用户名: 密码: 验证码:
多级混流生产线动态调度系统关键技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以整车制造企业中非常典型的多级混流制造系统为研究背景,按照从单目标到多目标,从静态调度到动态调度,逐步深入的研究思路对多级混流生产调度系统总体框架,多级混流生产调度问题的优化目标、数学模型、解决策略以及优化算法,模糊信息下的调度方案筛选机制等理论问题和关键技术进行了详细而深入的研究,具体内容如下:
     针对目前国内整车制造企业的实际需求,从生产成本、均衡生产以及设备利用率等方面考虑,构建了多级混流制造系统调度问题的数学模型。提出了一种递进优化策略,即借助不同制造阶段之间的存储区,运用多目标综合优化与有限柔性下的队列顺序二次优化相结合的优化方式求解整车制造企业的多级混流生产调度问题。在问题的解决策略中,首先提出了一种改进的蚁群优化算法来求解以涂装车间油漆更换成本最少、总装车间零件使用速率均匀化为目标的调度问题;然后在二次优化中考虑了过去混流生产线调度问题通常被忽略存储区结构约束,在详细分析存储区结构特点的基础上,提出了一种用于求解有限柔性下队列顺序调整问题的二次优化算法;最后提出了一种路由算法用于求解生产队列通过存储区时的路径选择问题。仿真试验结果说明了本文提出的解决策略和算法能够获得可行和满意的解。
     针对多级混流制造系统动态调度问题,采用了一种周期式与事件驱动相结合的调度机制。对于紧急订单、加工质量问题等例外事件设计了相应的解决策略,提出了一种基于层次结构搜索域的多层候选集蚁群优化算法来解决存储区结构约束下的多目标调度问题。仿真试验结果说明了本文的动态调度策略与优化算法在求解多级混流制造系统动态调度问题上的可行性和有效性。
     针对多级混流制造系统的调度方案筛选问题,本文提出了两种解决方案:第一种是F-AHP与信息熵合成法,第二种是辅助目标决策法。F-AHP与信息熵合成法的具体步骤是首先通过三角模糊层次分析法获得调度人员对于各项评价指标的主观权重系数,然后通过熵权法获得调度方案集包含的各项指标的客观权重系数,从而在方案筛选过程中充分体现了主、客观因素。对于第二种解决方案,本文采用混流装配线停线时间作为辅助目标,首先描述了具有扩展作业域的混流装配线停线问题的数学模型,研究了该问题的若干性质,例如采用可扩展作业域后装配线发生停线的充分条件和必要条件等,并在此基础上提出了一种可扩展作业域下的生产线停线时间计算方法。仿真结果说明了算法的可行性,同时也说明了可扩展作业域对于生产线停线时间具有较大影响。
     以南京名爵汽车有限公司的制造执行系统为支撑环境,在本文理论研究的基础上,设计和开发了多级混流生产线调度原型系统,经过在南汽名爵的试验性运行,初步验证了该原型系统的可行性和有效性。
The background of this dissertation is the multi-level mixed model product line in automobile plant. According to the sequence from single objective scheduling to multi-objective scheduling, from static scheduling to dynamic scheduling, a detailed study on the scheduling system framework model, objectives, strategy and algorithm for the multi-level mixed model product line scheduling problem, and method for the multi-objective scheduling decision making problem is carried out. The main contents and achievements of the dissertation are as follows:
     For the requirements of automobile plants, the mathematics model of the scheduling problem is presented in details under the considering of product cost, JIT and utility ratio of equipment etc. And a step optimized solution, which through the combination of multi-objective optimization and secondary optimization, is designed to solve the problem. At first an improved ant colony optimization (ACO) algorithm with two layers searching space is designed to solve the scheduling problem which minimize the paint purge times in paint shop and keep the constant usage of part in assembly shop. To the problem that the product order couldn't be executed correctly in some automobile plant due to ignoring the storage constraint, a resequencing algorithm with limited flexibility is designed based on the detailed analysis of kinds of storage structure. At last, a useful route control approach is presented, which can be used to address the product routing problem. Simulation result shows that the proposed strategy and the algorithm are effective and useful.
     A periodic and event-driven scheduling model is presented to deal with the changing mixed-model manufacture environment. The schedule strategy is designed to deal with the rush order or rework. Based on the two layers searching space ACO algorithm, a hierarchy searching space ACO algorithm is designed to address the multi-objective scheduling problem under structure constraint of multi-level mixed product line. Simulation results show that the proposed model and algorithm are feasible to the problem.
