短程反硝化除磷动力学模型及工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的生物脱氮除磷技术因其处理成本低等优点而得到广泛应用,但仍存在许多不足之处,如脱氮除磷过程中存在着的矛盾,如基质竞争和泥龄不同等等。反硝化聚磷菌(DPB)具有同步除磷脱氮的特殊功能,在厌氧条件下,反硝化聚磷菌通过分解胞内多聚磷酸盐,合成胞内物质聚羟基烷酸(PHA),储存在微生物体内;在缺氧条件下,反硝化聚磷菌利用胞内物质—PHA,以硝酸盐氮作为电子受体,在缺氧环境下同时进行除磷脱氮。与传统的生物除磷脱氮工艺相比,反硝化聚磷菌能够同步实现脱氮除磷,实现了“一碳两用”的目标,可以节约碳源用量;此外,缺氧吸磷减少了曝气量,节省能源,减少了排泥量。
     本论文对短程反硝化除磷的机理进行了探讨和研究,对影响短程反硝化除磷的各种因素进行了分析因素等,结合活性污泥动力学模型,提出了短程反硝化除磷释磷、吸磷的动力学模型,并进行了短程反硝化除磷的动力学实验研究。
     论文根据短程反硝化除磷的特性,结合序批式生物反应器的优点,结合短程硝化、反硝化聚磷理论和内源呼吸等理论,发明了以短程反硝化除磷菌为优势的新工艺条件—单泥系统短程反硝化除磷工艺。进行了短程反硝化除磷的实验研究,分别驯化培养出高效的短程硝化菌和短程反硝化聚磷菌,接种于单泥系统,成功完成了系统的启动和优化运行,取得了较好的脱氮除磷效果,并研究了COD浓度、氨氮浓度、pH等因素对系统的影响。主要研究成果如下:
     (1)建立短程反硝化厌氧释磷模型:
     厌氧段释磷与碳源浓度及微生物体内的聚磷含P聚量有关(聚磷为上一个过程中缺氧吸收的TP量),与碳源浓度C的关系符合统一动力学模型。
     (2)建立短程反硝化缺氧吸磷模型:
     缺氧吸磷速度和厌氧阶段吸收的碳源量、微生物浓度、混合液中磷浓度有关,吸磷速度与磷浓度P的关系符合统一动力学模型。
     (3)研究结果表明微生物的释磷活动是一种呼吸作用,是生长性呼吸。当溶液中的碳源被耗尽时,微生物仍然存在低速度的释磷;碳源存在饱和浓度,高于这一浓度,释磷速率达到最大值,此后释磷速度不随碳源浓度而增加;碳源存在临界低浓度,低于这个浓度,释磷速度明显减小。
     (4)缺氧吸磷时,当NO2--N浓度充足时,在较低的TP浓度下,微生物仍然可以吸磷,显示出一定的吸磷速率,说明生物除磷达到较低的浓度(小于0.5mg/L)是能够实现的。溶液中TP浓度对吸磷速度的影响表现为,TP浓度存在饱和浓度,高于某一浓度,吸磷速度达到最大,此后释磷速度不随碳源浓度而增加。
     (5)利用反硝化除磷的原理,在“碳与氧隔离、氧化剂与隔离碳、短程硝化节能”的理论基础上,结合序批式生物反应器的优点,构建有利于反硝化聚磷实现的条件,发明了反硝化菌与聚磷共存的单泥系统工艺,建立了可能适用于生产的工艺技术体系。实验研究取得了较好的脱氮除磷效果,出水NH4+浓度是工艺系统的一项重要的监测控制指标。
     (6)进行了单泥系统的驯化、启动和优化运行,当进水COD浓度100~220mg/L,NH4+为30~40mg/L,TP为4~5mg/L浓度的前提下,系统可以获得良好的脱氮除磷效果,出水指标达到一级A标准。系统可以处理低C/N的污水,最低C/N为2.5;平均DO在0.5~0.8mg/L时,NO2--N累积率在60%左右,平均曝气量为8.5L/h,节省了曝气量;水力停留时间为40h,曝气池容积比33.75%具有节约曝气量、低碳源反硝化、短程反硝化除磷作用明显的特点,适用于低碳源城市污水的的脱氮除磷。
Conventional biological nutrient removal technology was widely used due to itslow processing cost and any other advantages. But there are still many deficiencies,such as the contradiction existed in the process of denitrification and phosphorusremoval, the substrate competition, different sludge ages, and so on. Denitrifyingphosphorus removing bacteria (DPB) has a special function of biological nutrientremoval. In anaerobic condition, DPB decompose intracellular polyphosphate topower a life activity and synthesis intracellular material poly light alkanes acid (PHA),stored in a microbe. In anoxic condition, DPB use intracellular material PHA thatproduced in anaerobic phase, and utilize nitrate as an electron acceptor, denitrificationand phosphorus removal at the same time. Compared with traditional biologicalnitrogen removal process, DPB realize denitrification and phosphorus removalsimultaneously, achieve the goal of "one carbon source for two uses", save dosage ofcarbon source, furthermore, Absorption of phosphorus in anoxic condition, can reduceaeration rate, save energy, can also reduce the emission amount of sludge.
