PI3K/Akt信号途径抑制缺血缺氧心肌细胞凋亡及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
严重烧伤后,心肌局部血流量迅速减少,发生缺血缺氧损害和心功能减退,不仅引起心功能不全,还可诱发或加重休克,成为烧伤早期缺血缺氧的重要启动因素之一。根据上述认识,提出了烧伤后早期缺血缺氧损害的“休克心”假说。
     PI3K是细胞内重要的信号转导分子。PI3K激活后在质膜上产生第二信使PIP3,进一步引起信号蛋白Akt活化。活化的Akt通过磷酸化作用激活或抑制其下游靶蛋白Bad、Caspase9、NF-kB、GSK-3、FKHR、p21~(Cip1)和p27~(Kip1)等,进而调节细胞的增殖、分化、凋亡以及迁移等。
     PI3K/Akt信号途径在烧伤早期心肌细胞的表达、作用及调控机制尚不明确。我们假设:在烧伤早期心肌细胞遭受缺血缺氧损伤的同时,PI3K/Akt信号途径即被激活,并可能通过调控钙浓度、线粒体膜稳定性以及凋亡基因表达发挥抗凋亡作用,PI3K/Akt/HIF-1α则可能是这种抗凋亡作用的重要分子机制。本实验对这一假设进行了验证。
     一、材料方法:
     采用动物实验和体外实验相结合的方法。
     1.建立烫伤大鼠模型,应用RT-PCR检测心肌组织PI3K mRNA表达变化,Westernblot检测心肌组织PI3K及磷酸化Akt蛋白表达。
     2.建立体外培养的大鼠心肌细胞缺血缺氧模型,应用PI3K/Akt通路特异性抑制剂LY294002及激动剂IGF-1,并结合ELISA、激光共聚焦、TUNEL等方法等方法观察缺血缺氧条件下该信号通路对心肌细胞活力、LDH酶活性、线粒体膜电位、胞内钙浓度及凋亡率等指标的影响,明确PI3K/Akt信号途径在缺血缺氧心肌细胞中的作用。
     3.建立体外培养的大鼠心肌细胞缺血缺氧模型,应用RT-PCR观察PI3K/Akt对P53、C-myc、Bax、Bcl-2等凋亡相关基因以及HIF-1αmRNA的影响,并应用LY294002和Rapamycin,结合Western blot探讨可能存在的凋亡调控机制。
     二、主要结果与结论
     1.严重烧伤早期即有PI3K mRNA及蛋白的高表达,并伴有Akt磷酸化水平的显著增加,说明烧伤早期PI3K/Akt途径即被激活。
     2.缺血缺氧条件下,心肌细胞活力持续下降,PI3K/Akt抑制剂LY294002抑制PI3K/Akt激活后,心肌细胞活力下降更为明显。表明该途径可能具有维持细胞活性,拮抗缺血缺氧损害的作用。
     3.缺血缺氧刺激导致心肌细胞细胞膜结构破坏,LDH漏出增加;LY294002抑制PI3K/Akt激活后,缺血缺氧心肌细胞培养上清中LDH活性较单纯缺氧组明显升高。表明PI3K/Akt能够维持质膜稳定性,防止因膜结构的破坏导致细胞死亡。
     4.心肌细胞在缺血缺氧刺激下,细胞凋亡量明显增加。LY294002抑制PI3K/Akt激活后,缺血缺氧心肌细胞凋亡加剧;予以IGF-1激活PI3K/Akt,缺血缺氧心肌细胞凋亡量明显减少。说明PI3K/Akt的激活能够拮抗缺血缺氧心肌细胞凋亡,是细胞的内源性保护反应。
     5.缺血缺氧6h后,心肌细胞胞内钙浓度明显升高,LY294002抑制PI3K/Akt激活后,缺血缺氧心肌细胞胞内钙浓度升高更为显著;予以IGF-1激活PI3K/Akt,缺血缺氧心肌细胞胞浆钙离子浓度较单纯缺血缺氧组明显下降。说明PI3K/Akt的激活能够减轻胞内钙超载,避免钙超载引起的后续凋亡反应。
     6.缺血缺氧刺激6h、12h后,线粒体膜电位明显下降,提示线粒体膜通透性增加;LY294002抑制PI3K/Akt激活后,缺血缺氧心肌细胞线粒体膜电位下降更为显著;予以IGF-1激活PI3K/Akt,缺血缺氧心肌细胞线粒体膜电位下降幅度明显减小,表明PI3K/Akt能够维持线粒体膜稳定性,防止因线粒体MPTP的开放而导致后续凋亡反应的启动。
     7.缺血缺氧心肌细胞PI3K/Akt信号途径的活化可以上调HIF-1αmRNA转录活性,同时PI3K/Akt及mTOR蛋白磷酸化均可以在蛋白水平上调HIF-1α的表达,以发挥HIF-1α的抗凋亡作用,拮抗心肌细胞的缺血缺氧损害。
     8.缺血缺氧条件下,心肌细胞PI3K/Akt的活化可通过上调HIF-1α表达,进一步调控凋亡相关基因表达,如降低心肌细胞野生型P53的表达,提高Bcl-2/Bax比值,增加C-myc等表达,以减少凋亡,提高细胞存活率。
Our previous studies demonstrated that myocardial damage occurs immediately following severe burns even before significant reduction in blood volume.Such myocardial damage leads to cardiac deficiency,and it is also a precipitating factor for burn shock and ischemic/hypoxic injury.Therefore,we called it 'shock heart'.
     PI3K is one of the most important intracellular signal transductuction molecules.After PI3K is activated,the second messenger PIP3 is produced at plasma menmbranes,which phosphorylates Akt at Ser308.The activated Akt further phosphorylates the target proteins, such as Bad,Caspase9,NF-kB,GSK-3,FKHR,p21~(Cip1) and p27~(Kip) to modulate the cell proliferation,differentiation,apoptosis and immigration.
