang YS, Yang ZC, Liu XS, Chen FM, He BB, Li A, Crowther RS: Serialexperimental and clinical studies on the pathogenesis of multiple organ dysfunctionsyndrome (MODS) in severe burns. Burns1998,24(8):706-716.
    2. Sheng Z: Prevention of multiple organ dysfunction syndrome in patients with extensivedeep burns. Chin J Traumatol2002,5(4):195-199.
    3. Huang YS, Yang ZC, Yan BG, Yang JM, Chen FM, Crowther RS, Li A: Pathogenesis ofearly cardiac myocyte damage after severe burns. J Trauma1999,46(3):428-432.
    4. Huang Y, Li Z, Yang Z: Roles of ischemia and hypoxia and the molecular pathogenesisof post-burn cardiac shock. Burns2003,29(8):828-833.
    5. Xiao R, Huang YS, Lei ZY, Ruan J, Zhang BQ, Wang G, Zhang Q: Instigating effect ofshock heart on the injury to the liver, kidney and intestine at early stage of severe burnin rat. Chin J Burns2008,24(3):175-178.
    6. Huang YS: Further discussion on postburn "shock heart" and its clinical significance.Chin J Burns2009,25(3):161-163.
    7. Huang Y, Zheng J, Fan P, Zhang X: Transfection of antisense p38alpha geneameliorates myocardial cell injury mediated by hypoxia and burn serum. Burns2007,33(5):599-605.
    8. Fozzard HA: Myocardial injury in burn shock. Ann Surg1961,154:113-119.
    9. Evans EI, Purnell OJ, Robinett PW, Batchelor A, Martin M: Fluid and electrolyterequirements in severe burns. Ann Surg1952,135(6):804-817.
    10. Moyer CA, Coller FA, Iob V, Vaughan HH, Marty D: A Study of the Interrelationship ofSalt Solutions Serum and Defibrinated Blood in the Treatment of Severely Scalded,Anesthetized Dogs. Ann Surg1944,120(3):367-376.
    11. Brooks F, Dragstedt LR, Warner L, Knisely MH: Sludged blood following severethermal burns. Arch Surg-Chicago1950,61(3):387-418.
    12. Salzberg AM, Evans EI: Blood volumes in normal and burned dogs; a comparativestudy with radioactive phosphorus tagged red cells and T-1824dye. Ann Surg1950,132(4):746-759.
    13. Wolfe RR, Miller HI: Cardiovascular and metabolic responses during burn shock in theguinea pig. Am J Physiol1976,231(3):892-897.
    14. Adams HR, Baxter CR, Izenberg SD: Decreased contractility and compliance of the leftventricle as complications of thermal trauma. Am Heart J1984,108(6):1477-1487.
    15. Adams HR, Baxter CR, Parker JL: Contractile function of heart muscle from burnedguinea pigs. Circulatory Shock1982,9(1):63-73.
    16. Baxter CR, Cook WA, Shires GT: Serum myocardial depressant factor of burn shock.Surgical Forum1966,17:1-2.
    17. Horton JW, Maass DL, White DJ, Sanders B, Murphy J: Effects of burn serum onmyocardial inflammation and function. Shock2004,22(5):438-445.
    18. Ferrara JJ, Franklin EW, Kukuy EL, Flynn DM, Gilman DA, Keller VA, Choe EU, FlintLM, Lefer DJ: Lymph isolated from a regional scald injury produces a negativeinotropic effect in dogs. J Burn Care Rehabil1998,19(4):296-304.
    19. Horton JW, White J, Maass D, Sanders B: Arginine in burn injury improves cardiacperformance and prevents bacterial translocation. J Appl Physiol1998,84(2):695-702.
    20. White J, Maass DL, Giroir B, Horton JW: Development of an acute burn model in adultmice for studies of cardiac function and cardiomyocyte cellular function. Shock2001,16(2):122-129.
    21. Horton JW, Garcia NM, White DJ, Keffer J: Postburn cardiac contractile function andbiochemical markers of postburn cardiac injury. J Am Coll Surg1995,181(4):289-298.
    22. Elgjo GI, Mathew BP, Poli de Figueriedo LF, Schenarts PJ, Horton JW, Dubick MA,Kramer GC: Resuscitation with hypertonic saline dextran improves cardiac function invivo and ex vivo after burn injury in sheep. Shock1998,9(5):375-383.