     In this research, study on mechanism and influencing factors of short-cutdenitrifying phosphorus removal was conducted, dynamic of phosphorus release andphosphorus uptake was proposed based on activated sludge dynamic model.
     Based on the characteristics of short-cut denitrifying phosphorus removal and theadvantages of SBR, batch tests on short-cut denitrifying phosphorus removal wereconducted, high efficient short-cut denitrifying bacteria and short-cut denitrifyingphosphorus removal bacteria were domesticated respectively, then inoculated theminto, completed the starting and optimized operation of short-cut denitrifyingphosphorus removal single sludge system. After the starting, study on CODconcentration, ammonia nitrogen concentration and pH of the system was conducted.Principal results are as follow:
     (1) Anaerobic phosphorus release dynamic model of short-cut denitrifyingphosphorus removal:
     Anaerobic phosphorus release is related to carbon source and the ratio of P聚inaccumulating phosphorus in microorganism, the relationship between anaerobicphosphorus release and carbon source C in coincidence with the unified kinetics.
     (2) Anoxic phosphorus uptake dynamic model of short-cut denitrifying phosphorus removal:
     Anoxic phosphorus uptake speed is related to the absorbed carbon source, micro-organism concentration, and phosphorus concentration in mixed solution. and therelationship between anoxic phosphorus uptake and phosphorus concentration (P) incoincidence with the unified kinetics.
     (3) It is shown that phosphorus release activity is a respiratory. When the carbonsource is exhausted, microorganism is still release phosphorus at a low speed. There isa saturated concentration for carbon source, if the concentration higher than this, thephosphorus release speed will reach the maximum, thereafter the phosphorus releasespeed will not change along with the increase of carbon source. The carbon source hasa critical low concentration; lower than this, the phosphorus release speed reduceobviously.
     (4) In the anoxic phosphorus absorption phase, if the NO2--N concentration issufficient and the TP concentration is very low, microorganism still can absorbphosphorus at a constant speed, it is shown us that can be biological phosphorusremoval can be realizated at a lower concentration(0.5mg/L). The TP concentrationhas effect on phosphorus uptake speed and has a saturated concentration, higher thanthis, phosphorus uptake speed will reach the maximum, and thereafter the phosphorusrelease speed will not change along with the increase of carbon source.
     (5) Based on the principle of denitrifying phosphorus removal, the carbon andoxygen do not present simultaneously, shortcut nitrification efficiency theory and theadvantages of SBR, a single sludge system that in the coexistence of denitrifyingbacteria and phosphorus removal bacteria was invented. A technical system whichapplicable to the production was established, in which the concentration of NH4+ineffluent is an important control index.
     (6) The domestication, starting and optimized operation of single sludge systemwas carried out in this research, when the influent COD concentration was100~220mg/L, NH4+concentration was30~40mg/L, TP concentration was4~5mg/L, systemcan obtain good denitrification and phosphorus removal effect, the effluent quality canmeet the first class of A standard. System can handle sewage of low C/N and thelowest C/N was2.5.Controlling the dissolved oxygen with the average level0.5~0.8mg/L, NO2--N accumulation rate reached60%. The average aeration rate was8.5L/h,therefore it saved aeration rate. The hydraulic retention time was40h and the volume ratio of aeration pool was33.75%. The system has characteristics of saving aeration,denitrification with low carbon and significant short-cut denitrifying phosphorusremoval. It is suitable for urban wastewater with low carbon source.
     There were59figures,42tables and172references in this paper.
引文
[1]国家环保局.生物脱氮技术[M].北京:中国环境科学出版社,1992.
    [2]张树德,曹国凭,张杰等.废水生物脱氮新技术及问题[J].河北理工学院学报,2005,27(1):145-150.
    [3]国家环保总局主编.中国环境状况公报[M].北京:国家环保总局,2005:22-29.
    [4]张洁,胡卫新,张雁秋.改进型双泥反硝化除磷脱氮工艺—一种可望从根本上解决脱氮除磷矛盾的新工艺[J].环境污染与防治,2005,27(3):232-235.
    [5]王建芳,涂宝华,陈荣平等.生物脱氮除磷新工艺的研究进展[J].环境污染治理技术与设备,2003,4(9):70-73.
    [6]李军,杨秀三,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002.
    [7] Chuang S H, Ouyan C F, Wang Y B. Kinetic Competition Between Phosphate Release andDenitrification on Sludge Under Anoxic Condition[J]. Wat.Res.,1996,30(12):2961-2965.
    [8]王小文,张雁秋.水污染控制工程[M].北京:煤炭工业出版社,2000.
    [9]刘洪波,孙力平,夏四清.生物膜中反硝化除磷作用的研究[J].工业用水与废水,2006,3(7l):40-43.
    [10] XIASiqing, LIUHongbo. The Operation of Three Parallel AN/AO Proeesses to Enrich De-nitrifying PhosPhorus Removal Baeteria for Low Strength Wastewater Treatinent[J].Environmental Scienees,2006,18(3):434-439.