     The expression,function and potential mechanism of PI3K/Akt pathway in myocardium at early postburn stage remains unlear.We postulated that PI3K/Akt pathway is activated at the same time when the cardiocytes are inflicted with hypoxic/ischemic injury at early stage following severe burns,which may have a anti-apoptotic effect by modulation of calcium,mitochondrial membrane potential,HIF-1αexpression and apoptotic gene expression.The present study was designed to confirm this hypothesis.
     Material and Methods
     Methods:Both in vivo and in vitro experiments were adopted in the present study.
     The animal model was established by scald in rats.The PI3K mRNA expression of myocardium was detected by RT-PCR.PI3K and phosphorylated Akt protein expression were detected by western blot.
     To elucidate the function of PI3K/Akt signal pathway in cardiomyocytes during hypoxia and ischemia,the in vitro model was established by cultured rat cardiomyocytes maintaining in hypoxia and ischemia environment.With treatment of specific PI3K/Akt inhibitor LY294002 and selective PI3K/Akt activator IGF-1,ELISA,laser scanning confocal fluorescence microscope,TUNEL technique were used to observe the influence of PI3K/Akt pathway on cardiomyocyte viability,LDH activity,mitochondrial membrane potential,inner Ca~(2+) concentration and apoptotic rate.
     LY294002 and Rapamycin treatment were used to explore the possible mechanism of apoptosis.Alteration of the apoptotic gene expression such as P53,C-myc,Bax,Bcl-2 and HIF-1αmRNA were detected by RT-PCR and/or Western blot.
     Results and Conclusion:
     1.PI3K mRNA and protein expression and Akt phospharylation were upregulated significantly at early stage of severe burn,which showed the PI3K/Akt pathway was activated.
     2.Hypoxia and ischemia induced progresive decrease of cardiocyte viability.The decrease of cardiocyte viability was more severe after PI3K/Akt inhibitor LY294002 was used,indicating that the PI3K/Akt pathway plays a role in the maintainance of cell viability and protection of cells from damage induced by hypoxia and ischemia.
     3.Hypoxia and ischemia caused the membrance damage of cardiocytes refleted by increase of LDH leakage.After pretreatment with LY294002,the LDH was obviously increased.It suggests that PI3K/Akt pathway can maintain the cardiocyte membrane stability.
     4.The apoptotic rate in cardiocytes cultured under hypoxia and ischemia environment was increased significantly,and was intensified by LY294002 pre-treatment.When PI3K/Akt activator IGF-1 was given,the apoptotic rate was decreaed.This result suggests that the PI3K/Akt pathway can protect cardiocytes from apoptosis as an endogenous cytoprotective factor.
