混合免疫智能优化算法研究及其在复杂系统中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工免疫系统模拟生物免疫系统进化行为的智能特征,具有自组织、自学习能力,具有解决复杂优化问题的优点。现代工业系统变得越来越复杂,而复杂系统的建模、优化与控制需要高性能的算法来辅助,依靠单一模式的优化方法难以满足系统性能要求。混合免疫智能处理技术为这类问题提供了有效的途径,同时也是人工免疫系统研究的发展方向。
     基于免疫系统的机理,深入挖掘生物免疫系统中蕴含的智能学习机制并结合其它智能处理方法的优点,本文研究了几类混合免疫智能优化算法及其相关应用,从算法理论、算法设计、性能测试、比较分析到实际应用展开一系列工作。在理论上研究了四类混合免疫智能优化方法,并通过实验仿真验证了算法的有效性;在应用上研究了混沌系统自抗扰优化控制与永磁同步电机系统多参数辨识这两类典型的复杂系统,并获得了良好的控制效果和辨识结果。概括如下:
     1.引入生态学中的协同进化Lotka-Volterra思想到人工免疫算法中,考虑了群体间的竞争合作关系,构造了一种竞争合作型协同进化免疫克隆选择模型。各子种群内部通过局部最优免疫优势、克隆扩增和动态高频变异等相关算子操作。运用信息熵理论改善种群多样性,所有子种群共享经过免疫杂交提升操作的高层记忆库,通过迁移操作实现整个种群信息共享与协同进化。
     2.为了扩大解的搜索空间,将粒子群体分为捕食与探索两种模态,建立一种免疫双态粒子群优化方法。对处于捕食状态的精英粒子采用精英学习策略;对处于探索状态的微粒采用探索策略;对微粒个体极值进行免疫克隆优化;对不活跃个体进行免疫受体编辑。算法兼顾了抑制早熟停滞现象和避免冗余迭代。
     3.融合免疫系统优化原理、协同进化思想及粒子群的邻域信息,构建免疫协同粒子群进化模型。算法采用并行计算框架,整个群体由记忆种群与若干个普通种群构成。普通微粒种群内部通过精英粒子保留、免疫网络及柯西变异等混合策略共同演化新个体;微粒个体极值采用自适应小波学习以加快收敛速度;免疫克隆选择算法对记忆库进行精细搜索;信息交互机制促进信息共享有效降低了算法的冗余迭代。扩大了算法解空间搜索范围,提高了对复杂问题的优化能力。
     4.利用克隆选择算法与蚁群算法各自的优势,构造了一种免疫克隆选择与蚁群自适应融合优化模型。引入混沌扰动增加抗体种群的多样性,通过克隆扩增、免疫基因等相关算子的操作增强了克隆选择算法搜索的效率;自适应控制参数实现了克隆选择与蚁群优化的有机结合及局部最优搜索策略的应用,克服了抗体种群“早熟”问题,提高了求解精度。
     5.应用免疫双态粒子群算法对自抗扰控制器进行优化设计。其一,将免疫双态粒子群算法应用于混沌系统自抗扰优化控制中,对自抗扰控制器参数进行优化,应用于混沌系统控制,构建一种基于免疫双态粒子群算法的混沌系统自抗扰优化控制器;其二,利用自抗扰控制器(ADRC)与小脑神经网络(CMAC)各自的优势并构造ADRC-CMAC并行控制器,利用免疫双态粒子群算法对ADRC-CMAC控制器参数进行自学习寻优,构造出一种自抗扰神经网络并行优化控制方法。针对离散混沌系统研究结果表明,以上两种控制方法具有更好的控制性能和较强的鲁棒性。
     6.构造了一种基于免疫协同粒子群进化算法的永磁同步电机多参数辨识模型方法。永磁同步电机参数辨识结果表明该方法不需要知道电机设计参数先验知识,能够有效地辨识电机电阻,d-q轴电感与转子磁链。同时,当电机参数发生变化时,该方法依然能够有效地追踪该参数变化值。
Artificial immune system (AIS) has the advantages of solving complex optimization problems, which simulating the behavior of intelligent characteristic such as self-organization, self-learning ability in biological immune system. Modern industrial system is becoming more and more complex while the system modeling, optimization and control of complex system should need high performance algorithms to assist. It is difficult to meet the performance requirements only rely on a single optimization method. Hybrid immune intelligent processing technology not only can provide the effective way for this kind of problem but also is a direction of the development artificial immune system.
     Inspired by the mechanism of immune system, deeply mining the evolutionary learning mechanisms contained in biological immune system and combining with other intelligent processing method advantages, several hybrid immune intelligent optimization algorithms and its related application was studied in this dissertations. A series of work of this paper was launched from algorithm theory, algorithm design, and performance testing, comparative analysis to the practical application. On the theoretical side, four types of hybrid immune intelligent optimization methods were studied and the performances of the proposed algorithm were confirmed through the simulation experiments. On the aspect of application, the hybrid immune intelligent optimization methods were introduced to provide new practical technology for complex engineering problems such as chaotic system's active disturbance rejection optimization control and permanent magnet synchronous motor system Multi parameter identification as well as good control performance and satisfactory identification are obtained. The main work can be summarized as follows:
     1. Considering the competition and cooperation between populations, the thought of Lotka-Volterra in ecology was introduced into the artificial immune algorithm, a competitive cooperative coevolutionary immune-dominant clone selection algorithm (CCCICA) was proposed. The affinity maturation of antibody is enhanced by the local optimization of the immune-dominance, the clone expansion and the adaptive dynamic hyper-hybrid mutation and other factors in the species. The population diversity is evaluated and adjusted by the locus information entropy. All subpopulations share one memory which consists of the dominant representatives of each evolved subpopulation. The high level memory is optimized by using the immune genetic crossover operator. Several best individuals are migrated to subpopulations from the top excellent population based on the predefined condition. Through those operations, information is shared among populations for co-evolution.
