基于现场试验的循环式垃圾准好氧填埋研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准好氧填埋技术因具有填埋结构简单、垃圾降解速度快等优势而成为目前垃圾处理处置领域的一个研究热点。但是目前国内的研究仍以基于室内试验的理论分析为主,为了探索准好氧填埋技术的工程适应性和对准好氧填埋技术的一些重要问题进行深入研究,开展了三个规模为10m×10m×5m的不同回灌方式和前期不同覆盖方式的垃圾循环式准好氧填埋单元的现场试验。探讨了准好氧填埋场渗滤液水质在不同时期的降解规律;氧气在准好氧填埋场的传质和消耗规律以及填埋气体的排放规律。同时对填埋场污染物运移的平衡流与优先流进行数值模拟,确定影响污染物运移的主要因素。本研究可为准好氧填埋技术的推广应用提供相关的技术参数和理论依据。
     通过对试验单元渗滤液水质的监测,结果表明:三个单元的COD在分别经过742、704、697天后,从最初的26172 mg/L、72435 mg/L和65324 mg/L降低到1566mg/L、1443mg/L和2013mg/L,去除率分别为94.0%、98.0%和96.9%。BOD_5分别从21012mg/L、42800mg/L和33900mg/L降低到130mg/L、120mg/L和140mg/L,去除率为99.4%、99.7%和99.6%。可以看出准好氧填埋对有机物的去除效果明显,但是由于受到渗滤液收集管直径较小的限制,渗滤液氨氮的降解受到一定的影响,降解效果不够理想。分别利用Excel和Lingo软件对渗滤液COD降解模型进行拟合和预测,结果显示采用Lingo拟合的结果与实测值比较接近,其预测值也更为准确。
     在考虑弥散、对流、吸附和降解作用下,首次利用FlexPDE软件对填埋场污染物的平衡流和优先流运移模型进行模拟。研究表明:在平衡流条件下,当扩散系数和渗流速度增大时,污染物的浓度降低趋势很明显。当扩散系数为0.5m~2/d和0.05m~2/d时,扩散系数较小方向上的运移可以忽略不计,渗流速度降低到0.02m/d后,对污染物运移的影响可以忽略不计。污染物衰减系数对污染物运移的影响较大,衰减系数越大,污染物浓度降低得越快,而当污染物衰减系数减小到0.0008/d后,污染物浓度变化受衰减系数的影响大大减小。通过优先流模拟发现,在流动区域,由于污染物随着流体快速运移,其浓度也发生较大的变化,而对于不流动区域,由于污染物浓度的变化只受到降解以及动力学传质的影响,所以其浓度变化缓慢;流动区域的含水率越大,不流动区域污染物浓度降低的越快;传质系数越大,不流动区域污染物浓度降低越快,相对而言流动区域的浓度有所增大。在优先流发生时,渗流速度和扩散系数明显增大,当扩散系数为5m~2/d,渗流速度为2m/d时,到了第50天,流动区域污染物浓度的最大值与扩散系数为0.5m~2/d,渗流速度为0.2m/d相比较,降低了96.7%。说明优先流对污染物运移的影响大。
     对准好氧填埋场氧气的传质和消耗规律进行试验研究,并利用Surfer软件对试验数据进行分析。结果表明:氧气在垃圾层的传递方式主要以扩散传递为主;通过覆盖层进入垃圾层中的氧气分布具有一定的层次效应,从上到下浓度依次减小。在渗滤液收集管氧气供给的影响下,导气管周围的氧气浓度有所增加。三个试验单元上、中、下层氧气的平均浓度分别为:13.8%、2.1%、0.6%;13.6%、2.3%、0.3%;13.8%、2.4%、0.4%。利用氧气浓度的大小将填埋场的不同垃圾降解区域进行划分,好氧、兼氧和厌氧区的氧气浓度分别为大于2.4%、大于0而小于等于2.4%和等于0。
     利用静态箱法对准好氧填埋场填埋气体排放通量进行研究。结果表明,距离导气管较近的区域,在垃圾好氧降解的条件下,CH_4的排放通量绝大部分接近于零,即处于完全被氧化的状态。随着离导气管距离的增加,CH_4排放量逐渐增大,但是受到填埋场垃圾层厚度等的影响,不同的区域的CH_4和CO_2排放量有所不同,填埋垃圾层较厚的区域,气体的产量增大,排放量也较大。在填埋边坡地带,CH_4排放量较低,CO_2排放量较大,在覆盖层较薄区域,大气渗透到垃圾层的深度增加,使垃圾好氧降解区域增大,CO_2排放量增大。整个试验中的CH_4排放量远远低于CO_2排放量,两者的通量比值除了第二单元在4月为47外,其余时段都在688以上,最大比值达到204940,说明在准好氧填埋条件下,CH_4排放量大大减小。
Semi-aerobic landfill technology is a popular research field of waste disposal for the simple structure and faster degradation.But most researches are just in laboratory in present.To verify the applicability of semi-aerobic landfill and discuss many important thechnologies of it,three pilot-scale units(10m×10m×5m) are constructed at the Changan landfill site of Chengdu city,the leachate is recirculated in different ways,HDPE and clay are adopted as the cover in the beginning of the research,the degradation rule of leachate quality in different period,the transportation and consumption of the oxygen in the experimental units and the emission rule of landfill gas are discussed.Meanwhile,the influence factors of the contaminant transportation in balanced flow and preferential flow are discussed.Based on the research,technical parameters and theoretical basis are provided for the application of semi-aerobic landfill.
     The leachate quality of the experimental units are monitored,the results showed that,the leachate concentration of COD dropped from 26172 mg/L,72435 mg/L and 65324 mg/L originally to 1566mg/L,1443mg/L and 2013mg/L finally, and the removal rates are 94.0%,98.0%and 96.9%respectively.The concentration of BOD dropped from 21012mg/L,42800mg/L and 33900mg/L originally to 130mg/L,120mg/L and 140mg/L finally,the removal rates are 99.4%,99.7%and 99.6%respectively.Based on the results,it is obvious that the degradation of organic is effective in the semi-aerobic landfill experimental units.But the degradation of ammonia nitrogen is not good because of the small diameter of leachate collection pipe.The trend of COD is fitted by Excel and Lingo with a result that Lingo is more effective,so the results of predicted by Lingo are more reliable.