    [11]贾呈玉,李道棠,杨虹.低碳氮比废水生物脱氮新技术[J].上海环境科学,2002,22(5):349-352.
    [12]杨殿海,宋拥好,谭巧国等.低碳源、低能耗型改良A2/O工艺的脱氮除磷研究[J].中国给水排水,2006,22(23):18-21.
    [13] Mumleitner E, Kuba T, M C M van Loosdrecht. An integrated metabolic model for theAerobic and denitrifying biological phosphorus removal[J]. Bioteclnlology andBioengineering,1997,54(5):34-45.
    [14]刘洪波,孙力平.天津纪庄子污水处理厂反硝化聚磷菌作用初探[J].天津城市建设学院学报,2004,10(3):174-178.
    [15] P S Barker, P LDold. Denitrification behavior in biological exeess phosphorus removalActivated sludge systems[J]. Water Research.,1996,30(4):769-780.
    [16] Raynond J Zeng, Romain Lemaire, ZhiguoYuan et al. Simultaneous nitrifieationDenitrifieation and phosphorus removal in a lab-scale sequencing batch reaetor[J].Biotechnology and bioenglneering,2003,83(2):172-178.
    [17]丁彩娟,吉芳英,高小平等.A/ASBR中PHB转化与反硝化吸磷的关系研究[J].重庆建筑大学学报,2005,27(3):80-84.
    [18] Johwan Ahn, Tomotaka Daidou, Satoshi Tsuneda et al. Metabolic behavior of denitrifyingPhosphate-accumulating organisms under nitrate and nitrite electron acceptor conditions[J].Bioscience and Bioengineering,2001,92(5):442-446.
    [19] T Kuba, M C M vanLoosdrecht, J J Heijnen. Phosphorus and nitrogen removal with minimalCOD requirernent by integration of nitrification in a two sludge system[J]. Water Research,l996,30(7):1702-1710.
    [20]罗固源,罗宁,吉芳英等.新型双泥生物反硝化除磷脱氮工艺[J].中国给水排水,2002,18(9):15-18.
    [21]罗固源.城市污水PIAS除磷效果初探[J].重庆环境科学,2000,22(3):40-42.
    [22]马勇,彭永臻,王晓莲等.新型高效反硝化除磷工艺[J].环境污染与防治,2004,26(l):51-54.
    [23] Vlecke G J F M, Comeau Y., Oldham W K. Biological Phosphorus removal from wastewaterwith oxygen or nitrate in sequencing batch reactors[J]. Environmental Technology Letter,1988,9:791-796.
    [24] Wabber J., Cech J., S Kosm. New Proeess design for biological nuitrient removal[J]. Wat.Sci.Tech.,1992,25:445-48.
    [25] Dae Sung Lee, Che Ok Jeon, Jong Moon Park. Biological nitrogen removal with enhaneedPhosphate up take in a sequencing bateh reactor using single sludge system[J]. WaterReseareh,2001,35(16):3968-3976.
    [26]冯生华,刘延华.生物除磷糖控制(CHC)工艺的试验研究[J].中国给水排水,2002,18(9):20-23.
    [27] P A Castillo, S González-Martinez, ITejro. Observations during start-up of biologiealPhosphorus removal in biofilm reaetors[J]. Water Seieneeand Technology,1998,27:185-190.
    [28]向仁军,张在峰,李和平.一体化生物除磷脱氮工艺装置[J].中国给水排水,2000,16(4):21-24.
    [29]黄骏,陈建中.氨氮废水处理技术研究进展[J].环境污染治理技术与设备,2002,3(1):65-68.
    [30] T. Kuba, E. Murnleitner, M. C. M. van Loosdrecht, et al. A metabolic model for biologicalphosphorus removal by denitrifying organisms[J]. Biotech.Bioengin.1996,52:685-695.
    [31] T. Kuba, A. Wachtmeister, M. C. M. van Loosdrecht, et al. Heijnen. Effect ofnitrate onphosphorus release in biological phosphorus removal system[J]. Wat.Sci.Tech,2004,30(6):2632-2639.
    [32]苏俊峰,马放,高珊珊.异养型同步硝化反硝化处理氨氮废水及群落结构分析[[J].浙江大学学报(农业与生命科学版),2007,33(6):685-690.
    [33]张楠.低氧条件下膜生物反应器中同步硝化反硝化研究[J].浙江建筑,2007,24(11):60-62.
    [34]万田英,李多松.常温流化床同步硝化反硝化的实验研究[J].环保科技,2007,13(4):24-27.
    [35]周健,李志刚,龙腾锐等.一体化多级生物膜反应器处理高氮小城镇污水脱氮试验研究[J].环境科学学报,2007,27(11):1804-1808.
    [36] Votes, J.P. Removal of nitrogen from highly nitrogenous waste water[J]. JWPCF.,1975,47:394-398.
    [37] Broda E. Two of kinds lithotrophs missing in nature[J]. Z. Allg.Microbiology,1977,17(6):491-493.
    [38] Milder A, Van de Graaf A A, Robertson L A, et al. Anaerobic Ammonium oxidationdiscovered in a denitrifying bed reactor[J]. FEMS Microbiological Ecology,1995,16(3):177-184.