     2. In order to expand the search space of solution, the swarms group is divided into Gather State and Explore State during the search, a novel immune binary-state particle swarm optimization algorithm (IBPSO) is proposed. Elitist learning strategy is applied to the elitist particle to help the jump out of local optimal regions when the search is identified to be in a gather state. This paper propose a concept of explore strategy to encourage particle in a explore state to escape from the local territory. They exhibit a wide range exploration. Moreover, in order to increase the diversity of the population and improve the search capabilities of PSO algorithm, the mechanism of clonal selection and the mechanism of receptor edition are introduced into this algorithm.premature stagnation phenomenon is restrained and redundancy iteration is avoided.
     3. Integrated with the principle of immune system optimization, the thought of co-evolutionary and particle swarm neighborhood information, an immune coevolutionary particle swarm optimization algorithm model was proposed. In the proposed algorithm, the whole population is divided into two kinds of subpopulations consisting of one elite subpopulation and several normal subpopulations. The best individual of each normal subpopulation will be memorized into the elite subpopulation, during the evolution process. A hybrid method, which creates new individuals by using three different operators, is presented to ensure the diversity of all the subpopulations. Furthermore, a simple adaptive wavelet learning operator is utilized for accelerating the convergence speed of the pbest particles. The improved immune clonal selection operator is employed for optimizing the elite subpopulation while the migration scheme is employed for the information exchange between elite subpopulation and normal subpopulations. The ability of complex problem optimization is improved through this operation.
     4. A hybrid algorithm integrating the clone selection algorithm with the ant colony algorithm by adaptive fusion (ACALA) based on local optimization search strategy is proposed. In order to increase the diversity of the antibody and improve the search capabilities of ant algorithm, a mechanism of chaotic disturbance is introduced into this algorithm. The operation of clone expansion, immune gene, etc is adopted to enhance the variety of antibody and affinity maturation. The adaptive control parameter is used to achieve the purpose of integrating the clone selection algorithm with the ant colony algorithm organically. Simultaneously, the proposed hybrid algorithm can prevent premature convergence effectively by taking advantage of local optimization search strategy.
     5.The Immune Binary-State Particle Swarm Optimization Algorithm (IBPSO) is used to optimize the parameters of Active Disturbance Rejection Control.First, we apply the Immune Binary-State Particle Swarm Optimization Algorithm (IBPSO) which possesses the performance of strong global searching ability and fast real-time to optimize the parameters of Active Disturbance Rejection Control. The presented method has been successfully applied to control chaotic system. Furthermore Active Disturbance Rejection Control based on Immune Binary-State Particle Swarm Optimization Algorithm for the chaotic system is constructed. Secondly, Immune Binary-State Particle Swarm Optimization Algorithm (IBPSO) strategy integrated with Active Disturbance Rejection Control and cerebellar model articulation controller (CMAC) combined control is designed for chaotic systems. The ADRC-CMAC is comprised of a cerebellar model articulation controller (CMAC) and ADRC controller. Immune binary-state particle swarm Algorithm is used to online tune the Parameters of the ADRC-CMAC. According to results of discrete chaotic system show that the presented two control method has better control performance and strong robustness.
     6.A novel Parameter identification approach to PMSM based on Immune Co-evolution Particle Swarm Optimization algorithm (ICPSO) is proposed which using the advantage of ICPSO with large space and fast parallel search capability.Finally, the proposed method is further verified by its application in multi-parameter estimation of permanent magnet synchronous machines, which shows that its performance is much better than other PSOs in simultaneously estimating the machine d-q-axis inductances, stator winding resistance and rotor flux linkage. In addition, it is also effective tracking the varied Parameter.
引文
[1]Min Gui,Anil Pahwa, Sanjoy Das. Analysis of Animal-Related Outages in Overhead Distribution Systems with Wavelet Decomposition and Immune Systems-Based Neural Networks. IEEE Transactions on Power Systems,2009, 24(4):1765-1771.
    [2]Muhammad Rahmat Widyanto, Benyamin Kusumoputro, Hajime Nobuhara, etal. A Fuzzy-Similarity-Based Self-Organized Network Inspired by Immune Algorithm for Three-Mixture-Fragrance Recognition. IEEE Transactions on Industrial Electronics,2006,53(1):313-321
    [3]Cai KaiYuan, Lei Zhang. Fuzzy Reasoning as a Control Problem. IEEE Transactions on Fuzzy Systems,2008,16(3):600-614.
    [4]Licheng Jiao, Lei Wang. A Novel Genetic Algorithm Based on Immunity. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans, 2000,30(3):552-561
    [5]Ashish Ahuja, Sanjoy Das, Anil Pahwa. An AIS-ACO Hybrid Approach for Multi-ObjectiveDistribution System Reconfiguration. IEEE Transactions on Power Systems,2007,22(3):1101-1112
    [6]Marco Dorigo, Gianni Di Caro. Ant Algorithms forDiscrete Optimization. Artificial Life,1999,5(3):137-172.
    [7]Hong-Wei Ge, Liang Sun, Yan-Chun Liang, etal. An Effective PSO and AIS-Based Hybrid Intelligent Algorithm for Job-Shop Scheduling. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans, 2008,38(2):358-368.