     Under the effect of dispersion,convection,adsorption and degradation,the balanced flow and preferential flow of the landfill contaminant are firstly modelled by FlexPDE.Under the balanced flow condition,with the increasing of the dispersion coefficient and the flow velocity,the contaminant concentration dropped obviously.When the dispersion coefficients are 0.5m~2/d and 0.05m~2/d,the contaminant transportation is negligible in the latter direction.When the flow velocity fell to 0.02m/d,its effect on contaminant transportation is negligible.The contaminant decaying coefficient influenced on the contaminant transportation effectively,when the decaying coefficient is greater,the contaminant dropped faster too,and when the contaminant decaying coefficient fell to 0.0008/d,the effect on contaminant transportation is negligible.From the model of preferential flow,due to the contaminant flow with the faster liquid in the mobile domain,the contaminant concentration changed faster.In the immobile domain,the contaminant concentration is effected by the degradation and first-order mass transfer,so it changed slowly.When the water content of the mobile domain is greater,the contaminant concentration in immobile domain dropped faster.And when the first-order mass transfer coefficient is greater,the contaminant concentration in the immobile domain dropped faster.Meanwhile,the contaminant concentration in the mobile domain increased accordingly.Under the condition of preferential flow,the flow velocity and dispersion coefficient is increasing obviously.When the dispersion coefficient is 5m~2/d,flow velocity is 2m/d,the maximum value of contaminant concentration in the immobile domain decreased 96.7%comparing with the dispersion coefficient is 0.5m~2/d and the flow velocity is 0.2m/d.So,the preferential flow effected the contaminant transportation obviously.
     The oxygen transportation and consumption in semi-aerobic landfill is tested by the experimental units,and the test data is analyzed by Surfer.Oxygen is transported in the waste mostly by dispersion.The oxygen is imported from the cover is stratifyed in the landfill,and from the upper layer to the under layer,the oxygen concentration is decreasing with the depth.But from the leachate collection pipe, oxygen could be taken in the landfill layer,so the oxygen concentration around the landfill gas collection pipe is increased.In the three experimental units,the average oxygen concentration of the upper layer,middle layer and under layer are 13.8%, 2.1%,0.6%,13.6%,2.3%,0.3%,13.8%,2.4%and 0.4%respectively.The area of waste degradation is partitioned by the oxygen concentration,in the aerobic,anoxic and anaerobic areas,the oxygen concentration is more than 2.4%,more than 0 and less than or equal to 2.4%and equal to 0 respectively.
