长江三峡花岗岩区要地管流对地表径流的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
优先流是用于描述在多种环境条件下发生的非平衡流过程的术语,作为土壤水分一种特殊运动形式的优先流,是当今世界水文学研究的重点和难点问题之一。本文在大量查阅文献的基础上,对优先流的概念、分类、研究方法等进行了归纳,并以湖北省秭归县曲溪小流域为试验基地,采用挖土壤剖面将管流、剖面渗流引入流量计自计观测,并通过径流小区观测坡面地表径流、三角堰观测流域径流、数字雨量计观测天然降雨等方法,观测了天然降雨过程及其影响下优先流、坡面径流、渗流、地表径流的量和过程,分析了长江三峡花岗岩特定区域条件下优先流的产流机理、优先流路径、优先流的影响因素及优先流对地表径流过程的影响。取得的主要结论如下:
     (1)优先流是长江三峡花岗岩坡面的一种普遍现象,观测的管流雷诺数均大于10,土内渗流的雷诺数均小于10,根据北原曜的分类系统,以管流为主要形式的优先流运动不遵从达西定律。在该地区存在两种类型的土管,即地质性土管(原生性土管)和生物性土管(次生性土管)。土管在垂直方向上主要集中在土壤B层与C层的过渡带附近,呈聚集型分布。距地表的深度为0.8~1.0m,土管密度为5~7个/m。
     (2)管流水文过程波形图基本相似,表现为明显的涨水、峰值和退水3个阶段,且涨水历时短,落水历时长。长江三峡花岗岩区的单个土管管流量为0.00036~0.17918m~3,管流的峰值流量平均为120~25000cm~3/h。管流受降雨量和降雨强度影响较大,同场降雨条件下管流量同降雨量线性相关显著,方程为:
     y=0.0035x-0.1105(R=0.9405)
     优先流流量的波动与降雨强度的变化呈正相关关系,且在降雨过程中雨强的微小变化会导致管流水文波形的明显反映,尤其是阵雨的出现,会使缓慢下降的管流流量水文波形下降的更为缓慢或转而产生小幅度的回升。
     (3)管流占剖面渗流总量的比值为8.7%~22.11%,场降雨过程中,管流量和剖面渗流量呈线性正相关关系,一般关系式为:
     y=30.58x+7.42×10~(-3)(20020528号降雨,r=0.812)
     (4)同等降雨及下垫面条件下,管流量和对应的坡面地表径流量呈线性正相关
Preferential flow is used for describing term of non-equilibrium process that takes place under many kinds of environmental condition, being as a kind of special movement form of soil moisture, the preferential flow is focal point and one of difficult point problems that the hydrology is studied in current world. This text has been summed up to concept, classification, research approach of preferential flow, etc. on the basis of a great amount of consultable literatures. Regarding Quxi small watershed of Zigui County in Hubei province as trial base, pipe flow and soil infiltration flow to flow meter have been introduced and observed by itself through the soil section, the preferential flow, slope surface flow, soil infiltration flow, and the total surface flow of watershed have been observed under observed natural rain process and its influence by the method of observing slope surface flow、 the total surface flow、 natural rain through flow district、triangular weir and digital rain meter; flow theory、 path, influence factor of preferential flow and the influence of preferential flow to the process of surface runoff are analyzed under the specific regional condition in granite region within Three-Gorges of Yangtze River. The main conclusions achieved are as follows:(1) Preferential flow is a common phenomenon in the granite region of the Three Gorges in the Yangtze River. The observed Renault quantity of pipe flow is averagely bigger than 10, on the other hand, the observed Renault quantity of soil infiltration flow is averagely smaller than 10. According to the classification system of Kitahara Hikalu, the preferential flow predominated to the pipe flow as a main type can not follow to Darcy Law. Two kinds of soil pipe exist in the granite region of the Three-Gorges in the Yangtze River, which are the biological pipes formed by dead plant roots and the geological pipes
    