    [8]焦李成,杜海峰,刘芳,等.免疫优化计算-学习与识别.北京:科学出版社,2007.
    [9]J erne N K. Towards a netwo rk theory of the immune system. A nnual Immuno logy,1974,125C:373-389
    [10]Dipankar Dasgupta, Advances in artificial immune systems. IEEE Computational Intelligence Magazine,2006,1(4):40-49
    [11]De Castro L N, Von Zuben F J. Learning and optimizationusing the clonal selection principle. IEEE Trans on Evolutionary Computation,2002,6(1): 239-251.
    [12]戚玉涛,刘芳,焦李成.基于分布式人工免疫算法的数值优化.电子学报,2009,37(7):1554-1561
    [13]薛文涛,吴晓蓓,徐志良.用于多峰函数优化的免疫粒子群网络算法.系统工程与电子技术,2009,31(3):705-709
    [14]戚玉涛,刘芳,焦李成.基于信息素模因的免疫克隆选择函数优化.计算机研究与发展,2008,45(6):991-997
    [15]余航,焦李成,公茂果,等.基于正交试验设计的克隆选择函数优化.软件学报,2010,21(5):950-967
    [16]戚玉涛,焦李成,刘芳.基于并行人工免疫算法的大规模TSP问题求解.电子学报,2008,36(8):1552-1558
    [17]Anna_SSwiecicka, Franciszek Seredynski, Albert Y. Zomaya. Multiprocessor Scheduling and Reschedulingwith Use of Cellular Automata and Artificial Immune System Support.IEEE Transactions on Parallel and Distributed Systems,2006,17(3):253-262
    [18]Licheng Jiao, Yangyang Li, Maoguo Gong, etal. Quantum-Inspired Immune Clonal Algorithm for Global Optimization. IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics,2008,38(5):1234-1433
    [19]Felipe Campel, Frederico G. Guimaraes, Hajime Igarashi. Multiobjective Optimization Using Compromise Programming and an Immune Algorithm. IEEE Transactions on Magnetics,2008,44(6):982-985
    [20]Aldo Canova, Fabio Freschi, Michele Tartaglia. Multiobjective Optimization of Parallel Cable Layout. IEEE Transactions on Magnetics,2007,43(10): 3914-3920
    [21]Xiong Hao, Sun Cai-xin. Artificial Immune Network Classification Algorithm for Fault Diagnosis of Power Transformer. IEEE Transactions on Power Delivery,2007,22(2):930-935
    [22]Slavisa Sarafijanovic, Jean-Yves Le Boudec. An Artificial Immune System Approach WithSecondary Response for Misbehavior Detection in Mobile ad hoc Networks. IEEE Transactions on Neural Networks,2005,16(5):1076-1087
    [23]Rogerio de Lemos, Jon Timmis, Modupe Ayara, etal. Immune-Inspired Adaptable Error Detectionfor Automated Teller Machines. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2007, 37(5):873-886
    [24]Forrest S, Perelson A S, Allen L, etal. Self-nonselfdiscrimination in a computer. In:Proceedings of IEEE Computer Society Symposium on Research in Security and Pri-vacy. Oakland, USA:IEEE Press,1994:202-212
    [25]Paul K. Harmer, Paul D. Williams, Gregg H. etal. An Artificial Immune System Architecture forComputer Security Applications. IEEE Trans on Evolutionary Computation,2002,6(3):252-290
    [26]Luther K, Bye R, Alpcan T,etal. A cooperative AIS framework for intrusion detection.In:Proceedings of IEEE International Conference on Communications.Washington D.C.,USA:IEEE Press,2007:1409-1416
    [27]徐雪松,诸静.基于免疫识别原理和RFNN的复杂系统辨识.模式识别与人工智能,2003,12(4):397-401
    [28]葛宏伟,李小琳,梁艳春,等.基于免疫粒子群优化的一种动态递归神经网络辨识与控制非线性系统.吉林大学学报(工学版),2008,7(4):858-864
    [29]付华,乔德浩,池继辉.一种非线性系统参数辨识的耦合算法研究.西安交通大学学报,2011,45(2):49-53.
    [30]林金星,沈炯,李益国.基于免疫原理的径向基函数网络在线学习算法及其在热工过程大范围工况建模中的应用.中国电机工程学报,2006,5(9):14-19
    [31]Cheng-Hung Chen, Cheng-Jian Lin, Chin-Teng Lin. Using an Efficient Immune Symbiotic Evolution Learning for Compensatory Neuro-Fuzzy Controller. IEEE Transactions on fuzzy systems,2009,17(3):668-682
    [32]Amanda M. Whitbrook, Uwe Aickelin, etal. Idiotypic Immune Networks in Mobile-Robot Control. IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics,2007,37(6):1581-1598
    [33]Henry Y. K. Lau, Vicky W. K. Wong. An Immunity-Based Distributed Multiagent-Control Framework. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans,2006,36(1):91-108
    [34]Ying-Xin Liao, Jin-Hua She, Min Wu. Integrated Hybrid-PSO and Fuzzy-NN DecouplingControl for Temperature of Reheating Furnace.IEEE Transactions on IndustrialElectronics,2009,56(7):2704-2714
    [35]江全元,邹振宇,曹一家.基于免疫遗传算法的多机电力系统UPFC控制器.电工技术学报,2006,21(7):60-68
    [36]G.-C. Liao. Application of an immune algorithm to the shortterm unit commitment problem in power system operation. IEE Proc.-Gener. Transm. Distrib,2006,153(3):308-319
    [37]李玉龙,宗伟,占鲜艳,等.基于抗体浓度调节新定义下的免疫遗传算法在电压无功优化中的应用.电工技术学报,2008,23(2):115-119.
