高压断路器同步关合技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足电力网供需变化与功率平衡问题要求,电网各部分需投入或切除电力设备。但是,这些操作可能引起暂态响应并在系统内传播,不仅对断路器本身与用户设备产生危害,还会引起继电保护装置误动,甚至危及电力系统稳定,这在电能质量要求越来越严格的背景下需引起重视。
     同步关合技术是指断路器动、静触头在控制系统的控制下,在系统电压波形的指定相角处关合,使得空载变压器、电容器和空载线路等电力设备在对自身和系统冲击最小的情况下投入电力系统的一种智能控制技术。同步关合技术从原理上能有效地削弱断路器合闸时所产生的涌流和过电压,该技术优于合闸电阻、串联电抗器等传统方法,但其实际动作的准确性与可靠性一直是争论的焦点。因此,本文对同步关合技术做了一些研究。
     首先,对高压断路器的同步关合技术的核心算法即关合时间的预测算法做了一些研究,由于同步关合时间受到环境温度,控制电压、预击穿特性等外界因素的影响,所以本文根据已有10kV真空永磁断路器和145kVSF6弹簧断路器的影响因素跟关合时间关系的数据,利用MATLAB软件中的神经网络工具箱和遗传算法工具箱,研究一种遗传优化BP神经网络算法实现关合时间的预测。
     其次,由于背靠背换流站滤波器关合时产生的涌流是滤波器损坏的主要原因,所以本文利用电磁暂态仿真(ATP/EMTP)软件仿真分析某220kV背靠背换流站滤波器断路器采用同步关合技术对限制涌流的作用,以及研究涌流限制标准对同步关合技术预测时间的误差的要求。并对合闸过电压做了一些分析。
     最后,在上一章的基础上,分析预击穿对同步关合技术的影响,利用ANSYS软件计算某252kV断路器的不同间距的击穿电压与额定条件下的某合闸行程曲线结合,得出击穿电压随时间变化的曲线,与触头两端系统电压相比较,得出该条件下关合分散区间和目标关合点以及过电压的值。
     通过上述研究,为同步关合技术提供一些理论依据。
In order to meet the requirements of balance between supply and demand changing in power grid, electrical equipments should be put on or cut off in some parts of the power grid. But these operations may leading to transient response and spread in the system, not only destroy the circuit breakers themselves and the other equipments, but also cause relay protection devices miss-operation, or even endanger the power system stability, which get more and more attentions in the background of the power quality requirements increasingly stringent.
     Synchronous closing technology is an intelligent control technology that the dynamic and static contacts of circuit breaker closing at the specified phase angle of the system voltage waveform under the control of the control system, in order to make no-load transformers, capacitors and load lines switch on the power system when impacts to electrical equipments and system are the minimum. The circuit breaker with synchronous closing technology can effectively reduce the inrush current and over-voltage when closing from the principle. The technology is better than closing resistor, series reactor and other traditional methods. But the actual accuracy and reliability of movement has been a bone of contention. Therefore, this article did some researches about synchronous closing technology of high voltage circuit breaker.
     First, This paper did some research about the closing time prediction algorithm which is the core algorithm of synchronous closing technology of high-voltage circuit breaker. Duo to the factors of pre-arcing characteristics, ambient temperature, control voltage and so on affect closing time, therefore, base on the established data of relation between closing time and effect factors of a 10 kV permanent magnet vacuum circuit breaker and a 145kV SF6 spring circuit breaker, and using the neural network and the genetic algorithm toolbox in MATLAB software, this paper studied a genetic optimizing BP neural network algorithms to forecast closing time.
     Second, the inrush current is the reason that the filters on back to back converter station was damaged. Therefore, using electromagnetic transient simulation(ATP/EMTP) software, this paper analyzed the effect to limiting closing inrush current when circuit breaker with synchronous technology of the filters. Base on the inrush limit standard, this paper researched the error requirements of predicting closing time. And analyzed capacitor closing over-voltage.