    [39] T.Kuba, M.C.M.V.Loosdrecht, et al. Occurrence of denitrifying phosphorus removal bacteriain modified UCT-type wastewater treatment plants[J]. Wat.Res.,1997,31(41):777-786.
    [40] Sorm R., Bortone G, Safarelli, R. et al. Phosphate uptake under anoxic conditions andfixedfilm nitrification in nutrient removal activated sludge system [J]. Wat.Res.,1996,7(30):1573-1584.
    [41] Bortone G., Marsili L.S., Tilche A., et al. Anoxic phosphate uptake in the dephanox process[J].Wat.Sci.Tech.,1999,40(4-5):177-183.
    [42] W J.Ng, S.L Ong,.Y.Hu. Denitrifying phosphorus removal by anaerobic/anoxic sequencingbatch reactor[J]. Wat.Sci.Tech.,2001,43(3):139-146.
    [43]王涛.单池分区优化及能量模型的研究[D].重庆大学,2004.
    [44] T.Mino., M.C.M.V.Loosdercht, J.J.Heijnen. Microbiology and biochemistry of the enhancedbiological phosphate removal process[J]. Wat.Res.,1998,32(11):3193-3207.
    [45] Jesús R.A., Elías R.F., Jorge G. Simultaneous biological removal of nitrogen,carbon andsulfur by denitrification[J]. Wat Res.,2004,38(14-15):3313-3321.
    [46] Münch E.V., Lant P., Keller J. Simultaneous nitrification and denitrification in bench-scalesequencing batch reactors[J]. Wat.Res.,1996,30(2):277-284.
    [47]徐亚同编著.废水氮磷的处理[M].上海:华东师范大学出版社,1996.
    [48] Baozhen Wang, Jun Li, Lin Wang,et al. Mechanism of Phosphorus Removal by SBRSubmerged Biofilm System[J]. Wat.Res.,1998,32(9):2633-2638.
    [49]龚云华.污水生物脱氮除磷技术的现状与发展[J].环境保护,2000,7:23-25.
    [50] M.C.Hascoet, M.Florentz. Influence of nitrate on biological phosphorus removal nutrientwastewater[J]. Wat.SA.,1985,11(1):23-26.
    [51] A.Gerber, R.H.Villiers, E.S.Mostert, et al. The phenomenon of simultaneous phosphateuptake and release and its importance in biological nutrient removal: biological phosphateremoval from wastewaters[M]. Pergamon Press, Oxford,1987:123-134.
    [52] Y. Comeau, W. K. Oldham and K. J. Hall. Dynamics of carbon reserves in biologicaldephosphatation of wastewater biological phosphate removal from wastewaters[M].Pergamon Press, Oxford,1987:39-55.
    [53] L.Polac. Enhanced biological phosphorus removal from wastewater[M]. Sc.Thesis.PragueInst.of Chem.Tech.,1991.
    [54] J.Wanner, J.S.Cech, M.Kos, et al. New process design for biological nutrient removal[J]. Wat.Sci.Tech.,1992,25(4):445-448.
    [55] T.Kuba, M.C.M.Van Loosdrecht. Phosphorus removal from wastewater by anaerobic anoxicsequencing batch reactor[J]. Wat.Sci.Tech.,1993,27(6):241-252.
    [56] G.J.F.Vlekke, Y.O.Comeau. Biological phosphate removal from wastewater with oxygen ornitrate in sequencing batch reactor[J]. Environ.Tech. Letters.,1988,9:791-796.
    [57] K.V.Gernaey, M.C.M.van Loosdrecht, M.Henze, et al. Activated sludge wastewater treatmentplant modeling and simulation: state and art[J]. Environ.Modelling and Software,2004,19:763-783.
    [58] A.Wachtmeister, T.Kuba, M.C.M.van Loosdrecht, et al. A sludge characterization assay foraerobic and denitrifying phosphorus removing sludge[J]. Wat.Res.,1997,31(3):471-478.
    [59] T Kuba, Van Loosdrecht M.C.M. Biological dephosphatation by activated sludge underdenitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a fullscale wastewater treatment plant[J]. Wat.Sci.Tech.,1999,36(12):75-82.
    [60]陈坚.硝酸盐在除磷脱氮中的作用[J].食品与生物技术,2003,21(1):10-14.
    [61]邹华,阮文权,陈坚等.硝酸盐作为生物除磷电子受体的研究[J].环境能科学研究,2004,15(3)38-41.
    [62]李勇智,彭永臻,王淑莹.强化生物除磷体系中的反硝化除磷[J].中国环境科学,2003,23(5):543-546.
    [63] T.Mino, W.Liu, F.Kurisu. Modeling glycogen storage and denitrification capability ofmicroorganisms in enhanced b iological phosphate removal processes[J]. Wat.Sci.Tech.,1995,31(2):25-34.
    [64] G.Koch, M.Kuhni, H.Siegrist. Calibration and valiation of an ASM3based steady state modelfor activated sludge systems-Part1[J]. Wat.Res.,2001,35(9):2235-2245.