    [38]Alex A. Freitas, Jon Timmis. Revisiting the Foundations of Artificial Immune Systems for Data Mining.IEEE Trans on Evolutionary Computation,2007, 11(4):521-540
    [39]Tien Dung Do, Siu Cheung Hui, A. C. M. Fong, etal. Associative Classification WithArtificial Immune System. IEEE Transactions on Evolutionary Computation,2009,13(2):217-238
    [40]Seralozs,en,Salih Gunes,Sadk Kara, etal. Use of Kernel Functions in Artificial ImmuneSystems for the Nonlinear Classification Problems. IEEE transactions on information technology in biomedicine,2009,13(4):621-628
    [41]Vasileios K. Karakasis, Andreas Stafylopatis. Efficient Evolution of Accurate ClassificationRules Using a Combination of Gene ExpressionProgramming and Clonal Selection. IEEE Transactions on Evolutionary Computation,2008,12(6): 662-678.
    [42]Yanfei Zhong, Liangpei Zhang, Jianya Gong, etal. A Supervised Artificial Immune Classifier forRemote-Sensing Imagery.IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):3957-3966
    [43]马文萍,焦李成,张向荣,等.基于量子克隆优化的SAR图像分类.电子学报,2007,35(12):2241-2246
    [44]郭建民,刘石,姜凡.模糊免疫网络算法在数字图像火焰监测中的应用.中国电机工程学报,2007,27(2):1-6
    [45]王孙安,郭子龙.混沌免疫优化组合算法.控制与决策,2006,21(2):205-211
    [46]Famer J D, Packard N H, Perelson A S. The Immune System,Adaptation,and Machine Learning.Physic,1986,22(D):187-204
    [47]林学颜,张玲.现代细胞与分子免疫学.北京:科学出版社,1999,3-50
    [48]史轶蘩.协和内分泌和代谢学.北京:科学出版社,1999,6-108
    [49]Gong MG, Du H F, Jiao L C.Optimal approximation of linear systems by artificial immune response.Science in China (Series F-Information Sciences), 2006,49(1):63-79
    [50]Jerne N K.To wards a Network Theory of the Immune System. Annual Immunology,1974,125(C):373-389
    [51]Perelson A S. Immune Network Theory. Immunological review,1986,(10):5-3
    [52]Famer J D, Packard N H, Perelson A S. The Immune System, Adaptation and Machine Learning.Physic,1986,22(D):187-204
    [53]De Castro L N, Zuben F J V. Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation,2002, 6(1):239-251.
    [54]Kim J,Bentley P.Towards an Artificial Immune System for NetworkIntrusion Detection:An Investigation of Dynamic Clonal Selection,In Proceedings of 2002CongressonEvolutionarycomputation.Honolulu:IEEE press,2002:1015-1020
    [55]Wolfam S.Approaches to complexity engineering.Phisyca D,1986,22:385-399
    [56]靳蕃.神经网络与神经计算机原理应用.成都:西南交通大学出版社,1991,4-130.
    [57]莫宏伟.人工免疫系统原理及其应用.哈尔滨:哈尔滨工业大学出版社,2002,5-165.
    [58]肖人彬,曹鹏林,刘勇.工程免疫计算.北京:科学出版社,2007,5-128.
    [59]莫宏伟,左兴权,毕晓君.人工免疫系统研究进展.智能系统学报,2009,4(1):21-29
    [60]D. H. Wolpert, W. G. Macready. No free lunch theorems for optimization. IEEE Trans. Evol. Comput.,1997,1(1):67-82.
    [61]陈曦,谭冠政,江斌.基于免疫遗传算法的移动机器人实时最优路径规划.中南大学学报(自然科学版),2008,39(3):577-584
    [62]杨东勇,陈晋音.基于多种群遗传算法的检测器生成算法研究.自动化学报,2009,35(4):425-432
    [63]葛宏伟,梁艳春.基于隐马尔可夫模型和免疫粒子群优化的多序列比对算法.计算机研究与发展,2006,43(8):1330-1336
    [64]陶新民,徐晶,杨立标.改进的多种群协同进化粒子群优化算法.控制与决策,2009,24(9):1406-1411
    [65]Lu Hong, Zhi-Cheng Ji, Cheng-Long Gong. Study on Immune PSO Hybrid Optimization Algorithm, Chinese Conference on Pattern Recognition,2009. CCPR 2009, Nanjing,china:IEEE press,2009:1-4
    [66]彭春华.基于免疫BPSO算法与拓扑可观性的PMU最优配置.电工技术学报,2008,23(6):119-124
    [67]丛琳,焦李成,沙宇恒.正交免疫克隆粒子群多目标优化算法.电子与信息学报,2008,30(10):2320-2324
    [68]刘丽,须文波,吴小俊.基于全局粒子群的协作型人工免疫网络优化算法.模式识别与人工智能,2009,22(4):653-660
    [69]李中华,张雨浓,谭洪舟,等.一类具有精英学习能力的增强型人工免疫网络优化算法.控制理论与应用,2009,26(3):283-290
    [70]Ling Q, Yi X C, Jian L L,etal.DiversityGuaranteed Ant Colony Algorithm Based on Immune Strategy. In Proceedings of the First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS'06).Hanzhou, china:IEEE Press,2006:217-223
    [71]Potter MA, de Jong KA. A cooperative coevolutionary approach tofunction optimization.In proceedingsof the 3rd Parallel ProblemSolving from Nature, Berlin:Springer-Verlag,1994,249-257.