     To the multi-objective scheduling decision making problem, two solutions be presented, one is fuzzy analytic hierarchy process (F-AHP) and entropy theory method and the other is assistant objective decision making method. The first solution use F-AHP to get the subjective weight from the fuzzy information of decision-maker, and use entropy theory to get the objective weight from the result matrix. To the second solution, the conveyor stoppage time is used as the assistant object to the decision making problem. At first, a mathematics model of conveyor stoppage problem under the concept of extendable region(ER) is presented. Then combined with the ER concept, several useful properties, such as, necessary and sufficient condition that a conveyor stoppage occurs, lower and upper bounds of the objective function are described. And an algorithm for calculating the conveyor stoppage time is designed. Simulation result shows that the algorithm is effective, and the ER has important effect to the conveyor stoppage time.
     Finally, based on the Build Control System of Nanjing MG automobile plant, a multi level mixed-model product line scheduling prototype system is developed. Through the test run in Nanjing MG automobile plant, it verifies the feasibility of this system.
引文
[1]门田安弘(日).新丰田生产方式[M].保定:河北大学出版社, 2001.
    [2] Gilbert, J.P. The state of JIT implementation and development in the USA [J]. International Journal of Production Research, 1990, 28: 1099-1109.
    [3] Huson, M., Nanda, D. The impact of just-in-time manufacturing on firm performance in the US [J]. Journal of Operations Management, 1995, 12: 297-310.
    [4] White, R.E., Ruch, W.A. The composition and scope of JIT [J]. Operations Management Review, 1990, 7: 9-18.
    [5] Panwalker S S, Iskaniler W. A survey of scheduling rules [J]. Operation Research, 1977, 25(1): 45-61.
    [6] Chretienne P, Conffman J E. Lenstra J K. Scheduling Theory and its Applications (Chichester: Wiley), 1995.
    [7] French S. Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop, John Wiley&Sons, New York, 1982.
    [8] Blaewicz J, K Ecker, Schmidt, J Weglarz. Scheduling in Computer and Manufacturing Systems, 2nd ed., Springer-Verlag, New York, 1994.
    [9] Morton T, D Pentico. Heuristic Scheduling Systems with Application to a Production Systems and Project Management, John Wiley&Sons, New York, 1993.
    [10] Aarts, P. van Laarhoven, J. Lenstra, N. Ulder. A computational study of local search algorithms for job-shop scheduling [J]. ORSA Journal on Computing, 1994, 6(2):118-125.
    [11] Krishna K., Ganeshan K., Ram D.J. Distributed simulated annealing algorithms for job-shop scheduling [J]. Systems, Man and Cybernetics, 1995, 25(7):1102-1109.
    [12] Della Croce F., Tadei R, Volta G. A Genetic Algorithm for Job Shop Problem [J]. Computer and operations research, 1995, 22(1): 15-24.
    [13] H.R. Lourenco. Local optimization and the job-shop scheduling problem [J]. European Journal of Operational Research, 1995, 83:347-364.
    [14] Mesghouni K., Hammadi S., Borne P. On modeling genetic algorithm for flexible job-shop scheduling problem [J]. Stud. Inform. Contr. J., 1998, 7(1):37-47.
    [15] Luh P.B, Dong Chen, Thakur, L.S. An effective approach for job-shop scheduling with uncertain processing requirements [J]. Robotics and Automation, 1999, 15(2): 328-339.
    [16] D.C. Mattfeld, C. Bierwirth, H. Kopfer. A search space analysis of the job-shop Scheduling Problem [J]. Annals of Operations Research, 1999, 86: 441-453.
    [17] Mesghouni K., Pesin P., Trentesaux D., Hammadi S., Tahon C., Borne P. Hybrid approach to decision making for job-shop scheduling [J]. Prod. Plann. Contr. J., 1999, 10(7): 690-706.
    [18]潘全科,朱剑英.作业车间动态调度研究[J].南京航空航天大学学报, 2005, 37(2): 262-268.
    [19]王志亮,汪惠芬,张友良.动态Job-Shop调度问题的一种自适应遗传算法[J].中国机械工程, 2004, 15(11): 995-999.
    [20] Khaled Mesghouni, Slim Hannadi. Evolutionary Algorithms for Job-Shop Scheduling [J]. Int. J. Appl. Math. Comput. Sci., 2004, 14(1): 91–103.
    [21]陈伟达,达庆利.工艺路线可变车间作业调度的两级遗传算法[J].系统工程学报,2002,2: 37-46.
    [22]钱晓龙,唐立新,刘文新.动态调度的研究方法综述[J].控制与决策. 2001, 16(2): 141-145.
    [23] F.Croci, M.Peron, A.Pozzetti. Work-force management in automated assembly systems [J]. International Journal of Production Economics, 2000, 64: 243-255.
    [24]李莉,乔非,姜桦,吴启迪.半导体生产线动态调度方法研究[J].计算机集成制造系统, 2004, 10(8): 949-954.