    23. Sheeran PW, Maass DL, White DJ, Turbeville TD, Giroir BP, Horton JW: Aspirationpneumonia-induced sepsis increases cardiac dysfunction after burn trauma. J Surg Res1998,76(2):192-199.
    24. Maass DL, Hybki DP, White J, Horton JW: The time course of cardiac NF-kappaBactivation and TNF-alpha secretion by cardiac myocytes after burn injury: contributionto burn-related cardiac contractile dysfunction. Shock2002,17(4):293-299.
    25. Xiao R, Lei ZY, Dang YM, Huang YS: Prompt myocardial damage contributes tohepatic, renal, and intestinal injuries soon after a severe burn in rats. J Trauma2011,71(3):663-672.
    26. Carvajal HF, Linares HA, Brouhard BH: Relationship of burn size to vascularpermeability changes in rats. Surg Gynecol Obstet1979,149(2):193-202.
    27. Yang JM, Yang ZC, Chen FM: Relationship between myocardial nutrition blood flowand energy charge in the early stage of severe burn injury in rats. Chin Crit Care Med1996,8(9):523-524.
    28. Yin ZG, Huang YS, Li BX: Changes and relations between heart function and organblood flow in rats at early stage of severe burn. Chin J Burns2010,26(1):10-13.
    29. Mackins CJ, Kano S, Seyedi N, Schafer U, Reid AC, Machida T, Silver RB, Levi R:Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrinerelease, and arrhythmias in ischemia/reperfusion. J Clin Invest2006,116(4):1063-1070.
    30. Li H, Ying D, Sun J, Bian X, Zhang Y, He B: Comparative observation with MRI andpathology of brain edema at the early stage of severe burn. Chin J Traumatol2001,4(4):226-230.
    31. Domres B, Heller W, von Kothen W: Brain edema and carbohydrate metabolism in theearly stages of thermal injury and burn shock. Acta Chirurgiae Plasticae1981,23(2):99-106.
    32. Dolecek R, Zavada M, Adamkova M, Leikep K: Plasma renin like activity (RLA) andangiotensin II levels after major burns. A preliminary report. Acta Chirurgiae Plasticae1973,15(3):166-169.
    33. Fiddian-Green RG, Haglund U, Gutierrez G, Shoemaker WC: Goals for the resuscitationof shock. Crit Care Med1993,21(2Suppl):S25-31.
    34. Horton JW: Free radicals and lipid peroxidation mediated injury in burn trauma: the roleof antioxidant therapy. Toxicology2003,189(1-2):75-88.
    35. Toklu HZ, Sener G, Jahovic N, Uslu B, Arbak S, Yegen BC: beta-glucan protects againstburn-induced oxidative organ damage in rats. Int Immunopharmacol2006,6(2):156-
    169.
    36. Sakarcan A, Sehirli O, Velioglu-Ovunc A, Ercan F, Erkanl G, Gedik N, Sener G: Ginkgobiloba extract improves oxidative organ damage in a rat model of thermal trauma. JBurn Care Rehabil2005,26(6):515-524.
    37. Zhou P, Huang H, Chen L: The relationship between liver function and pathologicalchanges in burned rats. Chin Crit Care Med2002,14(4):201-203.
    38. Sener G, Sehirli O, Erkanli G, Cetinel S, Gedik N, Yegen B:2-Mercaptoethane sulfonate(MESNA) protects against burn-induced renal injury in rats. Burns2004,30(6):557-
    564.
    39. Sener G, Sehirli AO, Satiroglu H, Keyer-Uysal M, Yegen BC: Melatonin preventsoxidative kidney damage in a rat model of thermal injury. Life Sci2002,70(25):2977-2985.
    40. Gianotti L, Alexander JW, Pyles T, James L, Babcock GF: Relationship between extentof burn injury and magnitude of microbial translocation from the intestine. J Burn CareRehabil1993,14(3):336-342.
    41. Zhang C, Sheng ZY, Hu S, Gao JC, Yu S, Liu Y: The influence of apoptosis of mucosalepithelial cells on intestinal barrier integrity after scald in rats. Burns2002,28(8):731-
    737.