    [72]夏虎,庄健,王立忠,等.一种考虑环境作用的协同免疫遗传算法.西安交通大学学报,2009,43(11):80-88
    [73]王磊,刘小勇.协同人工免疫计算模型的研究.电子学报,2009,37(8):1739-1745
    [74]吴秋逸,李阳阳,焦李成.量子协同免疫算法用于SAT问题的求解.系统工程与电子技术,2009,31(6):1441-1446
    [75]Luiz Lenarth Vermaas, Leonardo M. Honorio, Muriel Freire, Daniele Barbosa. Learning Fuzzy Systems by a Co-Evolutionary Artificial-Immune-Based Algorithm.In Proceedings of the 8th International Workshop on Fuzzy Logic and Applications, Palermo, Italy, Springer,2009:312-219
    [76]武彦斌,彭苏萍.基于混沌免疫算法和遥感影像的土地利用分类.农业工程学报,2007,23(6):154-160
    [77]张海英,韩贵金,潘永湘.混沌免疫进化算法及其在函数优化中的应用.模式识别与人工智能,2007,20(2):225-232
    [78]何宏,钱锋.基于免疫网络调节机理的混沌超变异免疫算法.系统仿真学报,2008,20(11):2810-2817
    [79]杨海东,鄂加强.自适应变尺度混沌免疫优化算法及其应用.控制理论与应用,2009,26(10):1069-1074
    [80]阳阳,焦李成.求解SAT问题的量子免疫克隆算法.计算机学报,2007,30(2):176-183
    [81]高洪元,刁鸣,赵忠凯.基于免疫克隆量子算法的多用户检测器.电子与信息学报,2008,30(7):1567-1571
    [82]陶新民,陈万海,郭黎利.一种新的基于模糊聚类和免疫原理的入侵监测模型.电子学报,2006,34(7):1329-1331
    [83]何宏,钱锋.基于模糊自适应免疫算法的非线性系统模型参数估计.控制理论与应用,2009,26(5):481-486
    [84]王辉,王科俊,于立君,等.基于模糊思想生成最有效检测器集的变阈值免疫算法.系统仿真学报,2008,20(17):4596-4601
    [85]宋晓琳,于德介,殷智宏.采用免疫算法优化设计汽车主动悬架的模糊控制器. 系统仿真学报,2006,18(9):2634-263
    [86]史婷娜,张典林,夏长亮,等.基于遗传整定的永磁交流伺服系统模糊免疫PID控制器.电工技术学报,2008,23(7):45-50
    [87]丁永生,任立红.一种新颖的模糊自调整免疫反馈控制系统.控制与决策,2000,15(4):443-447
    [88]曹先彬,刘克胜,王煦法.基于免疫进化规划的多层前馈网络设计.软件学报,1999,10(11):1180-1184
    [89]刘志远,吕剑虹,陈来九.新型RBF神经网络及在热工过程建模中的应用.中国电机工程学报,2002,22(9):118-122
    [90]王磊,焦李成,刘芳,等.免疫进化子波网络及其学习算法.电子学报,2001,29(12A):1878-1885
    [91]左兴权,李士勇.采用免疫进化算法优化设计径向基函数模糊神经网络控制器.控制理论与应用,2004,21(4):521-525
    [92]侯家利,朱梅阶,彭宏.模块化免疫神经网络的模型研究.电子学报,2005,33(8):1502-1505
    [93]侯胜利,毕宏,毕志蓉,王威.一种基于神经网络的免疫识别故障检测模型.系统仿真学报,2009,21(7):1887-1891
    [94]缑水平,焦李成,田小林.基于免疫克隆聚类协同神经网络的图像识别.电子与信息学报,2008,30(2):263-266
    [95]李伟,郝建红,祁兵.一种利用CPRNG实现的混沌同步加密通信方案.物理学报,2008,57(3):1398-1402
    [96]徐淑奖,王继志.一类改进的混沌迭代加密算法.物理学报,2008,57(1):37-41.
    [97]杨吉云,廖晓峰,肖迪,等.对一种基于logistic映射的分组加密机制的分析和改进.通信学报,2008,29(12):86-91.
    [98]Lipo Wang, Wen Liu, Haixiang Shi.Noisy Chaotic Neural Networks With ariableThresholds for the Frequency AssignmentProblem in Satellite Communications. IEEE Transactions on Systems, Man, and Cybernetics—Part C:Applications and Reviews,2008,38(2):209-216
    [99]Jovic,B, Unsworth, C.P. Fast synchronisation of chaotic maps for secure chaotic communications. Electronics Letters,2010,46(1):49-50
    [100]Pisarchik, A.N., Ruiz-Oliveras, F.R.. Optical Chaotic Communication Using Generalized and Complete Synchronization. IEEE Journal of Quantum Electronics,2010,46(3):279-284
    [101]陈菊芳,程丽,刘颖.延迟变量反馈法控制离散混沌系统的电路实验.物理学报,2003,52(1):18-24.
    [102]李亚,张正明,陶志杰.一个超混沌六阶蔡氏电路及其硬件实现.物理学报,2009,58(1):6818-6822
    [103]宁新宝,卞春华,王俊,等.心脏电活动过程的非线性分析.科学通报,2006,51(7):765-771
    [104]E. Ott, C. Grebogi, J. Yorke.Controlling chaos, Phys. Rev. Lett.,1990,64(11): 1196-1199.