    [65] E.Murnleitner, T.Kuba, M.C.M.van Loosdrecht, et al. An integrated metabolic model for theaerobic and denitrifying biological phosphorus removal[J]. Biotech.Bioengin.,1997,54(5):434-450.
    [66] M.Henze, W.Gujer, T.Mino, et al. Activated sludge model No.2d, ASM2D[J]. Wat.Sci.Tech.,1999,39(1):165-182.
    [67]陈鹏,张克峰.反硝化除磷机理与工艺研究进展[J].水处理技术,2009,9(35):1-5.
    [68]穆亚东,俞晶,穆瑞林.UCT工艺在污水处理工程设计中的应用[J].给水排水,2007,(3):30-33.
    [69]魏新庆,王秀朵.多功效UCT处理工艺的工程应用[J].给水排水,2008,(3):45-48.
    [70] Van Loosdrecht M.C.M, Brandse F.A, de Vnes A.C. Up-grading of water treatment processesfor innegrated nutrient removal-the BCFS process[J]. Water.Sci.Techn.,1998,37(9):209-217.
    [71] van Loosdrecht M.C.M, Kuba T, van Veldhuizen H M. et al. Environment alimpacts ofnutrientr removal processes: case study[J]. Envimn Eng,1997,38(1):33-40.
    [72] Meijer S C F. Theoretical and practical aspects of modeling activated sludge processes [D].Delft, the Netherlands: Delft University of Technology,2004.134-136.
    [73]张锡辉,刘勇弟,译.废水生物处理[M].北京:化学工业出版社,2003.
    [74] G Bortone, R Slatarelli, V Alonso, et a1. Biological Anoxic Phosphate Removal-TheDEPHANOX process[J]. Wat Sci Tech,1996,34(1-2):l19-128.
    [75]田淑媛,王景峰,杨睿,等.厌氧下的PHB和聚磷酸盐及其生化机理研究[J].中国给水排水,2000,16(7):5-7.
    [76] Shun-Hsing Chuang, Chiao-Fuei Ouyang. The biomass fractions of heterotrophs andphsophorus-accumulating organisms in a nitrogen and phosphorus removal system[J]. WaterResearch,2000,34(8):2283-2290.
    [77] Kerm-Jespersen J.P, Henze M. Biological phosphorus removal under anoxic and aerobicconditions[J]. Water Research,1993,27(4):617-624.
    [78]王亚宜,彭永臻,王淑莹等.反硝化除磷理论、工艺及影响因素[J].中国给水排水,2003,19(1):33-36.
    [79] Smolders G J F, Van der Meij J, Van Loosdrecht M C M, et al. Model of the anaerobicmetabolism of the bio2logical phosphorus removal process:stoichionetry and pH influence[J].Biotechnnol Bioengn,1994,43:461-470.
    [80]王璐璐,李燕.反硝化除磷理论及其影响因素分析[J].能源与环境,2010(3):18-19,48.
    [81] Saito T,B rdjanovic D, van Loosdrecht M CM. Effect of nitrite on phosphate uptake byphosphate accumulating organisms[J]. Wat Res,2004,38(17):567-569.
    [82]高大文,李强,梁红等.两段SBR双污泥系统的短程硝化/反硝化除磷研究[J].环境科学,2009,30(4):31-34.
    [83]邓祺祺.短程反硝化除磷技术研究进展[J].广东化工,2011,38(3):34-35.
    [84]黄健,张华,杨伟伟.碳源对反硝化除磷的影响[J].合肥工业大学学报,2006,29(12):1588-1591.
    [85]张红,张朝升,荣宏伟等.有机碳源浓度对反硝化除磷的影响研究[J].广州大学学报,2006,5(6):73-76.
    [86] Wang Ya yi, Peng Yong zhen, Wang Shuying, et al. Effect of carbon source and nitrateconcentration on denitrifying phosphorus removal by DPB sludge[J]. Journal ofEnvironmenta1science,2004,16(4):548-552.
    [87]周康群,许德峰,隋军等.反硝化聚磷一体化设备生产性试验研究[J].重庆环境科,2002,24(4):73-75.
    [88] Turk O and Mavinci D S.Selective inhibition:a novel concept for removing nitrogen fromhighly nitrogenous wastes[J]. Environ.Technol.Lett.1987,25(8):67-72.
    [89]王亚宜,王淑莹,彭永臻.MLSS、pH及NO2--N对反硝化除磷的影响[J].中国给水排水,2005,21(7):47-51.
    [90]王亚宜,彭永臻,甘一萍.A2N反硝化除磷脱氮系统处理生活污水研究[J].高技术通讯,2004,1:83-88.
    [91]郭海娟,马放,沈耀良.C/N比对反硝化除磷效果的影响[J].环境科学学报,2005,25(3):367-371.
    [92]王春英,隋军,赵庆良.反硝化聚磷机理试验.环境污染治理技术与设备[J].2002,36:65-68.
    [93]杨永哲,王蔚蔚,王磊.反硝化聚磷诱导过程中聚磷速率的变化特性分析[J].西安建筑科技大学学报,2003,35(3):251-257.