     5.At 6h after hypoxia and ischemia,inner Ca~(2+) concentration increased obviously, which was intensified by LY294002 pre-treatment.When PI3K/Akt activator IGF-1 was given,concentration of inner Ca~(2+) was decreased,indicating that the activation of PI3K/Akt can relieve the Ca~(2+) overload and the consequent apoptotic reaction.
     6.At 6h and 12h after hypoxia and ischemia,mitochondrial membrane potential decreased obviously,which was also intensified by LY294002 pre-treatment.When PI3K/Akt activator IGF-1 was given,the decreasing of mitochondrial membrane potential was alleviated,suggesting that PI3K/Akt pathway can maintain the stability of mitochondrial membrane and prevent the apoptotic reaction induced by MPTP openning of mitochondria.
     7.PI3K/Akt/mTOR/p70S6K pathway may play a role in regulating HIF-1αexpression in mRNA and protein level to prevent cardiocyte apoptosis under hypoxia and ischemia condition.
     8.The activation of PI3K/Akt,through upregulation of HIF-1αexpression,further downregulated the wildtype P53 expression in cardiocytes,raised the Bcl-2/Bax ratio, upregulated C-myc expression so as to protect cells from apoptosis under hypoxia and ischemia condition.
引文
1.黄跃生.严重烧伤后早期心肌损害的细胞分子机制与防治策略研究进展.中华烧伤杂志,2006,22(3):161-163.
    2.张家平,黄跃生,杨宗城.p38激酶途径介导缺氧复合烧伤血清所致乳鼠心肌细胞损害.第三军医大学学报,2003;18(2):84-87.
    3.Vivanco I,Sawyers CL.The phosphatidylinositol 3-Kinase AKT pathway in human cancer.Nat Rev Cancer 2002;2:489-501.
    4.Ward SG,Finan P.Isoform-specific phosphoinositide 3-kinase inhibitors as therapeutic agents.Curr Opin Pharmacol 2003;3:426-434.
    5.Solit DB,Basso AD,Olshen AB,Scher HI,Rosen N.Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol.Cancer Res 2003;63:2139-2144.
    6.Trotman,L.C.,and Pandolfi,P.P.PTEN and p53:Who will get the upper hand?Cancer Cell 2003,3,97-99..
    7.Schmitt,C.A.Senescence,apoptosis and therapy-cutting the lifelines of cancer.Nat.Rev.Cancer(2003).3,286-295.
    8.Mayo,L.D.,and Donner,D.B.A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus.Proc.Natl.Acad.Sci.USA 2001 98,11598-11603.
    9.Fulton,D.,Gratton,J.P.,McCabe,T.J.,Fontana,J.,Fujio,Y.,Walsh,K.,Franke,T.F.,Papapetropoulos,A.,and Sessa,W.C.Regulation of endothelium-derived nitric oxide production by the protein kinase Akt.Nature(1999).399,597-601..
    10.Welch,H.C.,Coadwell,W.J.,Stephens,L.R.,and Hawkins,P.T.Phosphoinositide 3-kinase-dependent activation of Rac.FEBS Lett.(2003).546,93-97..
    11.Kelly M.Regula,Delphine Baetz,and Lorrie A.Kirshenbaum.Nuclear Factor-κB Represses Hypoxia-Induced Mitochondrial Defects and Cell Death of Ventricular Myocytes Circulation,Dec 2004;110:3795-3802.
    12.Kiyoshi Hirai,Takeshi Hayashi,Pak H.Chan.PI3K inhibition in neonatal rat brain slices during and after hypoxia reduces phospho-Akt and increases cytosolic cytochrome c and apoptosis.Molecular Brain Research.2004,124,51-61.
    13.杨建民,杨宗城,陈发明,等.大鼠烧伤早期心肌营养性血流的变化与心肌损伤的关系.中国微循环,1998;2(3):142-43.
    14.迟路湘,杨宗城,吴军,等.大鼠严重烧伤早期心肌细胞膜阴离子位点改变的研究第三军医大学学报,1998;(1):1-3.
    15.闫柏刚,黄跃生,杨宗城.烧伤后即行切痂对大鼠血浆肌钙蛋白T的影响.解放军医学杂志,1998;23(2):123-124.