    formed by soil cracks. The result of field observation shows that the soil pipes concentrate mainly nearby the transitional zone forming distribution with assembling type between weathering of granite layer and the semi-weathering of granite layer, where is about deep 1.2 -1.6 m under the ground surface, and density of the soil type is about 5-7 pieces per meter.(2) Hydrology wave shape of pipe flow is similar basically, shown obviously 3 stages that are rising, peak value and retreating, and it lasts short to rise as well as lasts long to fall. In the granite region of Three Gorges in Yangtze River, the pipe flow's quantity of single soil pipe is about 0.00036-0.17918 m3, the average peak quantity is about 120-25000 cm3/h. The pipe flow is significantly influenced by precipitation and rainfall intensity, meanwhile at the same condition of rainfall, linear interrelation between the quantity of pipe flow and rainfall is obvious, the equation is:y= 0.0035x-0.1105 (R=0.9405).Quantity wave of the preferential flow is positively related to changes of the rainfall intensity, moreover, the pipe flow is sensitive to the micro-changes of rainfall during the rainfall period, and micro-change of intensity of rainfall will be distinctly reflected in pipe flow's hydrological graph, especially, it may make pipe flow's hydrological graph downtrend, or cause small bounce.(3) The ratio of the total amount of the sectional influent to the pipe flow is 8.70%-22.11%, among the rainfall process, the quantity of the pipe flow is linear positively interrelated to the relation of total amount of soil infiltration flow, the general relational equation is:y= 30.58x +7.42 x10~(-3) (the rainfall NO.20020528, R=0.812)(4) Under the condition of equal rainfall and ground, the quantity of pipe flow is linear positively interrelated to relation to corresponding surface runoff in slope, the general equation is:y = 0.7761x+ 0.0379 (R=0.9107)(5) The percentage ratio of the quantity of pipe flow covering total runoff quantity of
    
    the watershed is 0.53%~2.31%. During the raining process, the total quantity of pipe flow and total quantity of the runoff in the watershed assumes
引文
1 中科院三峡工程生态与环境科研项目组主编.长江三峡生态与环境地图集.科学出版社,北京,1989
    2 牛健植.长江上游暗针叶林生态系统优先流机理研究.北京林业大学研究生院,博士学位论文,2003.9
    3 王超.氮类污染在土壤中迁移转化规律试验研究[J].水科学进展,1997,8(2):176~182
    4 冯杰,郝振纯.水及溶质在有大孔隙的土壤中运移机制研究进展.河海大学学报,2002,30(2):63-70
    5 卢玉邦.土壤水分预测模型研究[J].土壤学报,1989,26(1):51~56
    6 史海滨,陈亚新.饱和-非饱和流溶质传输的数学模型与数值方法评价[J].水利学报,1993,8:49~55
    7 任理.有限解析法在求解非饱和土壤水流问题中的应用[J].水利学报,1990,10:55~61
    8 刘亚平,陈川.土壤非饱和带中的优先流[J].水科学进展,1996(3):85~89
    9 刘亚平,陈川.土壤非饱和带中的优先流[J].水科学进展,1996,7(1):85~89
    10 庄季屏.四十年来的中国土壤水分研究[J].土壤学报,1989,26(3):241~247
    11 朱学愚,謝春红等.非饱和流动问题的SUPG有限元素数值法[J].水利学报,1994,6:37~42
    12 张洪江,王玉杰,北原曜,等.长江三峡花岗岩坡面管流实验研究.北京林业大学学报,2000,22(5):53-57
    13 张洪江,王礼先.长江三峡花岗岩坡面土壤流失特性及其系统动力学仿真[M].北京:中国林业出版社
    14 张洪江,程云,史玉虎,等.长江三峡花岗岩坡面林地土管特性及其对管流的影响.长江流域资源与环境,2003,12(1):55-60
    15 张洪江,程云,史玉虎等.长江三峡花岗岩坡面管流产流特性研究.水土保持学报,2001,15(1):5-8
    16 张瑜芳,张蔚榛,等.排水农田中氮素转化运移和流失[M].武汉:中国地质大学出版社,1997.184P
    17 李韵珠,李保国.土壤溶质运移[M].北京:科学出版社,1998.312P
    18 杨大三,袁克侃,编著.鄂西三峡库区防护林研究.湖北科学技术出版社,武汉,1996.12
    19 杨金忠,叶自桐,等.野外非饱和土壤中溶质运移试验研究[J].水科学进 展,1993,4(4):245~252
    
    20 杨金忠,叶自桐.野外非饱和土壤水流运动速度的空间变异性及其对溶质运移的影响[J].水科学进展,1994,5(1):9~17