     The semi-aerobic landfill gas flux is tested by static chamber method.The results showed that methane flux is closed to 0 mostly in the area around the landfill gas collection pipe,because methane is oxidized almost entirely.With the increasing distance to landfill gas collection pipe,methane flux is enhanced.Because of the difference depth of waste layer,methane and carbon dioxide flux are different.In the area with thicker layer,landfill gas yield is increased,and the flux is increased too.On the side of slopes,atmosphere is taken in deeper layer,so the aerobic area and carbon dioxide flux increased.At the same time,methane flux decreased.In the whole experiment period,methane flux is far smaller than carbon dioxide flux,the ratio of methane flux to carbon dioxide flux is almost more than 688,the maximal ratio is 204940,and the minimal ratio is 47,this is taken place in the second experimental unit in April.From the study,it is obvious that in semi-aerobic landfill,methane flux is very small.
引文
1.聂永丰.三废处理工程技术手册--固体废物卷.北京:化学工业出版社,2002:1
    2.沈东升.生活垃圾填埋生物处理技术.北京:化学工业出版社,2003:1
    3.彭献永,顾念祖.我国城市生活垃圾处理的现状和对策.工业锅炉.2006(3):6-10,13
    4.张益,赵由才.生活垃圾焚烧技术.北京:化学工业出版社,2000:8
    5.中华人民共和国国家统计局.中国统计年鉴2007.北京:中国统计出版社
    6.赵由才,龙燕,张华.生活垃圾卫生填埋技术.北京:化学工业出版社,2004:4-7
    7.查坤,刘丹,李启彬.青藏高原地区准好氧填埋单元试验研究.环境工程学报,2007,1(8):120-125
    8.李启彬.基于渗滤液回灌的厌氧型生物反应器填埋场快速稳定研究.西南交通大学博士学位论文.2004:3-4
    9.Pohland F.G.Acceleration solid waste stabilization and leachate treatment by leachate recycle through sanitary landfills.Progress in Water Technology,1975,7(3/4):753-765
    10.Price G.A.,Barlaza M.A.,Haterb G.R.Nitrogen management in bioreactor landfills.Waste Management,2003,23:675-688
    11.Onay T T,Pohland F G.In situ nitrogen management in controlled bioreactor landfills.Water Research,1998,32(5):1383-1392
    12.Berge N.D.,Reinhart D.R.,John D.,et al.In situ ammonia removal in bioreactor landfill leachate.Waste Management,2006,26:334-343
    13.http://www.iclei.org/mia98-99/fokuoka.htm
    14.Dr.Matsufuji."Semi-aerobic landfill site story." "Mizu" Jan & Feb 1998
    15.Http://www.fukuoka.unhabitat.org
    16.Chong T.L.,Matsufuji Y.,Hassan M.N.Implementation of the semi-aerobic landfill system(Fukuoka method) in developing countries:A Malaysia cost analysis.Waste management.2005(25),702-711
    17.Debra R.Reinhart,Manoj B.Chopra.MSW landfill leachate collection systems for the new millenium.2000
    18.M.Warith,X.Li and H.Jin.Bioreactor landfills:state-of-the-art review.Emirates Journal for Engineering Research,2005,10(1):1-14
    19.United Nations Environment Program.A directory of environmentally sound technologies for the integrated management of solid,Liquid and Hazardous Waste for Small Island Developing States(SIDS) in the Pacific Region.July 2002
    20.http://kankyo.city,fukuoka.jp/gomi/shisetsu/saisyu3.htm
    21.Shimaoka T.,Matsufu Y.,Hanashima M.Mechanism of self-stabilization of semi-aerobic landfill.The Solid Waste Association of North America 5th Annual Landfill Symposium.Jun27-30,2000 Austin,Texas,171-184
    22.Shimaoka T.,Matsufu Y.,Hanashima M.Characteristic and mechanism of semi-aerobic landfill on stabilization of solide waste.Existing Solid Waste Layers in Landfills.Proceedings Sardinia 93,Fourth International Landfill Symposium,1,979-993
    23.席北斗,刘鸿亮,孟伟等.三峡库区垃圾污染现状及治理技术.环境污染与防治,2002,24(5):309-311,320
    24.Cities and sustainable development --Lessons and experiences from Asia and the Pacific.United nations.New York,2003
    25.Sangchul P.,Tetsuya K.,Shimaoka T.et al.Simulation of behavior of pollutants in semi-aerobic landfill layers.Haikibutsu Gakkai Ronbunshi.1997,8(4):147-156