    [94]罗宁,罗固源,吉芳英等.利用聚磷菌快速内源反硝化脱氮研究[J].重庆环境科学,2003,25(6):32-34.
    [95]常飞,操家顺,徐续.泥龄对反硝化除磷脱氮系统效率的研究分析[J].水资源保护,2004,(5):29-32.
    [96] J.J.Rowe, J.M.Yarbrough, J.B.Rake, et al. Nitrite inhibition of aerobic bacteria[J]. CurrentMicrobio.,1979,2:51-54.
    [97] K.S.Jorgensen, A.S.L.Pauli. Polyphosphate accumulation among denitrifying bacteria inactivated sludge[J]. Anaerobic Environ. Microbio.,2005,1:161-168.
    [98] Y.Comeau, K.J.Hall, R.E.W.Hancock, et al. Biochemical model for enhanced biologicalphosphorus removal[J]. Wat.Res.,1986,20(12):1511-1521.
    [99] J.J.P.Kerren, M.Henze. Biological phosphorus release and uptake under alternation anaerobicanoxic conditions in a fixed film reactor[J]. Wat.Res.,1993,27(4):617-624.
    [100] J.Meinhold, E.Arnold, S.Isaacs. Effect of nitrite on anoxic phosphate uptake in biologicalphosphorus removal activated sludge[J]. Wat.Res.,1999,33(8)1871-1883.
    [101] D.S.Lee, C.K.Joen, J.M.Park, et al. Biological nitrogen removal with enhanced phosphateremoval in a SBR using single sludge system[J]. Wat.Res.,2001,35(1):3968-3976.
    [123] Y.F.Jiang, L.Wang, B.Z.Wang, et al. Biological nitrogen removal with enhanced phosphateremoval in (AO)2SBR using single sludge system.Journal of Environ[J]. Sci.,2004,16(6):1037-1040.
    [124]李勇智.短程生物脱氮和反硝化除磷的基础研究[D].哈尔滨工业大学,2003.
    [125]蒋轶锋.短程反硝化除磷工艺特征及运行效能研究[D].哈尔滨工业大学,2006.
    [127]张小玲.短程硝化-反硝化生物脱氮与反硝化聚磷基础研究[D].西安建筑科技大学,2004.
    [106]国际水协废水生物处理设计与运行参数数学课题组著.活性污泥数学模型[M].同济大学出版社,2002.
    [107]卢培利,张代钧,刘颖等.活性污泥法动力学模型研究进展和展望[J].重庆大学学报(自然科学版),2002,25(3):109-114.
    [108] Coen F. Vanderhaegen B. Boonen I.,et al. Imporved Design and Control of Industrial andMunicipal Nutrient Removal Plants Using Dynamic Model[J]. Wat.Sci.Tech,1997,35(10):53-61.
    [109]吴俊奇,汪慧贞.活性污泥法2号模型(ASM2)简介[J].给水排水,1998,24(6):13-18.
    [110]熊春梅.活性污泥法动力学模型评价[J].宁波工程学院学报,2007,19(2):40-42.
    [111]国家环保局编.水和废水检测分析方法[M].第4版,北京:中国环境科学出版社,2000.
    [112] M.Pijuan, A.Guisasola, J.A.Baeza et al. Aerobic Phosphorus Release Linked to AcetateUptake: Influence of PAO Intracellular Storage Compounds[J]. Biochemical Engineering,2005,26:184-190.
    [113] S.Tsuneda, T.Ohno, K.Soejima et al. Simultaneous nitrogen and phosphorus removal usingdenitrifying phosphate-accumulating organisms in a sequencing batch reactor[J].Biochemical Engineering,2006,27:191-196.
    [114] M.C.M.Van Loosdrecht, M.A.Pot, J.J.Heijnen. Importance of Bacterial Storage Polymers inBioprocesses[J]. Water Sci.Technol.,1997,35:41-47.
    [115] J.Y.Hu., S.L.Ong.W.J.Ng., F.Lu,X.J.Fan. A New Method for Characterizing DenitrifyingPhosphorus Removal Bacteria by Using Three Different Types of Electron Acceptors[J]. Wat.Res.,2003,37:3463-3471.
    [116] Valerie Naidoo. Municipal wastewater characterization application of denitrification batchtests[D].1999.
    [117] Yoram barak, Jaap van Rijn. Relationship between nitrite reduction and active phosphateuptake in the phosphate-accumulating denitrifier pseudomonas sp[J]. strain JR.Wat Res,2000,26:1538-1544.
    [118]郝晓地.可持续除磷脱氮BCFS工艺.给水排水.2004,28(9):68-76.
    [119]荆肇乾,,吕锡武.不同电子受体的反硝化除磷效果对比研究.给排,2008,34(16):40-42.
    [120]张自杰,周帆编.活性污泥生物学与反应动力学[M].中国环境科学出版社,1989.
    [121]王锐刚.活性污泥除磷动力学研究[D].中国矿业大学,2009.
    [122] M.C.Wentzel, P.L.Dold, G.A.Ekama and G.V.R.Marais. Kinetics of Biological PhosphorusRelease[J]. Water Sci.Technol.,1985,17:57-71.