     Finally, based on the previous chapter, this paper calculated the breakdown voltages of a 252kV circuit breaker by ANSYS software. Combining the different breakdown voltages at gap distances of circuit breaker with the closing travel curve under the rated condition, the relation curve between breakdown voltage and time was obtained. And comparing the system voltage at both ends of the contacts, closing deviation and closing objective point and the over-voltage value was obtained.
     Through above researches, this paper provided some theories about synchronous closing technology of high voltage circuit breaker.
引文
[1]林莘著.永磁机构与真空断路器.北京:机械工业出版社,2002:117.
    [2]苏方春.同步关合技术及其在并联电容器组投切中的应用.高压电器,1997:38-40.
    [3] Edgar Dullni, Vacuum Circuit Breaker with Permanent Magnetic Actuator and Electronic Control, in Proceedings CIGRE, 1999: 150-156.
    [4] Cereda C, Synchronous MV Circuit -breaker with Magnetic and Electronic Control,ABB Review,1999(6):13-21.
    [5] CIGRE Task Force 13.00.1 of Study Committee 13. Controlled Switching a State-of-the-art Survey ( Part1/Part2) . Electra No.162/164. Paris: CIGRE ,1996:111-114.
    [6] CIGRE Working Group 13.07. Controlled Switching of HVAC Circuit Breakers: Guide for Application Lines, Reactors, Capacitors, Transformers (1st Part/2nd Part). Electra No 183/185. Paris: CIGRE, 1999:54-56.
    [7] CIGRE Working Group A3.07. Controlled Switching of HVAC Circuit Breakers: Benefits & Economic Aspects . Paris: CIGRE 2004:120-124.
    [8] Berneryd S, Andersen E, Lindahl S. Synchronous Energizing of Shunt Reactors and Shunt Capacitors // Paris: CIGRE,1988:13-22.
    [9]段雄英,邹积岩,顾丕冀等.相控真空断路器同步关合电容器组的研究.高压电器,2003,39(4):28-30.
    [10]丁富华,邹积岩,方春恩等.相控真空断路器投切空载变压器的应用研究.中国电机工程学报, 2005,25(3):89-93.
    [11]丁富华,段雄英,邹积岩.基于同步真空断路器的智能无功补偿装置.中国电机工程学报, 2005, 25(6):30-35.
    [12]丁富华,邹积岩,段雄英等.采用数字信号处理器的永磁机构同步控制系统.电网技术,2005, 29(19):39-42.
    [13]宝鸡同步关合电器有限公司.M1-40.5/25真空永磁相控合闸装置,http://biaoji.com/index.html.2007-7-1.
    [14]何善庆.采用断路器同步合闸装置解决大朝山500 kV系统内过电压问题.高压电器,2003,39(5):78-80.
    [15]程战斌.法国阿尔斯通公司的Point-on-Wave Controller.西北电力技术,2004,32(6):42-45.
    [16]方春恩,王佳颖,邹积岩.并联电容器组同步关合最佳目标相位的确定.电工技术学报,2006:24-26.
    [17]游一民,陈德桂.真空断路器关合速度与预击穿对同步关合的影响研究.电工技术学报,2004:85-89.
    [18] H.kohyama et al. Development of 550kV and 362kV Synchronous Switching Gas Circuit Breakers.IEEE2001:597-602.
    [19] I.DALZIEL, Controlled Operation in the High-pressure System, CIGRE SC-131996: 119-129.
    [20]丁富华,邹积岩,段雄英.相控开关的最佳投切相位研究,高压电器.2005:408-411.
    [21] CIGRE Task Force 13.00.1 of Study Committee 13. Controlled Switching-a State-of-the-art Survey ( Partl/Part2) .Electra No.162/164[R]. Paris: CIGRE 1996.
    [22] G.Moraw, Point on Wave Controlled Switching of High Voltage Circuit Breaker, CIGRE 1988 Paper 13.02.