    16.张家平,黄跃生.严重烫伤大鼠胞浆型磷脂酶A2表达变化及与心肌损害的关系.中国危重病急救医学.2002:14(10):588-590.
    17.黄跃生,杨宗城.烧伤后“休克心”的研究.中华烧伤杂志,2000;16(5):275-278.
    18.Feuerstein GZ.Apoptosis in cardiac diseases—new apportunities for novel therapeutics for heart disease.Cardiovasc Drugs Ther,1999;13:289-294.
    19.Takehiko Y,Masatsugu H,Victor J D.Angiotensin Ⅱ type 2 receptor mediates programmed cell death.Proc Natl Acad Sci USA,1996,93:156-160..
    20.Annarosa Leri,Pier Paolo Claudio,Qiong Li et al.Stretch-mediated release of Angiotensin Ⅱ induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the Cell.J Clin Invest,1998,101:1326-1342..
    21.Yang CH,Murti A,Pfeffer SR,et al.Interferon alpha/beta promotes cell survival by activating nuclear factor κappa B through phosphatidylinositol 3-kinase and Akt.J Biol Chem,2001,276:13756-13761.
    22.Reddy SA,Huang JH,Liao WS.Phosphatidylinositol 3-kinase as a mediator of TNF-induced NF-κappa B activation.J Immunol,2000,164:1355-1363.
    23.Gao N,Shen L,Zhang Z,et al.Arsenite induces HIF-lalpha and VEGF through PI3K,Akt and reactive oxygen species in DU145 human prostate carcinoma cells.Mol Cell Biochem,2004,255(1-2):33-45.
    24.Kim C H,Cho Y S,Chun Y S,et al.Early expression of myocardial HIF-1α in response to mechanical stresses:regulation by stretch-a c t ivated channels and th ephosphatidylinositol 3-kinase signaling pathway.Circ Res,2002,90(2):e25-33
    25.D.L.斯佩克特,R.D.戈德曼,L.A.莱因万德.细胞实验指南(上册).科学出版社,2001:79-82.
    26.YUE TL,Wang CL,Li JL,et al.Inhibition of extracellular signal-regulated kinase aechances ischimiea/reoxygenation-indueced apoptosisi in cultured cardiac myoxytes adnd exaggerated reperfusion injury in isolated perfused heart.Cric Res,2000;86:692-699.
    27.IgnacioJ.Gonzalez-Robayna.Follicle-Stimulating Hormone(FSH) Stimulates Phosphorylation and Activation of Protein Kinase B(PKB/Akt) and Serum and Glucocorticoid-Induced Kinase(Sgk):Evidence for A Kinase-Independent Signaling by FSH in Granulosa Cells.Molecular Endocrinology.2000;14(8):1283-1300
    28.Kenchappa P,Yadav A,Singh G,et al.Rescue of TNFαinhibited neuronal cells by IGF-1 involves Akt and c-Jun Nterminal kinases.J Neurosci Res,2004,76(4):466-474
    29.Bencomo E,Perez R,Arteaga M F,et al.Apoptosis of cultured granulose-lutein cells is reduced by insulin-like growth factor 1 and may correlate with embryo fragmentation and pregnancy rate.Fertil Steril,2006,85(2):474-480.
    30.Matsuzaki H,Tamatani M,Mitsuda N,et al.Activation of Akt kinase inhibits apoptosis and changes in Bcl2 and Bax expression induced by nitric oxide in primary hippocampal neurons.J Neurochem,1999,73(5):2037-2046
    31.Lisandro Laurinol,Xiaoxin X.PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone.J Cell Science.2005;118,3653-3663.
    32.Wen-Hua Zheng,Remi Quirion.Insulin-like growth factor-1(IGF-1) induces the activation/phosphorylation of Akt kinase and cAMP response element-binding protein (CREB) by activating different signaling pathways in PC12 cells.BMC Neuroscience 2006,7:51.
    33.赵林芝,银巍,苏兴文等.IGF-1经PI3K/Akt依赖性途径保护苯妥英诱导的小脑颗粒神经元凋亡.中国药理学通报,2005,21(1):53-57.