    42. Tong TH, Wang CY, Guo L: Influence of scald on the cytoskeleton of colonic smoothmuscle cells of the rats. Chin J Burns2006,22(4):273-276.
    43. Fan J, Xie Y, Zhou NJ, Chen J, Deng ZY: The influence of apoptosis of lymphocytes ofPeyer's patches on the pathogenesis of gut barrier damage in severely scalded mice.Chin J Burns2006,22(4):254-257.
    44. Gan HT, Pasricha PJ, Chen JD: Blockade of p38mitogen-activated protein kinasepathway ameliorates delayed intestinal transit in burned rats. Am J Surg2007,193(4):530-537.
    45. Hassoun HT, Kone BC, Mercer DW, Moody FG, Weisbrodt NW, Moore FA: Post-injurymultiple organ failure: the role of the gut. Shock2001,15(1):1-10.
    46. Tu WF, Xiao GX: Shock gut and multiple organ dysfunction syndrome. Chin JAnesthesiol2002,22(2):125-128.
    47. Murphy JT, Horton JW, Purdue GF, Hunt JL: Evaluation of troponin-I as an indicator ofcardiac dysfunction after thermal injury. J Trauma1998,45(4):700-704.
    48. Xiao R, Huang YS, Lei ZY, Ruan J, Zhang BQ, Wang G, Zhang Q: Instigating effect ofshock heart on the injury to the liver, kidney and intestine at early stage of severe burnin rat. Chin J Burns2008,24(3):175-178.
    49. Zhang BQ, Huang YS, Zhang JP, Zhang DX, Dang YM, Wang G, Hu JY, Lei ZY, Xiao R:Protective effects of administration of enalapril maleate on rat myocardial damage inearly stage of burns. Chin J Burns2007,23(5):335-338.
    50. Allgower M, Burri C, Cueni L, Engley F, Fleisch H, Gruber UF, Harder F, Russell RG:Study of burn toxins. Ann NY Acad Sci1968,150(3):807-815.
    51. Sambol JT, White J, Horton JW, Deitch EA: Burn-induced impairment of cardiaccontractile function is due to gut-derived factors transported in mesenteric lymph.Shock2002,18(3):272-276.
    52. Marano MA, Fong Y, Moldawer LL, Wei H, Calvano SE, Tracey KJ, Barie PS,Manogue K, Cerami A, Shires GT et al: Serum cachectin/tumor necrosis factor incritically ill patients with burns correlates with infection and mortality. Surg GynecolObstet1990,170(1):32-38.
    53. Marano MA, Moldawer LL, Fong Y, Wei H, Minei J, Yurt R, Cerami A, Lowry SF:Cachectin/TNF production in experimental burns and Pseudomonas infection. ArchSurg1988,123(11):1383-1388.
    54. Cannon JG, Friedberg JS, Gelfand JA, Tompkins RG, Burke JF, Dinarello CA:Circulating interleukin-1beta and tumor necrosis factor-alpha concentrations after burninjury in humans. Crit Care Med1992,20(10):1414-1419.
    55. Yamada Y, Endo S, Inada K, Nakae H, Nasu W, Taniguchi S, Ishikura H, Tanaka T,Wakabayashi G, Taki K et al: Tumor necrosis factor-alpha and tumor necrosis factorreceptor I, II levels in patients with severe burns. Burns2000,26(3):239-244.
    56. Drost AC, Burleson DG, Cioffi WG, Jr., Mason AD, Jr., Pruitt BA, Jr.: Plasma cytokinesafter thermal injury and their relationship to infection. Ann Surg1993,218(1):74-78.
    57. Drost AC, Burleson DG, Cioffi WG, Jr., Jordan BS, Mason AD, Jr., Pruitt BA, Jr.:Plasma cytokines following thermal injury and their relationship with patient mortality,burn size, and time postburn. J Trauma1993,35(3):335-339.
    58. Zhang B, Huang YH, Chen Y, Yang Y, Hao ZL, Xie SL: Plasma tumor necrosisfactor-alpha, its soluble receptors and interleukin-1beta levels in critically burnedpatients. Burns1998,24(7):599-603.
    59. Giroir BP, Johnson JH, Brown T, Allen GL, Beutler B: The tissue distribution of tumornecrosis factor biosynthesis during endotoxemia. J Clin Invest1992,90(3):693-698.
