典型黑土耕地土壤优先流特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以典型黑土耕地土壤为试验样地,采用双环入渗仪和染色示踪相结合的方法来探讨耕地土壤中优先流的环绕特征;和对土壤不同深度的土柱进行水分穿透试验来探讨耕地土壤中优先流的非平衡特征;以及刘hood入渗仪设置不同的压力水头,来测试染色示踪结合hood入渗仪的方法在田间是否是一种研究大孔隙流的有效方法。通过对染色宽度、横纵剖面染色百分比、田间最大染色深度、入渗速率、出流速率等指标的测定与分析,及对土壤染色图片的判读,系统认识典型黑土耕地土壤中的水分运移形式和分布特点,为黑土耕地土壤在农业管理和经营中如何提高水肥利用效率提供理论基础。
     研究结果表明:在0-15.0cm土层范围内,水分的运移以基质流为主;15.0-20.0cm范围内,有侧向入渗发生,染色宽度和染色百分比均在此层达到最大值,分别为25.6cm和20.73%。20.0-67.0cm范围内,水分的运移则以大孔隙流为主,优先路径主要是裂缝和大孔隙,其中,20.0-35.0cm范围内的大量裂缝,使优先流表现出明显的环绕特征;而在40.0~67.0cm范围内,优先路径的形成则以连通性良好的大孔隙为主。由于裂缝和大孔隙2种优先路径的存在,使水分在土壤中的运移速度增加了4.5倍,这不仅可能造成水分损失,而且可能加速农药迁移及造成地下水污染。
     在0~5.0cm,15.0~20.0cm,20.0~25.0cm,40.0~45.0cm的土壤中,尽管水分运移形式不同,但都存在某种不稳定的非平衡流。其中通过20.0~25.0cm,40.0~45.0cm深度范围内土柱的水分速率随时间的波动表明优先流的非平衡特征。且水分在这两层土壤中的入渗速率和出流速率之间,累积入渗量和出流量之间存在较大差值,这一差值是由于水分在经过这两层土壤中的优先路径时,有部分水分渗入到土壤基质中引起的,这种现象的存在有可能是导致非平衡特征出现的根本原因。
     在三个压力下(-5.0cm,-3.0cm和-1.Ocm)均发生大孔隙流,且在存较低的压力下(-5.0cm和-3.0cm)侧流更明显。不同压力下侧流程度之间达到显著性差异(p<0.05)。深度为40.0-74.3cm的土壤中具有发育良好的各种孔隙,有效大孔隙度达到0.007%。三个压力下,最大染色深度分别为74.3cm,60.7cm和64.7cm,在深度为14.0-28.0cm的土壤中染色宽度分别为45.9cm,45.0cm和52.1cm。-3.0cm的压力下,初始入渗速率达到最大值(7.6mm/min),但稳渗速率是最小值(2.4mm/min)。-5.0cm的压力下大孔隙表现出最好的连通性。在田间采用染色示踪结合hood入渗仪的方法能够有效研究大孔隙流。
Taking the cultivated soils in typical black soil region of Northeast China as test objects, by using dye tracer and double-ring infiltrometer techniques to research the surrounding characteristic; and by using breakthrough of water on the soil column from different depth to discuss the non-equilibrium characteristic of preferential flow; and testing the combining method of dye traces and hood infiltrometer on studying macropore flow. Through measuring and analyzing the dye stained width、dye coverage of soil transverse and longitudinal sections、the field maximum dye stained depth、infiltration rate、outflow rate and photograph interpretation, this paper aimed to approach the water flow movement pattern and distribution characteristics in typical black cultivated soils. The results may serve as theoretical basis for scientifically improving the water and fertilizer utilization efficiency during management and operation of agricultural soil.
     The results showed that:At soil depth 0~15.0cm, matrix flow was the main soil water flow movement pattern; at depth 15.0~20.0cm, lateral flow was observed, and the dye stained width and dye coverage reached their maximum, being 25.6cm and 20.73% respectively. At depth 20.0-67.0cm, the main soil water flow movement pattern was macropore flow, with cracks and macropores as the main preferential routes. The cracks at depth 20.0~35.0cm made the preferential flow have distinct surrounding characteristic and the macropores at depth 40.0~67.0cm were the main preferential routes. Due to the existence of the preferential routes of cracks and macropores, the migration velocity of water in soil increased by 4.5 times, which could not only cause water loss, but also accelerate the migration of pesticides to ground water.