    [25] Lixin Tang, Jiyin Liu, Aiying Rong, Zihou Yang. A review of planning and scheduling systems and methods for integrated steel production [J]. European Journal of Operational Research, 2001, 133: 1-20.
    [26] J Sun, D Xue. A dynamic reactive scheduling mechanism for responding to changes of production orders and manufacturing resources [J]. Computers in Industry, 2001, 46(2): 189-207.
    [27] Radu F. Baciceanu, F. Frank Chen, Robert H. Sturges. Real-time holonic scheduling of material handing operations in a dynamic manufacturing environment [J]. Robotics and Computer-Integrated Manufacturing, 2005, 21: 328-337.
    [28] Carlos A. Mendez, Jaime Cerda. Dynamic scheduling in multi-product batch plants [J]. Computers and Chemical Engineering, 2003, 27: 1247-1259.
    [29] Min Soo Suh, Albert Lee, Yung Jae Lee, Young Kwan Ko. Evaluation of ordering strategies for constraint satisfaction reactive scheduling [J]. Decision Support Systems, 1998, 22: 187-197.
    [30] LI S. A hybrid two-stage flow-shop with part family, batch production, major and minor setups [J]. European journal of operational research, 1997, 102(1): 142-156.
    [31] Vincent Thindt, Jatinder N.D, Cupta, Jean-Charles Billaut. Tow-machine flowshop scheduling with a secondary criterion [J]. Computer and operations research, 2003, 30: 505-526.
    [32] W.K. Yeung, Ceyda Oguz, T.C. Edwin Cheng. Two-stage flow-shop earliness and tardiness machine scheduling involving a common due window [J]. International journal of Production Economics, 2004, 90: 421-434.
    [33] Chang Sup Sung, Young Hwan Kim. Minimizing makespan in a two-machine flowshop with dynamic arrivals allowed [J]. Computer and Operations Research, 2002, 29: 275-294.
    [34] Lixin Tang, Hua Xuan, Jiyin Liu. A new Lagrange relaxation algorithm for hybrid flowshop scheduling to minimize total weighted completion time [J]. Computer and Operations Research, 2006, 33: 3344-3359.
    [35] Jose M. Framinan, Rainer Leisten, Rafael Ruiz-Usano. Comparison of heuristics for flowtime minimization in permutation flow-shops [J]. Computer and Operations Reasearch, 2005, 32: 1237-1254.
    [36] Hua Xuan, Lixin Tang. Scheduling a hybrid flow-shop with batch production at the last stage [J]. Computers and Operations Research, 2007, 34(9): 2718-2733.
    [37] Suresh P. Sethi, Xun Yu Zhou. Optimal feedback controls in deterministic dynamic two-machine flowshops [J]. Operations Research Letters, 1996, 19: 225-235.
    [38] Suresh P. Sethi, Hanqin Zhang, Qing Zhang. Hierarchical Production Control in a Stochastic N-Machine flow shop with Limited Buffers [J]. Journal of Mathematical Analysis and Applications, 2000, 246: 28-57.
    [39] Faland B H, Klastorin T D, Schmitt T G, Shtub A. Assembly line balancing with resource dependent task times [J]. Decision Sciences. 1992, 23: 343-364.
    [40] Ruey-Shun Chen, Kun-Yung Lu, Shien-Chiang Yu. A hybrid genetic algorithm approach on multi-objective of assembly planning problem [J]. Engineering Applications of Artificial Intelligence, 2002, 15: 447-457.
    [41] J.I. van Zante, T.G. de Kok. The mixed and multi model line balancing problem:A comparison [J]. European Journal of Operational Research, 1997, 100: 399-412.
    [42] Selcuk Karabat, Serpil Say. Assembly line balancing in a mixed-model sequencing environment with synchronous transfers [J]. European Journal of Operational Research, 2003, 149: 417-429.
    [43] Anderson E J, Ferris MC. Genetic algorithms for combinatorial optimization: the assembly line balancing problem [J]. ORSA Journal on Computing. 1994, 6: 161-173.
    [44] Scholl A, Voss S. Simple assembly line balancing-heuristic approaches [J]. Journal of Heuristics. 1996, 2:217-244.
    [45] Gokcen H, Erel E. Binary integer formulation for mixed-model assembly line balancing problem [J]. Computers and Industrial Engineering. 1998, 34(2):451-461.
    [46] Mingzhou Jin, S. David Wu. A new heuristic method for mixed model assembly line balancing problem [J]. Computers and Industrial Engineering. 2004, 44: 159-169.
    [47] DHadi Gokcen, Kursad Agpak. A goal programming approach to simple U-line balancing problem [J]. European Journal of Operational Research, 2006, 171: 577-585.