    26.花岛正孝.废弃物最终处分场动向技术上问题点.废弃物学会志.1993,4(1):3-9
    27.王琪,董路等.垃圾填埋场渗滤液回流技术的研究.环境科学研究,2000,13(3):1-5
    28.Lee N.,Kusuda T.,Shimaoka T.et al.Pollutant transformations in landfill layers.Waste Management & Research.1994(12):33-48
    29.Matsufu Y.,Hanashima M.,Nagano S.et al.Generation of greenhouse effect gases from different landfill types.Engineering Geology.1993,(34):181-187
    30.李帆,黄启飞,张增强等.准好氧填埋场的温度空间变异性.应用生态学报,2006,17(7):1291-1294
    31.李帆,张增强,黄启飞等.准好氧填埋工艺温度变化特性研究.西北农林科技大学学报(自然科学版),2006,34(6):85-89
    32.Masataka H.,Kazuei O.,Takemi K.et al.Heat and gas flow analysis in semiaerobic landfill.Journal of the Environmental Engineering Division,1981(107):1-9
    33.刘玉强,王琪,黄启飞等.不同填埋工艺对填埋气产生动态变化的影响.应用生态学报,2005,16(12):2409-2412
    34.董路,刘玉强,黄启飞等.准好氧填埋结构CH_4含量分布变化研究.环境科学研究,2005,18(3):20-23
    35.张正安,黄启飞,屈明等.准好氧填埋工艺氧气浓度对甲烷与二氧化碳浓度的影响研究.环境科学研究,2006,19(6):81-85
    36.刘玉强,黄启飞,董路等.准好氧填埋结构耗氧半径的确定.中国环境科学,2006,26(增刊):19-22
    37.Tanaka N.,Matsuto T.,Kim Y.Air flow rate in leachate collection pipe of semi-aerobic landfills:Theoretical Study on Pipe Network.Waste Engineering Society.1997,8(1),1-8
    38.http://www.enviropia.co.kr/main/intro/iswapaper.htm
    39.Pohland F.G.Acceleration solid waste stabilization and leachate treatment by leachate recycle through sanitary landfills.Progress in Water Technology,1975,7(3/4):753-765
    40.Pohland F.G.Sanitary Landfill Stabilization with Leachate Recycle and Residual Treatment.EPA-600/2-75-043.1975
    41.Haydar M.M.Leachate recirculation in bioreactor landfills:field-scale testing and modeling.PhD.Thesis,Michigan State University,2005
    42.Straub W.A.,Iynch D.R.Models of landfill leaching:moisture flow and inorganic strength.Journal of Environmental Engineering,1982,108(2):231-250
    43.KorHatis G.P.,Demetracopoulos A.C.,Nawy E.G.Moisture transport in a solid waste column.Journal of Environmental Engineering,1984,110(4):780-796
    44.Schroeder.Hydrologic evaluation of landfill performance(HELP) model:B.U.S.EPA 600-R-94-168A,1994
    45.Ahmed S.,Khanbilvardi R.M.,Gleason P.J.Flow investigation for landfill leachate.Journal of Environmental Engineering,1995,121:45-57
    46.Mccreanor P.T.,Reinhart D.R.Hydrodynamic modeling of leachate Recirculating.Water Science and Technology,1996,34(7-8):463-470
    47.Mccreanor P.T.,Reinhart D.R.Mathematical modeling of leachate routing in a leachate recirculating landfill.Water Research,2000,34(4):1285-1295
    48.Mccreanor P.T.Landfill leachate Recirculation systems:mathematical modeling and validation.PhD.Thesis,Florida Central University,1998
    49.Runchal,A.K.,Sagar,B.,PORFLOW,a Model for Fluid Flow,Heat and Mass Transport in Multifluid,Multiphase Fractured or Porous Media.Analytic and Computational Research Inc.,West Los Angeles,CA,1998
    50.Simunek J.,Sejna M.,M.Th.Van Genuchten.“The HYDRUS-2D software package for simulating the 2Dmovement of water,heat,and multiple solutes in variably saturated media Version 2.0”,U.S.Salinity Laboratory,Agriculture Research Service,USDA,Riverside,California,1999
    51.王洪涛,殷勇.渗滤液回灌条件下生化反应器填埋场水分运移数值模拟.环境科学.2003,24(2):66-72
    52.殷勇,王洪涛,张相锋.垃圾填埋场水分迁移模型的应用研究.环境污染治理技术与设备.2002,3(10):36-40
    53.Zeiss C.Major W.Moisture flow through municipal solid waste:patterns and characteristics: Journal Environmental Systems, 1993, 22(3):211-231
    