    [105]王永生,孙瑾,王昌金,等.变参数混沌时间序列的神经网络预测研究.物理学报,2008,57(10):6121-6129
    [106]Jianquan Lu, Jinde Cao, Daniel W. C. Ho. Adaptive Stabilization and Synchronization for Chaotic Lur'e Systems with Time-Varying Delay. IEEE Transactions on circuits and systems—i:regular papers,2008,55(5):1347-1356.
    [107]Alexander L. Fradkov, Boris Andrievsky, Robin J. Evans. Adaptive Observer-Based Synchronization of ChaoticSystems with First-Order Coder in the Presence of Information Constraints. IEEE Transactions on circuits and systems—i:regular papers,2008,55(6):1685-1694
    [108]H. K. Lam, Wing-Kuen Ling, Herbert Ho-Ching Iu, etal. Synchronization of Chaotic Systems Using Time-Delayed Fuzzy State-Feedback Control. IEEE Transactions on circuits and systems-i:regular papers,2008,55(3):893-903
    [109]王兴元,孟娟.基于Takagi-Sugeno模糊模型的超混沌系统自适应投影同步及参数辨识.物理学报,2009,58(6):3780-3786
    [110]王东风,韩璞.基于粒子群优化的混沌系统比例!积分!微分控制.物理学报,2006:56(4)1644-1649
    [111]刘涵,刘丁.基于支持向量机的一类混沌系统自适应逆控制.控制理论与应用,2007,24(5):761-765
    [112]Jingqing Han. From PID to Active Disturbance Rejection Control.IEEE Transactions on industrial electronics,2009,56(3):900-906
    [113]韩京清.自抗扰控制技术,北京:国防工业出版社,2008
    [114]M. Ooshima, A. Chiba, A. Rahman, T. Fukao.Animproved control method of buried-type IPMbearingless motors considering magnetic saturation and magnetic pull variation. IEEE Transactions on Energy Conversion,2004,19(3): 569-575;
    [115]M. A. Rahman, D. M. Vilathgamuwa, M. N. Uddin, etal.Nonlinear control of interior permanent magnet synchronous motor. IEEETrans. Industry Applications,2003,(39)2:408-416.
    [116]Rashed M., Macconnell P.F.A., Stronach A.F., etal. Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation. IEEE Transactions on Industrial Electronics,2007,54(3):1664-1675.
    [117]Rahman K. M., Hiti S.. Identification of machine parameters of a synchronous motor. IEEE Transactions on Industry Applications,2005,41(2):557-565.
    [118]Khatounian F., Moreau S., Monmasson E., etal. Simultaneous Identification of the Initial Rotor Position and Electrical Parameters of a PMSM for a Haptic Interface. Proceedings of 12th International Power Electronics and Motion Control Conference, Portoroz:IEEE press,2006:276-281.
    [119]Piippo A., Hinkkanen M., Luomi J.. Adaptation of Motor Parameters in Sensorless PMSM Drives. IEEE Transactions on Industry Applications,2009, 45(1):203-212.
    [120]Morimoto S., Sanada M., Yakeda Y.. Mechanical sensorless drives of IPMSM with online parameter identification. IEEE Transactions on Industry Applications,2006,42(5):1241-1248.
    [121]Senjyu T., Kuwae Y., Urasaki N., Uezato K.. Accurate parameter measurement for high speed permanent magnet. Proceedings of IEEE Power Electronics Specialists Conference, Vancouver, BC:IEEE Press,2001(2):772-777.
    [122]Reigosa D., Briz F., Garcia P., Degner M.W.. Magnet temperature estimation in surface PM machines using high frequency signal injection. IEEE Transactions on Industry Applications,2010,46(4):1468-1475.
    [123]Liu K., Zhu Z. Q., Zhang Q., etal. Influence of inverter nonlinearity on parameter estimation in permanent magnet synchronous machines. In Proceedings of International Conference on Electrical Machines, Rome, Italy: IPCSIT,2010:1-5.
    [124]Underwood S., Husain I.. On-line parameter estimation and adaptive control of permanent magnet synchronous machines. IEEE Transactions on Industrial Electronics,2010,57(7):2435-2443.
    [125]Liu K., Zhang Q., Chen J.T., Zhu Z.Q., Zhang J., Shen A.W.. Online multiparameter estimation ofnonsalient-pole PM synchronous machines with temperature variation tracking. IEEE Transactions on Industrial Electronics, 2011,58(5):1776-1788
    [126]刘侃,章兢.基于自适应线性元件神经网络的表面式永磁同步电机参数在线辨识.中国电机工程学报,2010,30(30):68-73.
    [127]龚固丰,章兢,何昭晖,等.混合编码免疫算法在船舶载重计量的应用.控制理论与应用,2009,26(3):349-352.
    [128]Potter MA, DE Jong KA. A cooperative coevolutionary approach to function optimization. In Proceedings of the 3rd Parallel Problem Solving from Nature. Berlin:Springer-Verlag,1994:249-257.
    [129]宋丹,傅明.基于多种群的自适应免疫进化计算.控制与决策,2005,20(11):1251-1256.
    [130]曹先彬,罗文坚,王煦法.基于生物种群竞争模型的协同进化.软件学报,2001,12(4):556-562.
    [131]尚玉昌,蔡晓明.普通生态学.北京:北京大学出版社,1996.