     Although the differences among the water flow movement patterns, the non-equilibrium flow was appeared on the soil depth of 0~5.0cm、15.0~20.0cm、20.0~25.0cm、40.0~45.0cm. The fluctuation of rate that water flow through soil at depth of 20.0~25.0cm、40.0~45.0cm changed over time, which indicated the non-equilibrium characteristic of preferential flow, especially the bigger differential value between the infiltration rate and outflow rate, the cumulative infiltration and cumulative outflow of water flow through this two layers soil. This was because the part of water was entering into the soil matrix when the water flow through the preferential routes that existing in this two layers soil. It was the basic reason that caused the non-equilibrium characteristic to appear.
     The macropore flows initiated under three pressures heads of -5.0cm,-3.0cm and -1.0cm, and lower pressure (-5.0cm and -3.0cm) resulted in more lateral flow. Amount of lateral flow between different pressures was significant at 25cm depth (p<0.05). Soil of 40.0~74.3cm was less disturbed giving rise to good continuity with effective macro porosity of 0.007%. For the pressure heads of -5.0cm,-3.0cm and -1.0cm, the maximum depths of dye staining were 74.3cm,60.7cm and 64.7cm and the dye stained width were 45.9cm,45.0cm and 52.1cm at the depth of 14.0~28.0cm respectively. Soil under pressure head of -3.0cm had the biggest initial infiltration rate of 7.6mm/min but smallest steady infiltration rate of 2.4mm/min. Soil under pressure heads of -5.0cm had best connectivity of macropore paths. The combining method was a better method on studying macropore flow in field.
引文
[1]张之一.关于黑土分类和分布问题的探讨.黑龙江八一农垦大学学报,2005,17(1):5~8
    [2]范昊明,蔡强国,陈光,等.世界三大黑土区水土流失与防治比较分析.自然资源学报,2005,20(3):387~392
    [3]韩晓增,颜春起.中国东北农田土壤水分属性及调控.北京:科学出版社,2005:3~4
    [4]范建荣,潘庆宾.东北典型黑土区水土流失危害及防治措施.水土保持科技情报,2002,(5):36~38
    [5]李发鹏,李景玉,徐宗学.东北黑土区土壤退化及水土流失研究现状.水土保持研究,2006,13(3):51~54
    [6]王玉玺,解运杰,王萍.东北黑土区水土流失成因分析.水土保持科技情报,2002,(3):27~28
    [7]何艳芬,马超群.东北黑土资源极其农业可持续利用研究.干旱区资源与环境,2003,17(4):24~28
    [8]M.Flury, H.Fluhler, W.A.Jury, et al. Susceptibility of Soils to Preferential Flow of Water:A Field Study. Water Resource Research,1994,30(7):1945~1954
    [9]H.H.Liu, R.Zhang, G.S.Bodvarsson. An Active Region Model for Capturing Fractal Flow Patterns in Unsaturated Soils:Model Development. Journal of Contaminant Hydrology,2005, 80(1-2):18~30
    [10]区自清,贾良清,金海燕,等.大孔隙和优先水流及其对污染物在土壤中迁移行为的影响.土壤学报,1999,36(3):341~347
    [11]张洪江,程云,史玉虎,等.长江三峡花岗岩坡面管流产流特性研究.水土保持学报,2001,15(1):5-8
    [12]曹顺爱.稻田土壤优先流及对氮肥运移的影响研究.杭州:浙江大学硕士论文,2003:1-2
    [13]王焕之.稻田土壤水分优先流的发生、发展与模拟研究.杭州:浙江大学硕士论文,2002:3~4
    [14]程金花.长江三峡花岗岩区林地坡面优先流模型研究.北京:北京林业大学博士论文,2005:1-3
    [15]牛健植,余新晓.优先流问题研究及其科学意义.中国水土保持科学,2005,3(3):110~116
    [16]李文凤,张晓平,梁爱珍,等.不同耕作方式下黑土的渗透特性和优先流特征.应用生态学报,2008,19(7):1506~1510
    [17]柴亚凡.典型黑土入渗性能的研究.哈尔滨:东北林业大学硕士论文,2008:2~3
    [18]L.W.Dekker, C.J.Ritsema, O.Wendroth, et al. Moisture Distributions and Wetting Rates of Soils at Experimental Fields in the Netherlands, France, Sweden and Germany. Journal of Hydrology,1999,215(1-4):4~22
    [19]Z.Wang, J.Feyen, C.J.Ritsema. Susceptibility and Predictability of Conditions for Preferential Flow. Water Resources Research,1998,34(9):2169~2182
    [20]张洪江,王玉杰,北原曜,等.长江三峡花岗岩坡面管流实验研究.北京林业大学学报,2000,22(5):53~57
    [21]程金花,张洪江,史玉虎.三峡库区花岗岩林地土壤特性与“优先路径”的关系.中国水土保持科学,2005,3(1):97~101
    [22]K.Beven, P.Germann. Macropores and Water Flow in Soils. Water Resource Research, 1982,18(5):1311~1325
    [23]郭会荣.优先流影响下的入渗补给过程及溶质运移实验与模拟.武汉:中国地质大学博士论文,2008:1-3
    [24]刘亚平,陈川.土壤非饱和带中的优先流.水科学进展,1996,7(1):85~89
    [25]牛健植,余新晓,张志强.优先流研究现状及发展趋势.生态学报,2006,26(1):231-243
    [26]J.Bouma, L.W.Dekker, J. H. M.Wosten. A Case Study on Infiltration into Dry Clay Soil II. Physical Measurements. Geoderma,1978,20(1):41-51
    [27]J.Bouma, L.W.Dekker. A Case Study on Infiltration into Dry Clay Soil 1. Morphological Observations. Geoderma,1978,20(1):27~40.