    54. Zeiss C. Uguccioni M. Mechanisms and patterns of leachate flow in municipal solid waste:landfills: Journal Environmental Systems, 1995, 23(3):247-270
    
    55. Rosqvist H. Destouni G. Solute transport through preferential pathways in municipal solid waste: Journal Contaminant Hydrology, 2000,46:39-60
    
    56. Rosqvist H , Dollar L H , Fourie A B. Preferential flow in municipal solid waste and implications for long-term leachate quality: valuation of laboratory-scale experiments.Waste Manag Res. 2005, 23 (4):367-80
    
    57. Bengtsson L, Bendz D, Hogland W. et al. Water balance for landfills of different age. J.Hydrol. 1994,158:203-217
    
    58. Burrows M R, Joseph J B, Mather J D. The hydraulic properties of in-situ landfilled waste.Proc. Sardinia'97, Sixth International Landfill Symposium, Cagliari, Italy, 1997, 2:73-83
    
    59. Bendz D, Singh V P, Berndtsson R. The flow regime in landfills-implications for modelling.Proc. Sardinia'97, Sixth International Landfill Symposium, Cagliary, Italy, 1997,2:97-108
    
    60. Zeiss C. A comparison of approaches to the prediction of landfill leachate generation. Proc.Sardinia'97, Sixth International Landfill Symposium, Cagliari, Italy, 1997,2: 13-22
    
    61. Flury M., Fltlhler H., Jury W. A. et al. Susceptibility of soils to preferential flow of water: A field study. Water Resources Research, 1994,30(7): 1945-1954
    
    62. Dekker L.W., Ritsema C. J., Wendroth O. et al. Moisture distributions and wetting rates of soils at experimental fields in the Netherlands, France, Sweden and Germany. Journal of Hydrology, 1999,215:4-22
    
    63. Wang Z., Feyen J., Ritsema C. J. Susceptibility and predictability of conditions for preferential flow. Water Resources Research, 1998,34:2169-2182
    
    64. Fltlhler H., Ursino N., Bundt M. et al. The Preferential Flow Syndrom—A Buzzword or a Scientific Problem. In Preferential Flow Water: Movement and Chemical Transport in the Environment, Proc . 2nd Intl. Symp . 2001
    
    65. Helling C.S., Gish T.J. Physical and chemical processes affecting peferntial flow. In preferential flow Proc National Symposium. 1991,77
    
    66. Niu Jianzhi, Yu Xinxiao, Zhang Zhiqiang. Soil preferential flow in the dark coniferous forest of Gongga Mountain based on the kinetic wave model wit dispersion wave (KDW preferential flow model). Acta Ecologica Sinica, 2007, 27(9): 3541-3555
    