    34.Jurisic Vladimir,Nada Kraguljac.LDH release from K-562 cells after TNF-αtreatment.International Symposium on Predictive Oncology and Intervention Strategies,Paris,France;February 9-12,2002
    35.Kin GW,Sugawara T,Chan PH.Involvment of oxidaxtive stress and caspase-3 in cotical infarction after photothrombotic ischemia in mice.J Cereb Blood Flow Metab,2000;20:1690-1701.
    36.Yao K,Wang K.Caspase-3 and its inhibitor Ac-DEVD-CHO in rat lens epithelial cell apoptosis induced by hydrogen in vitro.Chin Med J(Engl).2003 Jul;116(7):1034-8.
    37. Siddharth Kaul,Arthi Kanthasamy. Caspase-3 dependent proteolytic activation of protein kinase C5 mediates and regulates 1-methyl-4-phenylpyridinium (MPP~+)-induced apoptotic cell death in dopaminergic cells: relevance to oxidative stress in dopaminergic degeneration. European Journal of Neuroscience. 2003; 18(6): 1387-1401.
    38. Susan Gillespie, Xu Dong Zhang. Variable expression of protein kinase CE in human melanoma cells regulates sensitivity toTRAIL-induced apoptosis. Mol Cancer Ther 2005;4(4).668-676.
    39. Lugli E,Troiano L,Ferraresi R,Roat E,Prada N,Nasi M,Pinti M,Cooper EL,Cossarizza A. Characterization of cells with different mitochondrial membrane potential during apoptosis.Cytometry A 2005; 68:28-35
    40. Heiko Duβmann, Markus Rehm. Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: a single-cell analysis. Journal of Cell Science 116,525-536(2003)
    41. Kazimierz Weglarczyk,~(1,2) Jarosiaw BaranCaspase-8 Activation Precedes Alterations of Mitochondrial Membrane Potential during Monocyte Apoptosis Induced by Phagocytosis and Killing of Staphylococcus aureus. Infect Immun. 2004 May; 72(5): 2590-2597.
    42. Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (Δψm)in apoptosis; an update. Apoptosis 2003; 8: 115-128
    43. Gottlieb RA. Mitochondria and apoptosis. Biol Signals Recept 2001; 10: 147-161
    44. 44 Mosser DD, Caron AW, Bourget L, et al. Role of human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol, 1997,17:5317-27.
    45. Jaattela M, Wissing D, Kokholm K, et al. Hsp70 exerts its anti-apoptotic function downstream of Caspase-3-like proteases. EMBO J 1998; 17:6124-34.
    46. Park HS, Cho SG, Kim CK, et al. Heat shock protein hsp72 is a negative regulator of apoptosis signal-regulating kinase 1. Mol Cell Biol. 2002 ; 22(22): 7721-30
    47. Hajnoczky G, Davies E, Madesh M. Calcium signaling and apoptosis. Biochem Biophys Res Commun. 2003;304(3):445-54.
    48. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4(7):552-65
    49. Xu M F Kyoji H Kyoji. Calcium preconditioning inhibits mitochondrial permeability transition and apoptosis. American Journal of Physiology(Heart and Circulatory Physiology) 2001 , 280 :899-906
    50. Patricia Viardl, Adrian J Butcherl, et al. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nature Neuronscience. 2004, 7(9): 939-946.
    51. Zhongju Lu, Ya-Ping Jiang . Decreased L-type Ca~(2+) Current in Cardiac Myocytes of Type 1 Diabetic Akita Mice Due to Reduced Phosphatidylinositol 3-kinase Signaling. Diabetes.. 2007; 0: db06-1629.
    52. C Le Blanc, C Mironneau. Regulation of vascular L-type Ca2+ channels by Phosphatidylinositol 3,4,5-trisphosphate. Circ Res (2004) 95: 300-7.
    53. Semenza.GL, HIP 1: Mediator of physiological and pathophysiological responses to hypoxia. J.Appl.Phy, 2000, 88: 1474-1480.
    54. Ramesh N, Brenard JF, Alpha A,et al. Regulation of hypoxia inducible factor 1 by nitric oxide in contrast to hypoxia in microvascular endothelium. FEBS letters, 2003, 549:99-104
    55. Salceda S, Caro J. Hypoxia inducible factor 1 protein is rapidly degraded by the ubiquitin-proteosome system under nomoxic conditions: its stabilization by hypoxia depends upon redoxinduced changes. J Bio Chem. 1997, 272,:22642-22647.