    21 肖文发,李建文,于长青,等编著.长江三峡库区陆生动植物生态.西南师范大学出版社,重庆,2000.7
    22 郝振纯,冯杰.水及溶质在大孔隙土壤中运移的实验研究进展.灌溉排水,2002,21(1):67-71
    23 倪余文,区自清.土壤优先水流及污染物优先迁移的研究进展.土壤与环境,2000,9(1):60-63
    24 秦耀东,任理,王济.土壤中大孔隙流研究进展与现状.水科学进展,2000,11(2):203-207
    25 秦耀东,胡克林.大孔隙对农田耕作层饱和导水率的影响[J].水科学进展,1998,9(2):107~111
    26 康绍忠.土壤水分动态的随机模拟研究[J].土壤学报,1990,27(1):17~24
    27 黄冠华,叶自桐等.一维非饱和溶质随机运移模型的谱分析[J].水利学报,1995,11:1~7
    28 黄冠华,沈荣开.非均质土壤中二维非饱和土壤水分运动的随机分析.水科学进展,1997,8(2):117~122
    29 程云,张洪江,史玉虎,等.长江三峡花岗岩坡面管流分布研究.北京林业大学学报,2001,23(5):19-22
    30 程云.长江三峡花岗岩坡面土管分布及管流特性研究.北京林业大学研究生院,硕士学位论文,2002.6
    31 程竹华,张佳宝.土壤中优势流现象研究进展.土壤,1998(6):315-318
    32 雷志栋,杨诗秀,等.土壤水动力学[M].北京:清华大学出版社,1988.276P
    33 雷志栋,胡和平,杨诗秀.土壤水研究进展与评述.水科学进展,1999,10(3):312-318
    34 小谷野多美枝,新藤静夫,地下侵食特性,役割,地形,13(3),p.239,1992
    35 井上久义,圃场土壤中大孔隙水·溶质移动果役割,农土论集 132,p.111-120,1987
    36 北原曜,Sidle R.C.,寺岛智己,中井裕一郎,人用饱和侧方流实验,103回日林论,p.589-591,1992b
    37 北原曜,中井裕一郎,一次谷流域河川流量流量关系,日林志,74(1),p49-54,1992c
    38 北原曜,森林土壤流特性,水文·水资源学会志,5(1),p.15-25,1992a
    
    39 北原曜.流大孔隙关研究史[J].水利科学,1996,39(6):80-1149
    40 Ajuha.L.R.RZWQM. Components dealing with water and chemical transport in soil matrix and macropores[C]. Internal Report US Dept of Agriculture-Agricultural Research Service. National Agr Water Quality Lab, Durant, OK, 1991
    41 Anderson S. H., Peyton R. L., Gantzer C. J., Evaluation of constructed and natural soil macropores using x-ray computed tomography, Geoderma, 46, p. 13-29, 1990
    42 Beven.K.J. Modeling preferential flow: A nuncerta infuture, in Preferential Flow[M]. Edited by TJGish, AShirmohammadi. American Society of Agricultural Engineers, StJoseph, Mich, 1991.1~11
    43 Booltink H. W. G., Field-scale distributed modeling of bypass flow in a heavily textured clay soil, J. Hydrology 163, p. 65-84, 199439. Aubertin G. M., Nature and extend of macropores in forest soils and their influence on subsurface water movement. U. S. D. A. Forest Service Research Paper, NE-192, 1971
    44 BooltinkHWG, HatanoR, et.al.. Measurement and simulation of bypass flow in a structured clay soil: A physical morphological approach[J]. Journal of Hydrology, 1993, 148: 149-168
    45 BrakensiekDL, RawlsWJ, LogsdonSE, EdwardsWM. Fractal description of macroporosity[J]. Soil Science Society of America Journal of Soil Science, 1992, 56: 1721-1723
    46 Bruggeman. A.C, SMostaghimi. Simulation of preferential flow and solute transport using an efficient finite element model[M]. In Preferential Flow, edited by TJGish, AShirmohammadi. American Society of Agricultural Engineers. StJoseph, Mich, 1991, 3: 244~255
    47 Cameira, M. R. L. Ahuja, R. M. Fernanolo, L. S. Pereira, Evaluating field measured soil hydrautic properties in water transport simulations using the RZWQM, Journal of Hydrology, 236(2000)78-90
    48 Chen.C, Thomas.D.M, Green.R.E, et.al.. Two-domaine stimation of hydraulic in macropore soils[J]. Soil Sci Soc Am J, 1993, (57): 680~686
    49 Chen. C, Wagenet. R.J. Simulation of water and chemicals in macropore soils, 2. application of linear filter theory[J]. JHydrol, 1992b, 130: 127~149