    [28]M.S.Andreini, T.S.Steenhuis. Preferential Paths of Flow under Conventional and Conservation Tillage. Geoderma,1990,46(1-3):85~102
    [29]H.W.GBooltink, J.Bouma. Physical and Morphological Characterization of Bypass Flow in A Well-structured Clay Soil. Soil Science Society of America Journal,1991,55(5):1249~1254.
    [30]M.Ghodrati, W.A.Jury. A Field Study Using Dyes to Characterize Preferential Flow of Water. Soil Science Society of America Journal,1990,54(6):1558~1563
    [31]J.Boll, T.S.Steenhuis, J.S.Selker. Fiberglass Wicks for Sampling of Water and Solutes in the Vadose Zone. Soil Science Society of America Journal,1992,56(3):701~707
    [32]K.J.S.Kung. Preferential Flow in A Sandy Vadose Zone Soil:2. Mechanism and Implications. Geoderma,1990,46(1-3):59~71
    [33]牛健植,余新晓,张志强.贡嘎山暗针叶林生态系统基于KDW运动-弥散波模型的优先流研究.生态学报,2007,27(9):3541-3555
    [34]李伟莉,金昌杰,王安志,等.长白山主要类型森林土壤大孔隙数量与垂直分布规律.应用生态学报,2007,18(10):2179~2184
    [35]M.Lamande, V.Hallaire, P.Curmi, et al. Changes of Poremorphology, Infiltration and Earthworm Community in A Loamy Soil under Different Agricultural Management. Catena, 2003,54(3):637~649
    [36]G.V.Wilson, R.J.Luxmoore. Infiltration, Macroporosity, and Mesoporosity Distributions on Two Forested Watersheds. Soil Science Society of America Journal,1988,52(2):329~335
    [37]W.Bodhinayake, B.C.Si, K.Noborio. Determination of Hydraulic Properties in Sloping Landscapes from Tension and Double-ring Infiltrometers. Soil Science Society of America,2004,3(1):964~970
    [38]J.M.Wraith, B.S.Das. Monitoring Soil Water and Ionic Solute Distributions Using Time-domain Reflectometry. Soil and Tillage Research,1998,47(1-2):145~150
    [39]A.D.Ward, J.L.Hatfield, J.A.Lamb, et al. The Management Systems Evaluation Areas Program: Tillage and Water Quality Research. Soil and Tillage Research,1994,30(1):49~74
    [40]R.G.Kachanoski, E.Pringle, A. Ward. Field Measurements of Solute Travel Times Using Time Domain Reflectometry. Soil Science Society of America Journal,1992,56(1):47~52.