    67. 牛健植,余新晓,张志强.优先流研究现状及发展趋势.生态学报.2006,26(1):231-243
    
    68. Flury M. Experimental evidence of transport of pesticides through field soils-A review.Journal of Environment Quality, 1996, 25, 25-45
    69.Beven K.Modeling preferential flow:an uncertain future? In:Gish T J,Shirmohannadi A (eds.),Preferential Flow.American Society of Agricultural Engineers,1991.1-11
    70.Jarvis N.Modeling the impact of preferential flow on non-point source pollution.In:Selim H H,Ma L(eds.),Physical Non-equilibrium in Soils:Modeling and application.Chelsea,Michigan:Ann Arbor Press,1998,195-221
    71.Skopp J.Comment on micro-,meso- and macro-porosity of soil.Soil Science Society of America Journal,1981,45,1246
    72.郭会荣.优先流影响下的入渗补给过程及溶质运移实验与模拟.中国地质大学博士学位论文.2008,6-10
    73.程金花.长江三峡花岗岩区林地坡面优先流模型研究.北京林业大学博士学位论文.2005.9-17
    74.曹顺爱.稻田土壤优先流及其对氮肥运移的影响研究.浙江大学硕士学位论文.2003.10-18
    75.Vogel,T.,Cislerova M.On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve.Tansport Porous Media.1988,3:1-15
    76.Ross P.J.,Smettem K.R.Asimpal treatment of physical nonequilibrium water flow in soil.Soil Sci Soc Am J,2000,64:1926-1930
    77.Van Genuchten M.T.,Wierenga P.J.Mass transfer studies in sorbing Porous media,1.Analytical solutions.Soil Sci Soc Am J,1976,40:473-480
    78.Gerke H.H.,Van Genuchten M.T.A dual-porosity model for simulating the prefential movement of water and solutes in structured porous media.Water Resour.Res,1993,29:305-319
    79.Beven K.,Germann P.F.water flow in soil macropores Ⅱ.A combined flow model.J.soil Sci,1981,32:15-29
    80.Germann P.E,Beven K.Water flow in soil macropores I.An exPerimental approach.J.soil Sci,1981,32:1-13
    81.Germann P.E Preferential flow and the generation of runoff 1.Boundary layer flow theory.Water Resour Res,1990,26(12):3055-3063
    82.Chen C.,Thomas D.M.,Green R.E.Two-domain estimation of hydraulic properties in macropore soils.Soil Sci Soc Am J.1993,57:680-686
    83.Chen C.,Wagenet R.J.Simulation of water and chemicals in macropore soils.I:Representation of the equivalent macropore influence and its effect on soil water flow.Journal of hydrology,1992,130:105-120
    84.Steenhuis T.S,Parlange J.Y,Andreini M.S.A numerical model for preferential solute movement in structured soils.Geoderma,1990,46:193-208
    85.Jurg H.Modeling preferential flow of water in soils,a two-phase approach for field conditions.Geoderma,1993,58:149-163
    86.Steenhuis T.S.,Boll J.,Shalit G.et al.Simple equations for Predicting Preferential flow solute concentration.Journal of Environment Quality,1994,23:1058-1064
    87.Shalit G.,Steenhuis T.A simple mixing layer model Predicting solute flow to drainage lines under Preferential flow.Journal of Hydrology,1996,183:139-149
    88.Montas H.J.,J.D.Eigel,B.A.Engel et al.Deterministic modeling of solute transport in soils with preferential flow pathways,part 1.model development.Transactions of the ASAE,1997,40(5):1245-125
    89.Kallel A.,Matsuto T.,Tanaka N.Determination of oxygen consumption for landfilled municipal solid wastes.Waste Management & Research,2003,21:346-355
    90.郑玉琪,陈同斌,高定等.静态垛好氧堆肥堆体中氧气浓度和耗氧速率的垂直分布特征.环境科学,2004,25(2):134-139
    91.张智,罗金华,周中生等.卧螺旋式好氧堆肥装置的通气量研究.中国给水排水,2004,20(4):50-52
    92.陈同斌,郑玉琪,高定等.猪粪好氧堆制不同阶段氧气含量变化特征.应用生态学报,2004,15(11):2179-2183
    93.郑玉琪,陈同斌,高定等.猪粪快速好氧堆肥过程中氧气浓度的变化.生态学报,2002,22(5):747-751