    [132]Chi-keong Goh, Kay chen Tan. A competitive-cooperative coevolutionary paradigm for dynamic multi objective optimization. IEEE Transactions on Evolutionary Computation,2009,13(1):103-127.
    [133]Michalewicz Z, Fogel D. How to Solve It:Modern Heuristics.Berlin, Germany: Springer-Verlag,2000.
    [134]ARAS N, ALTINEL I K, OOMMEN BJA. Kohonen-like decomposition method for the euclidean traveling salesman problem-KNIES DECOMPOSE. IEEE Transactions on Neural Networks,2003,14(1):869-890.
    [135]VIEIRA F C, NETO A D D. An efficient approach to the traveling salesman problem using self-organizing maps. International Journalof Neural Systems, 2003,13(2):59-66.
    [136]张军英,周斌.基于泛化竞争和局部渗透机制的自组织网TSP问题求解方法.计算机学报,2008,31(2):220-227.
    [137]朱文兴,傅清祥.一个基于填充函数变换的对称TSP问题的局部搜索算法.计算机学报,2002,25(7):701-707.
    [138]ALICE R MALISIA, HAMID R. Tizhoosh applying oppositionbased ideas to the ant colony system. In Proceedings of IEEE Swarm Intelligence Symposium (SIS2007). Hawaii, USA:IEEE Press,2007:182-189.
    [139]EBERHART R, KENNEDY J A. A new optimizer using particle swarmtheory. In Proceeding of International Symposium on Micromachine and Human Science. Nagoya, Japan:IEEE Press,1995:39-43.
    [140]HO S Y, LIN H S, LIAUH W H, et al. OPSO:Orthogonal particle swarm optimization and its application to task assignment problems. IEEE Transactions on Systems, Man, and Cybernetics, Part A:System and Humans, 2008,38(2):288-298.
    [141]C. F. Juang.A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst., Man, Cybern. B,Cybern, 2004,34(2):997-1006.
    [142]A. A. E. Ahmed, L. T. Germano, Z. C. Antonio.A hybrid particle swarm optimization applied to loss power minimization. IEEE Trans.Power Syst,2005, 20(2):859-866.
    [143]S.H.Ling, H.H.C.Iu; K.Y. Chan,etal. Hybrid Particle Swarm Optimization With Wavelet Mutation and Its Industrial Applications. IEEE Trans. Syst., Man, Cybern. B,Cybern.,2008,38(3):743-763.
    [144]Y. Shi, R. C. Eberhart.A modified particle swarm optimizer, In Proc.IEEE World Congr. Comput. Intell., Anchorage, AK:IEEE Press,1998:69-73.
    [145]Y. Shi, R. C. Eberhart.Particle swarm optimization with fuzzy adaptive inertia weight, In Proc.Workshop Particle Swarm Optimization, Indianapolis, IN:IEEE Press,2001:101-106.
    [146]Z.H.Zhan, J. Zhang, Y. Li,etal. Adaptive Particle Swarm Optimization," IEEE Trans. Syst., Man, Cybern. B, Cybern.,2009,39(6):1362-1381.
    [147]J. J. Liang, A. K. Qin, P. N. Suganthan, etal. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput.,2006,10(3):281-295.
    [148]H. Wu.J.P Geng, R.H. Jin,J.Z. Qiu, etal. An Improved Comprehensive Learning Particle Swarm Optimization and Its Application to the Semiautomatic Design of Antennas. IEEE Trans. Antennas and Propagation.,2009,57(10):3018-3028.
    [149]王瑜,李斌,袁博.混合SQP的基于完全学习的粒子群优化算法在电力系统中经济分配问题的应用.中国科学:信息科学,2010,40(3):403-411.
    [150]J. Kennedy,R. Mendes.Population structure and particle swarm performance. In Proc. IEEE Congr. Evol. Comput., Honolulu, HI:IEEE Press, 2002:1671-1676.
    [151]J. Kennedy, R. Mendes.Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,2006,36(4):515-519.
    [152]HO S L, SHI Y Y, GUANG Z N, et al. A particle swarm optimizationbased method for multiobjective design optimizations. IEEE Transactions on Magnetics,2005,41(5):1756-1759.
    [153]任子武,伞冶.实数遗传算法的改进及性能研究.电子学报,2007,35(2):270-271.
    [154]李宏,唐焕文,郭崇慧.一类进化策略的收敛性分析.运筹学学报,1999,3(4):79-83.
    [155]郭崇慧,唐焕文.演化策略的全局收敛性.计算数学,2001,23(1):105-110.
    [156]A. A. E. Ahmed, L. T. Germano, and Z. C. Antonio.A hybrid particleswarm optimization applied to loss power minimization. IEEE Trans. Power Syst., 2005,20(2):859-866.
    [157]张梅凤,邵诚.多峰函数优化的生境人工鱼群算法.控制理论与应用,2008,25(4):773-776.
    [158]F. Van den Bergh a, A. P. Engelbrecht.A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput.,2004,8(3):225-239.
    [159]G.G. Yen, W.F. Leong. Dynamic Multiple Swarms in Multiobjective ParticleSwarm Optimization. IEEE Trans. Syst. Man Cybern. Part A-Syst. Hum.,2009,39(4):890-911.
    [160]B. Niu, Y. Zhu, X. He.Multi-population cooperative particle swarm optimization,. in Proc. Eur. Conf. Artif. Life, Canterbury, U.K., IEEE Press,2005:874-883.