    56. Thomas S,Robert C, Richard D. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron. 2003,39:43-56.
    57. Kietzmann T, Samoylenko A, Roth U, et al. Hypoxia-inducible factor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes. Blood, 2003, 101(3): 907-914
    58. Natarajan R, Fisher B J. Fowler A A. Regulation of hypoxia inducible factor-1 by nitric oxide in contrast to hypoxia in microvascular endothelium. FEBS Lett, 2003, 549(1-3):99-104
    59. Tang T T, Lasky L A. The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor la by a von hippel-lindau protein-independent mechanism. J Biol Chem, 2003, 278(32): 30125-30135.
    60. Maxwell PH, Ratcliffe PJ. Oxygen sensors and angiogenesis. Semin Cell Dev Biol 2002; 13: 29-37
    61. Stephen C. Land Andrew R.. Hypoxia-inducible Factor 1α Is Regulated by the Mammalian Target of Rapamycin (mTOR) via an mTOR Signaling Motif. J. Biol. Chem., 2007. 282(28), 20534-20543.
    62. David S. Goodsell .The Molecular Perspective: Bcl-2 and Apoptosis. The Oncologist, 2002 7(3), 259-260.
    63. 63 DENG Youping .Overexpression of Bcl-2 partly inhibits apoptosis of human ce rvical cancer SiHa cells induced by arsenic trioxide. Chinese Medical Journal, 2000, 113 (1):84-88.
    64. Erwei Song, Jisheng Chen. Adenovirus-mediated Bcl-2 gene transfer inhibits apoptosis and promotes survival of allogeneic transplanted hepatocytes. Surgery.2000, 130(3):502-511.
    65. Augusto Silva, Andrew Wyllie .p53 Is Not Required for Regulation of Apoptosis or Radioprotection by Interleukin-3. Blood, 1997;89(8): 2717-2722
    66. ZHANG Qunhua, NI Quanxing. pl4ARF upregulation of p53 and enhanced effects of 5-fluorouracil in pancreatic cancer. Chinese Medical Journal, 2003, 116 (8) : 1150-1155.
    67. Anju Thomas,Theresa Giesler. p53 mediates Bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway. Oncogene,2000, 19( 46):5259-5269
    1. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Anna Rev Cell Dev Biol 2001; 17: 615-675
    2. Toker A, Cantley L C. Signalling through the lipid productsof phosphoinositide-3-OH kinase. Nature, 1997, 387(6634):673-676
    3. Maehama T, Dixon J E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger,phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem, 1998,273(22): 13375-13378
    4. Jimenez C, Jones DR, Rodriguez-Viciana P, Gonzalez-Garcia A, Leonardo E, Wennstrom S, von Kobbe C, Toran JL, R-Borlado L, Calvo V, Copin SG, Albar JP, Gaspar ML, Diez E, Marcos MA, Downward J, Martinez-A C, Merida I, Carrera AC. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J 1998; 17: 743-753
    5. Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N. Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 2003; 63: 2139-2144
    6. Vivanco, I. and Sawyers, C.L. The Phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2002, 2, 489-501.
    7. Trotman, L.C., and Pandolfi, P.P. PTEN and p53: Who will get the upper hand? Cancer Cell 2003, 3,97-99.
    8. Mayo, L.D., and Donner, D.B. A Phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl. Acad. Sci. USA 2001 98, 11598-11603.
    9. Zhou, B.P., Liao, Y., Xia, W., Zou, Y., Spohn, B., and Hung, M.C. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation Nat. Cell Biol. 2001.3, 973-982.
    10. Schmitt, C.A. Senescence, apoptosis and therapy-cutting the lifelines of cancer. Nat. Rev. Cancer (2003).3, 286-295.
    11. Kurose, K., Gilley, K., Matsumoto, S., Watson, P.H., Zhou, X.P., and Eng, C. Frequent somatic mutations in PTEN and TP53 are mutually exclusivein the stroma of breast carcinomas. Nat. Genet. (2002).32, 355-357.