    [41]M.Vanclooster, D.Mallants, J.Diels, et al. Determining Local-scale Solute Transport Parameters Using Time Domain Reflectometry (TDR). Journal of Hydrology,1993,148(1-4):93~107
    [42]D.Mallants, M.Vanclooster, M.Meddahi, et al. Estimating Solute Transport in Undisturbed Soil Columns Using Time-domain Reflectometry. Journal of Contaminant Hydrology,1994,17(2):91~109
    [43]S.H. Anderson, R.L.Peyton, C.J.Gantzer. Evaluation of Constructed and Natural Soilmacro-poresusing X-ray Computed Tomography. Geoderma,1990,46(1-3):13~29
    [44]冯杰,郝振纯.CT扫描确定土壤大孔隙分布.水科学进展,2002,13(5):611-617
    [45]D.A.N.Posadas, A.Tannus, H.Panepucci, et al. Magnetic Resonance Imaging as A Non-invasive Technique for Investigating 3-D Preferential Flow Occurring within Stratified Soil Samples. Computers and Electronics in Agriculture,1996,14(4):255~267
    [46]S.Crestana, C.M.P.Vaz. Non-invasive Instrumentation Opportunities for Characterizing Soil Porous Systems. Soil and Tillage Research,1998,47(1-2):19~26
    [47]K.J.S.Kung, S.V.Donohue. Improved Solute-sampling Protocol in A Sandy Vadose Zone Using Ground-penetrating Radar. Soil Science Society of America Journal,1991,55(6):1543~1545
    [48]Z.Harari. Ground-penetrating Radar (GPR) for Imaging Stratigraphic Features and Groundwater in Sand Dunes. Journal of applied geophysics,1996,36(1):43~52
    [49]牛健植,余新晓,张志强.贡嘎山暗针叶林生态系统土壤水分运移特征分析.北京林业大学学报,2008,30(增刊.2):240~245
    [50]M.Flury. Experimental Evidence of Transport of Pesticides through Field Soils:A Review. Journal of Environmental Quality,1996,25(1):25~45
    [51]J.C.Van Dam, J.M.H.Hendrickx, H.C.Van Ommen, et al. Water and Solute Movement in A Coarse-textured Water-repellent Field Soil. Journal of Hydrology,1990,120(1):359~379
    [52]J.Skopp. Comment on "Micro-, Meso-, and Macroporosity of Soil". Soil Science Society of America Journal,1981,45(1):1246
    [53]倪余文,区自清.土壤优先水流及污染物优先迁移的研究进展.土壤与环境,2000,9(1):60~63
    [54]倪余文,区自清,应佩峰.土壤优先水流及溶质优先迁移的研究.应用生态学报,2001,12(1):103~107
    [55]P.R.Jφrgensen, L.D.McKay, N.H.Spliid. Evaluation of Chloride and Pesticide Transport in A Fractured Clayey Till Using Large Undisturbed Columns and Numerical Modeling. Water Resources Research,1998,34(4):539~553
    [56]D.Wildenschild, K.H.Jensen, K. Villholth, et al. A Laboratory Analysis of the Effect of Macropores on Solute Transport. Ground Water,1994,32(3):381~389
    [57]GH.de Rooij, F.Stagnitti. Spatial Variability of Solute Leaching:Experimental Validation of A Quantitative Parameterization. Soil Science Society of America Journal,2000,64(3):499~504
    [58]L.W.Dekker, C.J.Ritsema. Variation in Water Content and Wetting Patterns in Dutch Water Repellent Peaty Clay and Clayey Peat Soils. Catena,1996a,28(1-2):89~105
    [59]T.J.Gish, D.Gimenez, WJ.Rawls. Impact of Roots on Groundwater Quality. Plant and Soil, 1998,200(1):47~54
    [60]W.M.Edwards, M.J.Shipitalo, L.B.Owens, et al. Factors Affecting Preferential Flow of Water and Atrazine through Earthworm Burrows under Continuous no-till Corn. Journal of environmental quality,1993,22(3):453~457
    [61]W.M.Edwards, M.J.Shipitalo, W.A.Dick, et al. Rainfall Intensity Affects Transport of Water and Chemicals through Macropores in No-till Soil. Soil Science Society of America Journal,1992,56(1):52~58.