    60. Giroir BP, Horton JW, White DJ, McIntyre KL, Lin CQ: Inhibition of tumor necrosisfactor prevents myocardial dysfunction during burn shock. Am J Physiol1994,267(1Pt2):H118-124.
    61. Tracey KJ, Beutler B, Lowry SF, Merryweather J, Wolpe S, Milsark IW, Hariri RJ,Fahey TJ,3rd, Zentella A, Albert JD et al: Shock and tissue injury induced byrecombinant human cachectin. Science1986,234(4775):470-474.
    62. Pagani FD, Baker LS, Hsi C, Knox M, Fink MP, Visner MS: Left ventricular systolicand diastolic dysfunction after infusion of tumor necrosis factor-alpha in conscious dogs.J Clin Invest1992,90(2):389-398.
    63. Eichenholz PW, Eichacker PQ, Hoffman WD, Banks SM, Parrillo JE, Danner RL,Natanson C: Tumor necrosis factor challenges in canines: patterns of cardiovasculardysfunction. Am J Physiol1992,263(3Pt2):H668-675.
    64. Heard SO, Perkins MW, Fink MP: Tumor necrosis factor-alpha causes myocardialdepression in guinea pigs. Crit Care Med1992,20(4):523-527.
    65. Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL: Cellular basis forthe negative inotropic effects of tumor necrosis factor-alpha in the adult mammalianheart. J Clin Invest1993,92(5):2303-2312.
    66. Horton JW, Maass DL, White J, Sanders B: Hypertonic saline-dextran suppressesburn-related cytokine secretion by cardiomyocytes. Am J Physiol-Heart C2001,280(4):H1591-1601.
    67. Maass DL, White J, Horton JW: Nitric oxide donors alter cardiomyocyte cytokinesecretion and cardiac function. Crit Care Med2005,33(12):2794-2803.
    68. Bryant D, Becker L, Richardson J, Shelton J, Franco F, Peshock R, Thompson M, GiroirB: Cardiac failure in transgenic mice with myocardial expression of tumor necrosisfactor-alpha. Circulation1998,97(14):1375-1381.
    69. Williams JG, Bankey P, Minei JP, McIntyre K, Turbeville T: Burn injury enhancesalveolar macrophage endotoxin sensitivity. J Burn Care Rehabil1994,15(6):493-498.
    70. Demling R, Ikegami K, Lalonde C: Increased lipid peroxidation and decreasedantioxidant activity correspond with death after smoke exposure in the rat. J Burn CareRehabil1995,16(2Pt1):104-110.
    71. Horton JW, White DJ: Free radical scavengers prevent intestinal ischemia-reperfusion-mediated cardiac dysfunction. J Surg Res1993,55(3):282-289.
    72. Horton JW, White DJ: Role of xanthine oxidase and leukocytes in postburn cardiacdysfunction. J Am Coll Surgeons1995,181(2):129-137.
    73. Horton JW, Mileski WJ, White DJ, Lipsky P: Monoclonal antibody to intercellularadhesion molecule-1reduces cardiac contractile dysfunction after burn injury in rabbits.J Surg Res1996,64(1):49-56.
    74. Cynober L, Desmoulins D, Lioret N, Aussel C, Hirsch-Marie H, Saizy R: Significanceof vitamin A and retinol binding protein serum levels after burn injury. Int J Clin Chem1985,148(3):247-253.
    75. Demling RH, Lalonde C: Systemic lipid peroxidation and inflammation induced bythermal injury persists into the post-resuscitation period. J Trauma1990,30(1):69-74.
    76. Demling RH, LaLonde C: Early postburn lipid peroxidation: effect of ibuprofen andallopurinol. Surgery1990,107(1):85-93.
    77. Cetinkale O, Belce A, Konukoglu D, Senyuva C, Gumustas MK, Tas T: Evaluation oflipid peroxidation and total antioxidant status in plasma of rats following thermal injury.Burns1997,23(2):114-116.
    78. Ward PA, Till GO, Hatherill JR, Annesley TM, Kunkel RG: Systemic complementactivation, lung injury, and products of lipid peroxidation. J Clin Invest1985,76(2):517-527.