    94.Guardia A.D.,Petiot C.,Rogeau D.Influence of aeration rate and biodegradability fractionation on composting kinetics.Waste Management,2008,28:73-84
    95.Yuen S.T.S.,McMahon T.A.Monitoring in situ moisture content of municipal solid waste landfills.Journal of Environmental Engineering,2000,126(12):1088-1095
    96.Farquhar,Grahame J.Landfill Decomposition and Gas/Leachate Generation Processes,for presentation at the Sanitary Landfill Gas and Leachate Management Meeting.Orlando,Florida,1989
    97.Rinhart D.,Al-Yousfi A.B.The impact of leachate recirculation on municipal solid waste landfill operating characteristics.Waste Management and Research,1996,14:337-346
    98.Pohland F.G.,Harper S.R.Critical review and summary of leachate and gas production from landfills.U S EPA Cincinnati,Oh,1986
    99.Earth Engineering Center.Landfill gas generation,capture,and utilization.Study in progress,2005
    100.Themelis N.J.,Ulloa P.A.Methane generation in landfills.Renewable Energy,2007,32: 1243-1257
    101.张相锋,肖学智,何毅等.垃圾填埋场的甲烷释放及其减排.中国沼气,2006,24(1):3-5,14
    102.Barlaz M.A.,Ham R.K.,Schaefer D.M.Mass-balance analysis of anaerobically decomposed refuse.Journal of Environmental Engineering,1989,115(6):1088-1102
    103.Chanton,J.P.,and Liptay,K.Seasonal variation in methane oxidation in a landfill cover soil as determined by an insitu stable isotope technique.Global Biogeochemical Cycles,2000,14:51-60
    104.Boeckx P.,O.V.Cleemput,I.Villaralvo.Methane emission from a landfill and the methane oxidising capacity of its covering soil.Soil Biology & Biochemistry,1996,28:1397-1405
    105.Kightley D.,D.B.Nedwell,M.Cooper.Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms.Applied and Environmental Microbiology,1995,61(2):592-601
    106.Visscher A.D.,D.Thomas,P.Boeckx,et al.Methane oxidation in simulated landfill cover soil environments.Environmental Science & Technology,1999,33:1854-1859
    107.Czepiel P.M.,Mosher B.,Crill P.M.et al.Quantifying the effects of oxidation on landfill methane emissions.Journal of Geophysical Research,1996,D11(101):16721-16729
    108.Visvanathan C.,Pokhrel D.,Cheimchaisri W.et al.Methanothropic activities in tropical landfill cover soils:effects of temperature,moisture content and methane concentration.Waste Manage Research,1999,17:313-323
    109.Nozhevnikova A.N.,Nekrasova V.K.,Lebedev V.S.et al.Microbiological process in landfills.Water Science and Technology,1993,27:243-252
    110.Whalen S.C.,Reeburgh W.S.,Sandbeck K.A.Rapid methane oxidation in a landfill cover soil.Applied Environmental Microbiology.1990,56:3405-3411
    111.Humer M.,Lechner P.Microbial methane oxidation for the reduction of landfill gas emissions.Journal of Solid Waste Technology and Management,2001,27:3-4
    112.何品晶,瞿贤,杨琦等.填埋场终场覆盖层甲烷氧化行为实验室模拟研究.环境科学学报.2006,26(1):40-44
    113.Brjesson G.,J.Chanton,B.H.Svensson.Methane oxidation in two Swedish landfill covers measured with carbon13 to carbon12 isotope ratios.Journal of Environmental Quality,2001,30:369-376
    114.Scheutz C.,and Kjeldsen P.Environmental factors influencing attenuation of methane and hydrocholofluorocarbons in landfill cover soils.Journal of Environmental Quality. 2004(33):72-79
    115.Mcbean E.A.,F.A.Rovers,G.J.Farquhar.Solid waste landfill engineering and design.New Jersey,Prentice Hall,1995