    [161]高芳,崔刚,吴智博.求解复杂优化问题的双层多种群粒子群优化算法.高技术通讯,2009,19(5):519-524
    [162]王建丽,夏桂梅,王希云.一种基于协同进化的随机粒子群算法.太原科技大学学报,2010,31(3):185-188
    [163]李丹,高立群,王珂.基于动态多种群粒子群支持向量机的短期负荷预测.计算机科学,2008,35(7):133-136
    [164]赵波,郭创新,张鹏翔,等.基于分布式协同粒子群优化算法的电力系统无功优化,中国电机工程学报,2005,25(21):1-7.
    [165]张勇,巩敦卫,张婉秋.一种基于单纯形法的改进粒子群优化算法及其收敛性分析.自动化学报,2009,35(3):289-298
    [166]J. J. Liang, P. N. Suganthan, K. Deb. Novel composition test functions for numerical global optimization. In Proc. IEEE Swarm Intell.Symp., Pasadena, CA:IEEE Press,2005:68-75.
    [167]Marco Dorigo, Gianni Di Caro. Ant Algorithms for Discrete Optimization. Artificial Life,1999,5 (3):137-172.
    [168]Stutzle, T.and Hoos, H. H. MAX-MIN ant system. Future Generation Computer Systems,2000,16(8):889-914.
    [169]戚玉涛,刘芳,焦李成.求解TSP问题免疫算法的动态疫苗策略.西安电子科技大学学报,2008,5(1):37-42
    [170]王磊,潘进,焦李成.免疫算法.电子学报,2000,28(7):74-78
    [171]段海滨蚁群算法原理及其应用.北京:科学出版社,2006,45-96
    [172]Alice R. Malisia, Hamid R. Tizhoosh Applying Opposition-Based Ideas to the Ant Colony System In: proceedings of IEEE Swarm Intelligence Symposium(SIS2007), Hawaii,USA:IEEE Press,2007:182-189.
    [173]甄子洋,王志胜,王道波.基于信息融合最优估计的非线性离散系统预测控制.自动化学报,2008,34(3):331-336.
    [174]Peter Shih, Brian C. Kaul, Sarangapani Jagannathan,etal. Reinforcement-Learning-Based output-FeedbackControl of Nonstrict Nonlinear Discrete-TimeSystems With Application to Engine Emission Control.IEEE Transactions on Systems, Man, and Cybernetics—Part B: ybernetics,2009,39(5):1162-1178.
    [175]任海鹏,刘丁.六辊UC轧机轧制过程混沌的轨迹跟踪控制.控制理论与应用,2002,19(6):897-900.
    [176]张文革,韩京清.一类混沌系统的状态观测与控制.控制与决策,2000,15(3)301-304
    [177]邵立伟,廖晓钟,张宇河.基于时间尺度的感应电机自抗扰控制器的参数整定.控制理论与应用,2008:25(2):205-209
    [178]史永丽,侯朝桢,苏海滨.基于粒子群优化算法的自抗扰控制器设计.系统仿真学报,2008,20(2):433-436
    [179]辛菁,刘丁,杨延西,等.基于自适应免疫整定的机器人无标定自抗扰视觉伺服控制.控制理论与应用,2007:24(4):546-552
    [180]Albus J S. A New Approach to Manipulator Control,the Cerebellar Model Articulation Controller (CMAC). Transactions of the ASME Journal of Dynamic System Measurementand Control,1975,97(3):220-227
    [181]Chih-Min Lin, Te-Yu Chen. Self-Organizing CMAC Control for a Class of MIMOUncertain Nonlinear Systems. IEEE Transactions on neural networks,2009,20(9):1377-1383.
    [182]刘金琨.先进PID控制MATLAB仿真.北京:电子工业出版社,2007
    [183]温淑焕.Henon混沌系统的自适应预测函数控制快速算法.物理学报,2009,58(8):5209-52133
    [184]侯忠生,王卫红,金尚泰.一类非线性离散系统自适应准滑模控制.控制理论与应用,2009,26(5):505-509.
    [185]Ramakrishnan R, Islam R, Islam M, etal. Real time estimation of parameters for controlling and monitoring permanent magnet synchronous motors.In Proceedings of IEEE International Electric Machines and Drives Conference, Miami, USA:IEEE Press,2009:1194-1199
    [186]S. Bolognani, L. Tubiana, M. Zigliotto. Extended Kalman filter tuning in sensorless PMSM drives. IEEE Trans. on Industry Applications,2003,39(6): 1741-1747
    [187]T. Liu, M. Elbuluk, I. Husain. Sensorless adaptive neuralnetwork control of permanent magnet synchronous motors.In Proceedings of International Conference on Electric Machines and Drives, Seattle, WA,USA:IEEE Press, 1999:287-289
    [188]Rashed M, Macconnell P F A, Stronach A F, etal. Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation. IEEE Transaction on Industrial Application,2007,54(3):1664-1675
    [189]Kan Liu, Qiao Zhang, Zi-Qiang Zhu, etal. Comparison of Two Novel MRAS Based Strategies forldentifying Parameters in Permanent MagnetSynchronous Motors.International Journal of Automation and Computing,2010,7(4): 516-524
    [190]K.M. Rahman, S. Hiti. Identification of machine parameters of a synchronousmotor. IEEE Trans. on Industry Applications,2005,41(2): 557-565.
    [191]吴茂林,黄声华.永磁同步电机非线性参数辨识.电工技术学报,2009,24(8):65-68
    [192]Li Liu, Wenxin Liu, David A. Cartes.Permanent Magnet Synchronous Motor Parameter Identification using Particle SwarmOptimization. International Journal of Computational Intelligence Research.2008,4(2):211-218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700