    79. Takeda K, Shimada Y, Amano M, Sakai T, Okada T, Yoshiya I: Plasma lipid peroxidesand alpha-tocopherol in critically ill patients. Crit Care Med1984,12(11):957-959.
    80. Sugden PH, Clerk A:"Stress-responsive" mitogen-activated protein kinases (c-JunN-terminal kinases and p38mitogen-activated protein kinases) in the myocardium. CircRes1998,83(4):345-352.
    81. Wang Y, Huang S, Sah VP, Ross J, Jr., Brown JH, Han J, Chien KR: Cardiac muscle cellhypertrophy and apoptosis induced by distinct members of the p38mitogen-activatedprotein kinase family. J Biol Chem1998,273(4):2161-2168.
    82. Zhang JP, Ying X, Liang WY, Luo ZH, Yang ZC, Huang YS, Wang WC: Apoptosis incardiac myocytes during the early stage after severe burn. J Trauma2008,65(2):401-
    408.
    83. Ballard-Croft C, White DJ, Maass DL, Hybki DP, Horton JW: Role of p38mitogen-activated protein kinase in cardiac myocyte secretion of the inflammatory cytokineTNF-alpha. Am J Physiol-Heart C2001,280(5):H1970-1981.
    84. Zhang JP, Ying X, Chen Y, Yang ZC, Huang YS: Inhibition of p38MAP kinaseimproves survival of cardiac myocytes with hypoxia and burn serum challenge. Burns2008,34(2):220-227.
    85. Zhang JP, Liang WY, Luo ZH, Yang ZC, Chan HC, Huang YS: Involvement of p38MAP kinase in burn-induced degradation of membrane phospholipids and upregulationof cPLA2in cardiac myocytes. Shock2007,28(1):86-93.
    86. Hu JY, Chu ZG, Han J, Dang YM, Yan H, Zhang Q, Liang GP, Huang YS: Thep38/MAPK pathway regulates microtubule polymerization through phosphorylation ofMAP4and Op18in hypoxic cells. Cell Mol Life Sci2009.
    87. Chu ZG, Zhang JP, Song HP, Hu JY, Zhang Q, Xiang F, Huang YS: p38MAP kinasemediates burn serum-induced endothelial barrier dysfunction: involvement of F-actinrearrangement and L-caldesmon phosphorylation. Shock2010,34(3):222-228.
    88. Hoshijima M, Sah VP, Wang Y, Chien KR, Brown JH: The low molecular weightGTPase Rho regulates myofibril formation and organization in neonatal rat ventricularmyocytes. Involvement of Rho kinase. J Biol Chem1998,273(13):7725-7730.
    89. Kobayashi N, Horinaka S, Mita S, Nakano S, Honda T, Yoshida K, Kobayashi T,Matsuoka H: Critical role of Rho-kinase pathway for cardiac performance andremodeling in failing rat hearts. Cardiovasc Res2002,55(4):757-767.
    90. Ballard-Croft C, Maass DL, Sikes P, White J, Horton J: Activation of stress-responsivepathways by the sympathetic nervous system in burn trauma. Shock2002,18(1):38-45.
    91. Suematsu N, Satoh S, Kinugawa S, Tsutsui H, Hayashidani S, Nakamura R, Egashira K,Makino N, Takeshita A: Alpha1-adrenoceptor-Gq-RhoA signaling is upregulated toincrease myofibrillar Ca2+sensitivity in failing hearts. Am J Physiol-Heart C2001,281(2):H637-646.
    92. Horton JW, Maass DL, Ballard-Croft C: Rho-associated kinase modulates myocardialinflammatory cytokine responses. Shock2005,24(1):53-58.
    93. Horton JW, White J, Maass D: Protein kinase C inhibition improves ventricular functionafter thermal trauma. J Trauma1998,44(2):254-264.
    94. Baeuerle PA, Baltimore D: NF-kappa B: ten years after. Cell1996,87(1):13-20.
    95. Carlson DL, White DJ, Maass DL, Nguyen RC, Giroir B, Horton JW: I kappa Boverexpression in cardiomyocytes prevents NF-kappa B translocation and providescardioprotection in trauma. Am J Physiol-Heart C2003,284(3):H804-814.