    [62]程金花,张洪江,史玉虎,等.长江三峡花岗岩区林地优先流影响因子分析.水土保持学报,2006,20(5):28~33
    [63]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述.水科学进展,1999,10(3):312~318
    [64]何艳芬,马超群.东北黑土资源极其农业可持续利用研究.干旱区资源与环境,2003,17(4):24~28
    [65]李伟莉,金昌杰,王安志,等.土壤大孔隙流研究进展.应用生态学报,2007,18(4):888~894
    [66]K.Schwarzel, J.Punzel. Hood Infiltrometer-A New Type of Tension Infiltrometer. Soil Science Society of America Journal,2007,71(5):1438~1447
    [67]M.Flury, H.Fliihler. Brilliant Blue FCF as A Dye Tracer for Solute Transport Studies-A Toxicological Overview. Journal of Environmental Quality,1994,23(5):1108~1112
    [68]M.Flury, H.Fluhler. Tracer Characteristics of Brilliant Blue FCF. Soil Science Society of America Journal,1995,59(1):22~27
    [69]C.Morris, S.J.Mooney, S.D.Young. Sorption and Desorption Characteristics of the Dye Tracer, Brilliant Blue FCF, in Sandy and Clay Soils. Geoderma,2008,146(3-4):434-438
    [70]J.G.Kim, C.M.Chon, J.S.Lee. Effect of Structure and Texture on Infiltration Flow Pattern during Flood Irrigation. Environmental Geology,2004,46(6-7):962~969
    [71]F.Sheng, K.Wang, R.D.Zhang, et al. Characterizing Soil Preferential Flow Using Iodine-starch Staining Experiments and the Active Region Model. Journal of Hydrology,2009,367(1-2):115~124
    [72]吴华山,陈效民,邱琳,等.染色法测定、计算机解译农田土壤中大孔隙数量的研究.水土保持学报,2006,20(3):145~149
    [73]E.E.Cey, D.L. Rudolph. Field Study of Macropore Fow Processes Using Tension Infiltration of A Dye Tracer in Partially Saturated Soils. Hydrological Processes,2009,23(12):1768~1779
    [74]刘艳华,张和生,马娟娟.利用遥感图像处理软件(ERDAS IMAGINE)对土壤孔隙率进行测定分析.太原理工大学学报,2006,37(1):55~58
    [75]I.Forrer, A.Papritz, R.Kassteel, et al. Quantifying Dye Tracers in Soil Profiles by Image Processing. European Journal of Soil Science,2000,51(2):313~322
    [76]R.J.Luxmoore. Micro-, Meso-, and Macroporosity of Soil. Soil Science Society of America Journal,1981,45(1):671~672
    [77]U.Buczko, O.Bens, R.F.Hiittl. Tillage Effects on Hydraulic Properties and Macroporosity in Silty and Sandy Soils. Soil Science Society of America Journal,2006,70(6):1998~2007
    [78]N.Jarvis, A.Etana. F.Stagnitti. Water Repellency, Near-saturated Infiltration and Preferential Solute Transport in A Macroporous Clay Soil. Geoderma,2008,143(3-4):223~230
    [79]牛健植,余新晓,张志强.贡嘎山暗针叶林生态系统溶质优先运移分析.北京林业大学学报,2008,30(5):246~254
    [80]王康,张仁铎,王富庆,等.土壤水分运动空间变异性尺度效应的染色示踪入渗试验研究.水科学进展,2007,18(2):158~163
    [81]程竹华,张佳宝,徐绍辉.黄淮海平原三种土壤中优势流现象的试验研究.土壤学报,1999,36(2):154~161
    [82]李伟莉,金昌杰,王安志,等.长白山北坡两种类型森林土壤的大孔隙特征.应用生态学报,2007,18(6):1213~1218
    [83]H.Rosqvist, G.Destouni. Solute Transport through Preferential Pathways in Municipal Solid Waste. Journal of Contaminant Hydrology,2000,46(1-2):39~60
    [84]田昆,胡慧蓉,陆梅,等.土壤利用方式改变对滇东南岩溶区土壤特性的影响.土壤通报,2007,38(2):225~228
    [85]S.E.Allaire, S.Roulier, A.J.Cessna. Quantifying Preferential Fow in Soils:A Review of Different Techniques. Hydrological Processes,2009,378(1-2):179~204
    [86]N.J.Jarvis, P.B.Leeds-Harrison, J.M.Dosser. The Use of Tension Infiltrometers to Assess Routes and Rates of Infiltration in A Clay Soil. European Journal of Soil Science,1987,38(1):633-640
    [87]K.W.Watson, R.J.Luxmoore. Estimating Macroporosity in A Forest Watershed by Use of A Tension Infiltrometer. Soil Science Society of America Journal,1986,50(3):578~582
    [88]G.H.Dunn, R.E.Phillips. Macroporosity of A Well-drained Soil under No-till and Conventional Tillage. Soil Science Society of America Journal,1991,55(3):817~823
    [89]D.J.Timlin, L.R.Ahuja, M.D.Ankeny. Comparison of Three Field Methods to Characterize Apparent Macropore Conductivity. Soil Science Society of America Journal,1994,58(2):278~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700