    50 Chen. C, Wagenet. R.J. Simulation of water and chemicals in macropore soils, 1.representation of the equivalent macropore influence and its effect on soil-water flow[J]. JHydrol, 1992a, 130: 105~126
    51 Corwin.D.L, Waggoner.B.L, Rhoades.J.D. A functional mode of solute transport that accounts for by pass[J]. J Env Qual, 1991, 20: 647
    52 Daniel Hillel. Environmental soil physics[M]. Academic Press, 1998. 188-190
    53 Edwards. W.M, Norton. L.D, Redmond. C.E. Characterizing macropores that affect in filtration into nontilled soil[J]. Soil Science Society of America Journal, 1988,52(2):483487
    
    54 Ehlers.W, Kopke.U, Hesse.F, et.al.. Penetration resistance and root growth of oatsin tilled andun tilled loose soil[J]. Soil Tillages, 1983, (3)2:261-275
    55 Flury.M, Fluhler.H. Susceptibity of soils to preferential flow of water: A field study [J]. Water Resoures, 1994,30:1945—1954
    56 Gautom, M. R. Watanabe, K. Saegiss, H. Runoff analysis in humid forest catchment with artificial neural network, Journal of Hydrology, 235(2000) 117-136
    57 Gerke.H.H, van Genuchten. M.T. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media[J].Water Resoures Research ,1993a,19(2):305~319
    58 Gerke.H.H, van Genuchten. M.T. Evaluation of a first-order water transfer term for variably saturated dual-porosity flow models [J]. Water Resoures Research, 1993b,29(4): 1225-1238
    59 Gerke.H.H, van Genuchten.M.T. Adual porosity model for simulating the preferential movement of water and solute sinstructured porousmedia.[J]. Water Resoures, 1993,29:305-319
    60 Germann R Preferential flow and the generation of runoff, 1.Boundary layer flow theory [J].Water Resoures, 1990,26:3055—3063
    61 Germann.P. F, Beven.K. Kine mafic wave approximation to infiltration to soils with sorbing macropores [J]. Water Resoures, 1985,21:990-996
    62 Germann.P. Preferential flow and generation of runoff, 1,boundary layer flow theory[J].Water Resoures Research, 1990,26:3055—3063
    63 Germann.P.F, BevenK. Water flow in soil macropores, I . An experimental approach [J].Soil Scince,1981,32:1-13
    64 Helling.C.S, Gish.T.J. Physical and chemical processes affecting preferential flow[A].In Preferential flow Proc National Symposium[C].TJGish,Shirmohammadi,eds.American Society of Agricultural Engineers,StJoseph, MI, 1991,77
    65 Hill. D. Environmental soil physics. Academic press, 1998,188-190
    66 Hillel.D.Application of Soil Physics.Academic Press, NewYork, 1980.312P
    67 Jarvis.N J, Bergstrom .L., PEDik. Modelling water and solute transport in macroporous soils, ,chloride break through under non-steady flow[J].JSoilSci,1991b,42:71—81
    68 Jarvis.N.J, Janssson..P.E., PEDik, et.al.. Modelling water and solute transport in macroporous soils, I,modeldes cription and sensitivity analysis[J].J Soil Sci,1991a,42:59~70
    69 Jurg Hosang. Modelling preferential flow of water in soils-a two phase approach for field conditions [J]. Geoderma, 1993,58:149—163
    70 Karvonen, T. Koivusalo H., Jauhiainen, M. Palko, J. Weppling, K. Ahydrological model for predicting runoff fome different land use, Journal of Hydrology, 217( 1999) 253-265
    