    12. Fulton, D., Gratton, J.P., McCabe, T.J., Fontana, J., Fujio, Y., Walsh, K.,Franke, T.F., Papapetropoulos, A., and Sessa, W.C. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature (1999).399, 597-601.
    13. Xu, W., Liu, L.Z., Loizidou, M., Ahmed, M, and Charles, I.G. The role of nitric oxide in cancer. Cell Res. (2002). 12, 311-320.
    14. Welch, H.C., Coadwell, W.J., Stephens, L.R., and Hawkins, P.T. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett. (2003). 546,93-97.
    15. Kelly M. Regula, Delphine Baetz, and Lorrie A. Kirshenbaum. Nuclear Factor-κB Represses Hypoxia-Induced Mitochondrial Defects and Cell Death of Ventricular Myocytes Circulation, Dec 2004; 110: 3795 - 3802.
    16. Kiyoshi Hirai, Takeshi Hayashi, Pak H. Chan. PI3K inhibition in neonatal rat brain slices during and after hypoxia reduces phospho-Akt and increases cytosolic cytochrome c and apoptosis. Molecular Brain Research .2004, 124, 51-61
    17. Lee J W, Bae S H, Jeong J W, et al. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions.Exp Mol Med, 2004, 36(1): 1-12
    18. Semenza G L. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology, 2004, 19(4): 176-182
    19. Gao N, Shen L, Zhang Z, et al. Arsenite induces HIF-1alpha and VEGF through PI3K, Akt and reactive oxygen species in DU145 human prostate carcinoma cells. Mol Cell Biochem,2004, 255(1-2): 33-45
    20. 20. Kim C H, Cho Y S, Chun Y S, et al. Early expression of myocardial HIF-1α in response to mechanical stresses: regulation by stretch-activated channels and th ephosphatidylinositol 3-kinase signaling pathway. Circ Res,2002, 90(2): e25-33
    21. Bardos J I, Chau N M, Ashcroft M, et al. Growth factormediated induction of HDM2 positively regulates hypoxiainducible factor la expression. Mol Cell Biol, 2004, 24(7):2905-2914
    22. Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxiainducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/ AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res, 2000, 60(6): 1541-1545
    23. Page E L, Robitaille G A, Pouyssegur J, et al. Induction of hypoxia-inducible factor-1α by transcriptional and translational mechanisms. J Biol Chem, 2002, 277(50): 48403-48409
    24. Laughner E, Taghavi P, Chiles K, et al. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α(HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol, 2001,21(12): 3995-4004
    25. Zhou J, Schmid T, Frank R, et al. PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1αfrom pVHL-independent degradation. J Biol Chem, 2004,279(14): 13506-13513
    26. Zhang S X, Gozal D, Sachleben L R, et al. Hypoxia induces an autocrine-paracrine survival pathway via platelet-derived growth factor (PDGF)-B/PDGF-β receptor/ Phosphatidylinositol 3-kinase/Akt signaling in RN46A neuronal cells. FASEB J, 2003, 17(12): 1709-1711
    27. Kietzmann T, Samoylenko A, Roth U, et al. Hypoxia-induciblefactor-1 and hypoxia response elements mediate the induction of plasminogen activator inhibitor-1 gene expression by insulin in primary rat hepatocytes. Blood, 2003, 101(3): 907-914
    28. Tang T T, Lasky L A. The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor la by a von hippel-lindau protein-independent mechanism. J Biol Chem, 2003, 278(32): 30125-30135
    29. Natarajan R, Fisher B J. Fowler A A. Regulation of hypoxia inducible factor-1 by nitric oxide in contrast to hypoxia in microvascular endothelium. FEBS Lett, 2003, 549(1-3):99-104
    30. Mottet D, Dumont V, Deccache Y, et al. Regulation of hypoxia-inducible factor-1α protein level during hypoxic conditions by the hosphatidylinositol 3-kinase/Akt/ glycogen synthase kinase 3 pathway in hepG2 cells. J Biol Chem, 2003, 278(33): 31277-31285
    31.Arsham A M, Plas D R, Thompson C B, et al. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1α nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem, 2002, 277(17): 15162-15170
    32. Alvarez-Tejado M, Alfranca A, Aragones J, et al. Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-induciblefactors by low oxygen tension. J Biol Chem, 2002, 277(16): 13508-13517

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700