    96. Liang WY, Tang LX, Yang ZC, Huang YS: Calcium induced the damage of myocardialmitochondrial respiratory function in the early stage after severe burns. Burns2002,28(2):143-146.
    97. Zhang JP, Ying X, Liang WY, Luo ZH, Yang ZC, Huang YS, Wang WC: Apoptosis incardiac myocytes during the early stage after severe burn. J Trauma2008,65(2):401-
    408.
    98. Xiang F, Huang YS, Shi XH, Zhang Q: Mitochondrial chaperone tumour necrosis factorreceptor-associated protein1protects cardiomyocytes from hypoxic injury by regulatingmitochondrial permeability transition pore opening. FEBS J2010,277(8):1929-1938.
    99. Xiang F, Huang YS, Zhang DX, Chu ZG, Zhang JP, Zhang Q: Adenosine A1receptoractivation reduces opening of mitochondrial permeability transition pores in hypoxiccardiomyocytes. Clin Exp Pharmacol2010,37(3):343-349.
    100. Yang J, Yang Z, Chen F: Changes in cardiac renin-angiotensin system after severe burninjury in rats. Chin J Burns Plast Surg1999,15(2):102-104.
    101. Flynn DM, Buda AJ, Jeffords PR, Lefer DJ: A sialyl Lewis(x)-containing carbohydratereduces infarct size: role of selectins in myocardial reperfusion injury. Am J Physiol1996,271(5Pt2):H2086-2096.
    102. Mileski WJ, Winn RK, Harlan JM, Rice CL: Transient inhibition of neutrophiladherence with the anti-CD18monoclonal antibody60.3does not increase mortalityrates in abdominal sepsis. Surgery1991,109(4):497-501.
    103. Lalonde C, Picard L, Campbell C, Demling R: Lung and systemic oxidant andantioxidant activity after graded smoke exposure in the rat. Circulatory Shock1994,42(1):7-13.
    104. LaLonde C, Nayak U, Hennigan J, Demling RH: Excessive liver oxidant stress causesmortality in response to burn injury combined with endotoxin and is prevented withantioxidants.J Burn Care Rehabil1997,18(3):187-192.
    105. Matsuda T, Tanaka H, Williams S, Hanumadass M, Abcarian H, Reyes H: Reducedfluid volume requirement for resuscitation of third-degree burns with high-dosevitamin C. J Burn Care Rehabil1991,12(6):525-532.
    106. Matsuda T, Tanaka H, Hanumadass M, Gayle R, Yuasa H, Abcarian H, Matsuda H,Reyes H: Effects of high-dose vitamin C administration on postburn microvascularfluid and protein flux. J Burn Care Rehabil1992,13(5):560-566.
    107. Zang Q, Maass DL, White J, Horton JW: Cardiac mitochondrial damage and loss ofROS defense after burn injury: the beneficial effects of antioxidant therapy. J ApplPhysiol2007,102(1):103-112.
    108. Matsuda T, Tanaka H, Yuasa H, Forrest R, Matsuda H, Hanumadass M, Reyes H: Theeffects of high-dose vitamin C therapy on postburn lipid peroxidation. J Burn CareRehabil1993,14(6):624-629.
    109. Huang Y, Xie K, Zhang J, Dang Y, Qiong Z: Prospective clinical and experimentalstudies on the cardioprotective effect of ulinastatin following severe burns. Burns2008,34(5):674-680.
    110. Huang Y, Yang Z, Chen F, Crowther RS, Li A: Effects of early eschar excision enmasse at one operation for prevention and treatment of organ dysfunction in severelyburned patients. World J Surg1999,23(12):1272-1278.
    111. Wan-Yi L, Hui T, Zong-Cheng Y, Yue-Sheng H: Ruthenium red attenuatedcardiomyocyte and mitochondrial damage during the early stage after severe burn.Burns2002,28(1):35-38.
    112. Huang Y, Hu A: Molecular mechanism of c-jun antisense gene transfection inalleviating injury of cardiomyocytes treated with burn serum and hypoxia. World JSurg2004,28(10):951-957.
    113. Horton JW, Maass DL, White J, Sanders B: Hypertonic saline-dextran suppressesburn-related cytokine secretion by cardiomyocytes. Am J Physiol-Heart C2001,280(4):H1591-1601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700