    71 Kitahara Hikaru.The study history between pipe flow and macropores[J].Japan.hydraulic science, 1996,227:81-114
    72 Kitahara,Hikaru.The property of pipe flow in forest stand[J]. Journal of Japan Soc.Hydrol.&WaterRes.,1992,5(l):15-25
    73 Landon, M., Delin, K. G. N., Komor, S. C. Regan, C. P. Comparison of the stable-isotopic composition of soil water collected from suction lysimeters, wick samplers, and cores in a sandy unsaturated zone, Journal of Hydrology, 224(1999)45-54
    74 Larsson, M. H. Jarvis, N. J. Evaluation of a dual-porosity model to predict field-scale solute transport in a macroporous soil, Journal of Hydrology, 215(1999)153-171
    75 Leaney.F.W, Smettsm.K.R.J, Chittleborough.D.J. Estimating the contribution of preferrntial flow to subsurfacw runoff from a hill slope using deuterium and dchloride [J]. J Hydrol, 1993,147:83-103
    76 Lukey, B. T. Sheffield, J. Bbathurst, J. C. Hiley, R.A. Mathys, N. Test of the SHETRAN technology for modelling the impact of reforestation on badlands runoff and sediment yield at Draix, France, Journal of Hydrology, 235(2000)44-62
    77 Montas .H.J, Eigel.J.D, Engel.B.A,et.al.. Deterministic modeling of solute transportion soils with preferential flow pathways, Part 1. model development [J]. American Society of Agricultureal Engineers, 1997,40(5): 1245—1256
    78 Nieber J. L., Warner G. S., Soil pipe contribution to steady subsurface storm flow, Hydrological Processes 5, p.329-344, 1991
    79 NieberJL,WarnerGS. Soil pipe contribution to steady subsurface storm flow[J]. Hydrological Processes, 1991,5:329-344
    80 Novak, S. M. Portal, J. M. Schiavon, M. Effects of soil type upon metolachlor losses in subsurface drainge, Chemosphere 42(2001)235-244
    81 Omoti.U, Wild. A. Use off luorescentdyes to mark the path ways of solute movement through soils under leaching condition, 2, fieldex-periment[J].Soil Science,128:98104
    82 Radulovich R., Solorzano E., Sollins P., Soil macropore size distribution from water breakthrough curves, Soil Sci. Soc. Amer. J. 53, p.556-559, 1989
    83 Rob F. A. Handriks, Klaas Oostindie, Pirn Hamminga, Simulation of bromide tracer and nitrogen transport in a cracked slay soil with the FLOCR/ANIMO model combination, Journal of Hydrology, 215(1999)94-115
    84 Shalit.G, Steenhuis.T.S. A simple mixing layer model predicting solute flow to drainage lines under preferential flow[J]. J Hydrol, 1996,183:139~149
    85 SidleRC, KitaharaHikaru,TerajimaT, NakaiY. Experimental studies on the effects of pipe flow on through flow partitioning[J]. Journal of Hydrology, 1995,165:207-219
    86 Silberstein, R. P. Sivapalan, M. Wyllie. A. On the validation of a coupled water and energy balance model at small catchment scales. Journal of Hydrology, 220(1999)149-168
    
    87 Sliberstein, R. P. Sivapalan, M. Wyllie, A. On the validation of a coupled water and energy balance model at small catchment scales, Journal of Hydrology, 220(1999) 149-168