    [23] K.Horinouchi, Synchronous Controlled Switching by Vacuum Circuit Breaker (VCB) with Electromagnetic Operation Mechanism, IEEE, 2004:529-534.
    [24]陈振生.断路器选相合分闸技术.华通技术,2003:9-14.
    [25]方春恩.同步真空开关的相关理论及其应用研究:(博士学位论文)大连理工大学,2004.
    [26]李利,徐建源,同步关合控制的研究.中国电工技术学会第五届全国智能化电器及应用研讨会,2001:200-203.
    [27] A.H.KHAN.同步操作在输电系统中的使用.国际人电网会议开关设备学术委员会(CIGRESC-13)1996年会论文集131-139.
    [28]林莘.现代高压电器技术.北京:机械工业出版社,2002:125.
    [29] E.Andersen, Synchronous energizing of shunt reactor and shunt capacitors, CIGRE 13-12, 1988:1-7.
    [30] A.H.KHAN,同步操作在输电系统中的使用,国际人电网会议开关设备学术委员会(CIGRESC-13)1996年会论文集:131~139。
    [31]袁曾任.人工神经元网络及其应用.北京:清华大学出版社,1999:45-46.
    [32]李利,徐建源.配永磁机构真空断路器测控系统及其同步关合技术的研究:(硕士学位论文)沈阳工业大学,2002.
    [33]刘媛媛,练继建.基于遗传算法的BP神经网络模型对汛期潼关高程的计算.泥沙研究,2007(6):26-31.
    [34]汤文生,合烨,陈小安.基于BP神经网络和遗传算法的硫化工艺参数优化.橡胶工业,2008(55):105-108.
    [35]周正武,丁同梅. Matlab遗传算法优化工具箱(GAOT)的研究与应用.机械研究与应用,2006 (19):69-71.
    [36]广树伊藤.基于选相控制技术试验标准的断路器特性评估,赵宁[译],三菱电机技报,2006(80):6-9.
    [37] H.Ito, et al. Factory and Field Testing of Controlled Switching Systems and Their Service Experience, CIGRE, A3-114(2004).
    [38] H.Tsutado, T.Hirai, et al. Development of Synchronous Switching Controller for Gas Circuit breaker.2002IEEE:807-812.
    [39]高晓旺,周勇,康鲁豫.基于PSCAD/EMTDC的背靠背高压直流输电系统仿真.电力系统自动化,2007(2):69-70.
    [40]赵蜿君.高压直流输电工程技术.北京:中国电力出版社,2004:127-128.
    [41]刘刚.新型高压直流输电系统滤波器原理及方式研究:(博士学位论文).湖南:湖南大学,2007:13-14.
    [42]赵芜萍.直流输电系统的谐波危害及抑制措施.广西电力工程,2000,7(2):8-13.
    [43]周登洪.天一广直流徐电工程并联电容界组运行情况介析.电力电容器,2003:8-13.
    [44]肖遥.广州换流站交流滤波器的设计问题及最佳配置方案探讨.电力设备,2004,5(11):14-17.
    [45]杨金根,马为民.灵宝换流站交流滤波器性能研究.高电压技术,2004(11):60-62.
    [46]顾丹珍,艾芊,陈陈.基于ATP-EMTP的大型电力系统暂态稳定仿真.电力系统自动化,2006(10):54-56.
    [47]王海棠.基于ATP-EMTP的PT铁磁谐振与消谐措施研究.变压器,2008(3):24-28.
    [48]韩彦华,石少敏,王森.投切并联电容器过电压研究.电力电容器,2007(1):5-8.
    [49]程浩忠.电力电容器对电网谐波电流的放大作用.电力电容器,1996(1):12-15.
    [50]河野照哉,宅间董.电场数值计算法.尹克宁[译].北京:高等教育出版社,1985:145-155.
    [51]黎斌著.SF6高压电器设计.机械工业出版社,2007:55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700