    116.Szepiel P.M.,Shorter J.H.,Mosher B.et al.The influence of atmospheric pressure on landfill methane emissions.Waste Management,2003,23:593-598
    117.Bogner J.,Spokas K.,Burton E.et al.Landfills as atmospheric methane sources and sinks.Chemosphere,1995,31(9):4119-4130
    118.[日]废弃物学会编著.金东振,金晶立,金永民译.废弃物手册.北京:科学出版社,2004.9
    119.沈耀良,王宝贞编著.废水生物处理新技术-理论与应用.北京:中国环境科学出版社,1999
    120.Onay T.T.In situ nitrongen management in controlled bioreactor landfill.Water Res.1998,32(6):1383-1392
    121.张澄博.垃圾卫生填埋结构对地质环境效应的控制研究.地质灾害与环境保护.1999,10(1):68-87
    122.国家环保局和《水和废水监测分析方法》编委会.《水和废水监测分析方法》第四版.北京:环境科学出版社,2002
    123.贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998
    124.赵由才,朱青山.城市生活垃圾卫生填埋场技术与管理手册.化学工业出版社,1999:187-193
    125.Giannis A.,Makripodis G.,Simantiraki F.,et al.Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor.Waste Management,2008,28:1346-1354
    126.Bilgili M.S.,Demir A.,Ozkaya B.Quality and quantity of leachate in aerobic pilot-scale landfills.Environmental Management,2006,38(2):189-196
    127.沈东升.生活垃圾填埋生物处理技术.北京:化学工业出版社,2003
    128.周甄川.数学建模中的优秀软件-Lingo.黄山学院学报,2007,9(3):112-114
    129.方军,张秀明.基于Lingo软件的消防站布局优化.消防科学与技术,2006,25(6):809-812
    130.王文峰.基于Lingo的最小一乘线性回归的参数估计.贵州财经学院学报,2006,(6):106-108
    131.张宏伟,牛志广.Lingo8.0及其在环境系统优化中的应用.天津:天津大学出版社,2005
    132.Rabideau A.J.Section 10:Contaminant transport modeling[A].Assessment of barrier containment technologies.Baltimore:International Containment Technology Workshop,1999,247-299
    133.Rowe R.K.,Booker J.R.A finite layer technique for modeling complex landfill history.Canadian Geotechnical Journal,1995,32:660-676
    134.席永慧,,刘建航.饱和多孔介质中污染物迁移模拟.同济大学学报(自然科学版).2005,33(5):644-648
    135.Gardenas A.I.,Simunek J.,Jarvis N.,et al.Two-dimensional modelling of preferential water flow and pesticide transport from a tile-drained field.Journal of Hydrology.2006,329:647-660
    136.Refsgaard J.C.,Christensen T.H.,Ammentorp H.C.A model for oxygen transport and consumption in the unsaturated zone.Journal of Hydrology,1991,129:349-369
    137.Bozkurt S.,Moreno L.,Neretnieks I.Long-term fate of organics in waste deposits and its effect on metal release.The Science of the Total Environment,1999,228:135-152
    138.Radford P.J.,Greenwood D.J.The simulation of gaseous diffusion in soils.J.Soil Sci.,1970,21:305-313
    139.Currie,J.A.Gaseous diffusion in the aeration of aggregated soils.Soil Sci.,1961,92:40-45
    140.Bailey,J.E.,Ollis,D.F.Biochemical Engineering Fundamentals.McGraw-Hill,New York,1986,467-468
    141.Visscher A.D.,Cleemput O.V.Simulation model for gas diffusion and methane oxidation in landfill cover soils.Waste Management,2003,23:581-591
    142.Hillel,D.Environmental Soil Physics.Academic Press.San Diego.1998
    143.Yanful,E.K.,Simms,P.H.,Payant,S.C.Soil covers for controlling acid generation in mine tailings:a laboratory evaluation of the physics and geochemistry.Water,Air,and Soil Pollution,1999,114:347-375
    144.Masataka Hanashima.Heat and gas flow analysis in semi-aerobic landfill.Journal of the Environmental Engineering Division,ASCE,1981,107(1):1-9
    145.黄耀.地气系统碳氮交换--从实验到模型.北京:气象出版社,2003
    146.Abichou T.,Powelson D.,Chanton J.,et al.Characterization of methane flux and oxidation at a solid waste landfill.Journal of Environmental Engineering,ASCE./Februady 2006,220-228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700