    88 Stagnitti.F, Steenhuis.T.S., Parlange.J.Y, et.al.. Preferential solute and moisture transport in hill slopes[C].In Challenges for Sustainable Development Proc. International Hydrology and Water Resources Symposium. Institution of Engineers, Barton,Australia, 1991,919
    89 Steenhuis.T.S, Boll.J, Shalit.G, et.al.. Simple equations for predicting preferential flow solute concentration. [J]. J Environ Qual, 1994,23:1058—1064
    90 Steenhuis.T.S, Nijssen.B.M., F.Stagnitti, et.al.. Preferential solute movement in structured soils: Theory and application, in challenges for sustainable development proc[C].International Hydrology and Water Resources Symposium,Institution of Engineers, Barton, Australia, 199la,925
    91 Steenhuis.T.S, Parlange.J.Y, Andreini.M.S. An umerical model for preferential solute movement instructured soils[J].Geoderma, 1990,46:193—208
    92 Steenhuis.T.S, Parlange.J.Y. Preferential flow in structured and sandy soils, in Preferential Flow[M]. Edited by T.J.Gish, A Shirmohammadi, American Society of Agricultural Engineers. StJosephMich, 1991b. 12—21
    93 Steenhuis.T.S, Parlange.J.Y, Andrenini.M.S. A numerical model for preferential solute movement in stractured soils[J].Geoderma,1990,46:193—208
    94 Sten Bergstrom, Phil Graham L., On the scale problem in hydrological modelling, Journal of Hydrology 211(1999) 253-265
    95 Tsuyohi, Miyazaki. Preferential Flow[J]. Water Flow in Soils, 1992.134—143
    96 Van H. den Bosch, Ritsema, C. J. Boesten, J. T. I. Dekker, L. W. Hamminga, W. Simulation of water flow and bromide transport in a water repellent sandy soil using a one-dimensional convection-dispersion model, Journal of Hydrology, 215(1999)172-187
    97 VanGenuchten, FJLeig, LJlund.Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soil. Proceedings of the International Work shop on Indirection Method for Estimating the Hydraulic Properties of Unsaturated Soil [M].California,USA,1992.468P
    98 Vermeul.V.R, Istok.J.D, Flint.A.L, et.al.. An improved method for quantifying soil macroposity. Soil SciSocAmJ, 1993, 57:809-816
    99 VermeulVR,IstokJD,FlintAL,PikulJL.Animproved method for quantifying soil macroporosity[J].Soil Science Society of Ameri-caJournal,1993,57:809816
    100 Virginia A. Brown, Jeffrey J. McDonnell, Douglas A.Burns, et al. The role of event water, a repid shallow flow component, and catchment size in summer storm flow. Journal of Hydrology 217(1999) 171-190
    
    101 Wang.J.S.Y, T.N.Narasimhan. Hydrologic mechanisms governing fluid flow in apartially saturated, fractured, porous medium [J], Water Resources Reseach, 1991,21:1861 -1874
    102 Wang.J.S.Y. Flow and transport in fractured rocks[J].USNatl Rep Int Union Geod.Geophys. 1987—1990, Rev Geophys, 29 suppl, 1991,254—262
    103 Wendroth,O.Pohl, Koszinski, W. S. Rogasik, H. Ritsema, C. J. Nielsen, D. R. Spatio-temporal and covariance structures of soil water status in two Northeast-German field sites, Journal of Hydrology, 215(1999)38-58
    104 Workman.S.R,Skaggs.R.W.PREFLO:A water management model capable of simulating preferential flow[J].Trans,ASAE, 1990,33; 1939—1948

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700