    [123] C.D.M.Filipe, G.T.Daigge r, C.P.Leslie, J.Grady. Stoichiometry and kinetics of acetateuptake under anaerobic conditions by an enriched culture of phosphorus accumulatingorganisms at different pH [J]. Biotech Bioengin,2001,76:32-43.
    [124] G.J.F.Smolders, J.vailder Meij, M.C.M.van Loosdreeht. Model of the anaerobic metabolismof the biological phosphonls removal process:stoiehiometry and pH influence[J]. BiotechBioeng,1994,43:461-470.
    [125] J.Romanski,M.Heider, U.Wiesmann. Kinetics of anaerobic orthophosphate release andsubstrate uptake in enhanced biological phosphorus renloyal from syntheti c wastewater [J].Wat Res,1997,31(12):3137-3145.
    [126] G.J.J.Kortstee, K.J.Appeldoorn, C.F.C.Bonting et al. Ecological Aspects of BiologicalPhosphorus Removal in Activated Sludge Systems.Adv[J]. Microb.Ecol.,2000,6::169-200.
    [127] A.Kornberg, N.N.Rao, D.A.Riche. Inorganic Polyphosphate:A Molecule of ManyFunctions[J]. Annu.Rev.Biochem.,1999,68:89-125.
    [128] H.W.V.Veen, T.Abee, G.J.J.Kortstee et al. Generation of A Proton Motive Force by theExcretion of Metal-Phosphate in the Polyphosphate-Accumulating Acinetobacter JohnsoniiStrain210A.[J]. Biol.Chem.,2000,269:29509-29514.
    [129] P.L.Bond, J.Keller, L.L.Blackall. Anaerobic Phosphate Release from Activated Sludge withEnhanced Biological Phosphorus Removal. A Possible Mechanism of Intracellular pHControl[J]. Biotechnol. Bioeng.,2001,63:507-515.
    [130] H.Comeau, K.J.Hall, R.E.W.Hancock et al. Biological Model for Enhanced BiologicalPhosphorus Removal[J]. Water Res.,1986,20:1511-1521.
    [131] R.P.X.Hesselmann, R.Von Rummel, S.M.Resnick et al. Anaerobic Metabolism of BacteriaPerforming Enhanced Biological Phosphate Removal[J]. Water Res.,2005,34:3487-3494.
    [132] M.Maurer,W.Gujer, R.Hany, S.Bachmann. Intracellular Carbon Flow in PhosphorusAccumulating Organisms from Activated Sludge Systems[J]. Water Res.,1997,31:907-917.
    [133] K.Sudesh, H.Abe, Y.Doi. Synthesis, structure and properties of polyhydroxyalkanoates:biological polyesters[J]. Prog.Polym.Sci.,2000,25:1503-1555.
    [134] W.T.Liu, T.Mino, K.Nakamura et al. Glycogen Accumulating Population and Its AnaerobicSubstrate Uptake in Anaerobic-Aerobic Activated Sludge without Biological PhosphorusRemoval[J]. Water Res.,2003,30:75-82.
    [135] P.C.Lemos, C.Viana, E.N.Salgueiro et al. Effect of Carbon Source on the Formation ofPolyhydroxyalkanoates (PHA) by A Phosphate-Accumulating Mixed Culture[J]. EnzymeMicrobiol.Technol.,1998,22:662-671.
    [136] H.Satoh, T.Mino, T.Matsuo. Uptake of Organic Substrates and Accumulation ofPolyhydroxyalkanoates Linked with Glycolysis of Intracellular Carbohydrates underAnaerobic Conditions in the Biological Excess Phosphate Removal Processes[J]. Water Sci.Technol.,1992,26:933-942.
    [137] Abeling U.,Seyfried C. Anaerobic aerobic treatment of highstrength ammonium wastewaternitrogen removal via nitrite[J]. Water Sci.Technol.,1992,26(56):1007-1100.
    [138] C.D.M.Filipe,GT.Daigger,C.P L.Gradyet a1. Effect of pH on the rates of aerobicmetabolism of phosphate accumulating and glycogen accumulating organisms[J].Wat.Environ.Res.,2003,73:212-222.
    [139] T Kuba, E.Mumleitner, M.C.M.van Loosdrecht, et al. A metabolic model for biologicalphosphorus removal by denitrifying organisrns[J]. Biotech.Bioengin.,1996,52:685-695.
    [140] T.Kuba, A.Wachtmeister, M:C.M.van Loosdrecht, et a1.Heijnen. Effect of nitrate onphosphorus release in biological phosphorus removal system[J]. Wat.SciTech.,2004,30(6):263-269.
    [141] Jens Peter Keren-Jespersen, Mogens Henze. Biological Phosphorus Uptake under Anoxicand Aerobic Conditions[J]. Wat. Res.,1994,5(28):1253-1255.
    [142]李勇智,王淑莹,吴凡松,代蕃国,彭永臻.强化生物除磷体系中的反硝化聚磷菌的选择与富集[J].环境科学学报,2004,24(1):45-49.
    [143] Jens Peter Kerrn-Jespersen and Mogens Henze. Biological Phosphorus Release and Uptakeunder Alternation Anaerobic and Anoxic Conditions in a Fixed-Film Reactor[J]. Wat.Res.,1993,27(4):617-624.
    [144] Jens Meinhold, Eva Arnold, Steven Isaacs. Effect of nitrite on anoxic phosphate uptake inbiological phophorus removal activated sludge [J]. Wat.Res.,1999,33(8):1871-1883.
    [145] Hu J YOng S L, Ng W J, t al. A new method for characterizing denitrifying phosphorusremoval bacteria by using three different types of electronacceptors[J]. Wat.Res.,2003,37:3463-3471.
    [146] J.J.Rowe, M.Yarbrougb, J.B.Rake, et a1. Nitrite inhibition of aerobic bacteria[J]. CurrentMicrobio,1979,2:51-54.
    [147]吴群英,林亮编著.应用数理统计[M].天津:天津大学出版社,2004.
    [148]程声通主编.环境系统分析教程[M].北京:化学工业出版社,2006.
    [149] Oehmen A,Saunders A M,Vives M T, et a1. Competition between poiyphosphate andglycogen accumulating organisms in enhanced biological phosphorus removal systems withacetate and propionate as carbon sources[J]. Biotechn1.,2006,123:22-32.
    [150] Canizares P, De Lucas A, Rodriguez L, et al. Anaerobic uptake of different organicsubstrates by enhanced biological phosphorus removal sludge [J]. Envir on Technol,2000,21(4):397-405.
    [151] Hao X.D., Van Loosdrecht M.C.M., Meijei S.C.F., et a1. Mode1Based Evaluation of TwoBNR Process UCT And A2N[J]. Wat.Res.,2000,35(12):2851-1860.
    [152] Ruiz G., Jeison D., Chamy R., Nitrification with high nitrite accumulation for treatlment ofWastewater with high ammonia concentration[J]. Wat.Res.,2003,37(6)1371-1377.
    [153] Walter B., Haase C., RabigCr N. Combined nitrifieation to deintrifieation in anaerobicreactor[J]. Wat.Res.,2005,39:2781-2788.
    [154]王志盈.水污染控制现代生物反应理论[M].西安:西安建筑科技大学,2002.
    [155]哈尔滨建筑工程学院主编.排水工程(下册)[M].北京:中国筑出版社,1986.
    [156]胡安辉.高效短程硝化/厌氧氨氧化富集培养物的研究[D].浙江大学,2010.
    [157] Hellinga C, Sehellen AAJC, Mulder JW, van LoosdreCht MCM, Heijnen JJ. The SHARONProcess:an innovative method for nitrogen removal from ammonium-rich wastewater[J].Water Science and Teehnology,1998,37:135-142.
    [158]刘秀红,王淑莹,高大文,杨庆,吴凡松.短程硝化的实现、维持与过程控制的研究现状[J].环境污染治理技术与设备,2004,5:7-10.
    [159]张英杰,张隽超.亚硝酸型硝化的控制途径[J].中国给水排水,2002,18:29-31.
    [160] Hockenbury M.R., Grady C.P.L.,1977. Inhibition of nitrification effects of selected organiccompounds [J]. JWPCE,49(7):768-777.
    [161]赵旭涛.硝化作用特征分析及讨论[J].环境科学研究,1995,8(1):18-21.
    [162] Shapiro J., Levin GV and Zea G Anoxically Induced Release of Phosphorus in WastewaterTreatment[J]. Wat.Pollut.Control Fed.,1967,39:1810-1818.
    [163] F.A.Koch,W.K.Oldham. Oxidation-Reduction Potential-a Tool for Monitoring, Control andOptimation of Biological Nutrient Removal Systems[J]. Wat.Sci.Tech.,1985,17:259-281.
    [164]顾夏声.废水生物处理的数学模型[M].北京:清华大学出版社,1996.1[165]高景峰.SBR法去除有机物和脱氮除磷在线模糊控制的基础研究[D].哈尔滨工业大学工学,2001.
    [166]魏深.浅议影响污水生物除磷的因素[J].重庆环境科学,2002,24(2):85-87.
    [167] Charpentier, Joseph., Martin, Guy., Wacheux, Herve., Gilles, Pierre. ORP Regulation andActivated Sludge:15Years of Experience[J]. Wat.SciTech.,1998,38(3):197-208.
    [168]汪惠贞,FA.Koch.氧化还原电位作为生物脱氮除磷过程控制参数[J].中国给水排水,1988,4(3):15-18.
    [169] A.J.Schuler, D. Jenkins. Effect of pH on Enhanced Biological Phosphorus RemovalMetabolism[J]. Wat.Sci.Tech.,2002,46(45):171-178.
    [170]李昂.污泥吸附除磷脱氮工艺及模型研究[D].中国矿业大学,2010.
    [171]杨造燕.厌氧快速吸收有机物的两种能量来源研究[J].中国给水排水,1998,14(5):21-25.
    [172]刘壮.厌氧快速吸收有机物的启动能源研究[J].中国给水排水,2000,16(5):11-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700