    [48] Gregory Levitin, Jacob Rubinovitz, Boris Shnits. A genetic algorithm for robotic assembly line balancing [J]. European Journal of Operational Research, 2006, 168: 811-825.
    [49] Rekiek B, De Lit P, Delchambre A. Robotics and Automation [J]. 2000, 16(3):268-280.
    [50] Armin Scholl, Christian Becker. State-of-the-art exact and heuristic solution procedures for simple assembly line balancing [J]. European Journal of Operational Research, 2006(168): 666-693.
    [51] Marc Peters, Zeger Degraeve. A linear programming based lower bound for the simple assembly line balancing problem [J]. European Journal of Operational Research, 2006, 168: 716-731.
    [52] Ghosh, S., Gagnon, R.J. A comprehensive literature review and analysis of the design, balancing and scheduling of assembly systems [J]. International Journal of Production Research, 1989, 27:637-670.
    [53] Kim, Y.K., Kim, Y.J., Kim, Y. Genetic algorithms for assembly line balancing with various objectives [J]. Computers and Industrial Engineering, 1996, 30(3):397-409.
    [54] Sotirios G. Dimitriadis. Assembly line balancing and group working: A heuristic procedure for workers’groups operating on the same product and workstation [J]. Computers & Operations Research, 2006, 33: 2757-2774.
    [55] Hackman, S.T., Magazine, M.J., Wee, T.S. Fast, effective algorithms for simple assembly line balancing problems [J]. Operations Research. 1989, 37: 916-924.
    [56] Kim, Y.K., Y.J. Two-sided assembly line balancing: A genetic algorithm approach [J]. Production Planning and Control. 2000, 11: 44-53.
    [57] Leu, Y.Y., Matheson, L.A., Rees, L.P. Assembly line balancing using genetic algorithms with heuristic-generated initial populations and multiple evaluation criteria [J]. Decision Sciences, 1994, 25: 581-606.
    [58] Nicosia, G., Paccarelli, D., Pacifici, A. Optimally balancing assembly lines with different workstations [J]. Discrete Applied Mathematics, 2002, 118: 99-113.
    [59] Sophie D. Lapierre, Angel Ruiz, Patrick Soriano. Balancing assembly lines with tabu search [J]. European Journal of Operational Research, 2006, 168: 826-837.
    [60] Ponnambalam, S.G., Aravindan, P., Naidu, G.M., Ponnambalam, S.G., Aravindan, P., Naidu, G.M. A multi-objective genetic algorithm for solving assembly line balancing problem [J]. International Journal of Advanced Manufacturing Technology, 2000, 16: 341-352.
    [61] Monden, Y. Toyota Production System, the Institute of Industrial Engineers, Norcross, GA. 1983.
    [62] Miltenburg J. Level schedules for mixed-model assembly lines in just-in-time Production systems [J]. Management Science, 1989, 35: 192-207.
    [63] Miltenburg J, Sinnamon G. Algorithms for scheduling multi-level just-in-time production systems [J]. IIE Trans, 1992, 24:121-30.
    [64] Miltenburg J, Sinnamon G. Revisiting the mixed-model multi-level just-in-time scheduling problem [J]. International Journal of Production Research, 1995, 33:2049-2052.
    [65] Sumichrast RT, Russell RS. Evaluating mixed-model assembly line sequencing heuristics for just-in-time production systems [J]. J. Oper. Manage. 1990, 9:371-389.
    [66] Sumichrast RT, Russell RS, Taylor BW. A comparative analysis of sequencing procedures for mixed-model assembly lines in a just-in-time production system [J]. Int. J. Prod. Res. 1992, 30:199-214.
    [67] Sumichrast RT, Clayton ER. Evaluating sequences for paced, mixed-modelassembly lines with JIT component fabrication [J]. International Journal of Production Research, 1996, 34: 3125-3143.
    [68] Inman R., Bulfin R. Sequencing JIT mixed-model assembly lines [J]. Management Science, 1991, 37: 901-904.
    [69] Bolat A. Sequencing jobs on an automobile assembly line: Objectives and procedures [J]. International Journal of Production Research, 1994, 32: 1219-1236.
    [70] Leu Y, Matheson LA, Rees LP. Sequencing mixed-model assembly lines with genetic algorithms [J]. Compute. Ind. Eng. 1996, 30:1027-1036.
    [71] Steiner G, Yeomans JS. Optimal level schedules in mixed-model, multi-level JIT assembly systems with pegging [J]. Eur. J. Opl. Res. 1996, 95:38-52.
    [72] Bard.J, Dar-El.E., Shtub.A. An analytic framework for sequencing mixed model assembly lines [J]. International Journal of Production Research, 1992, 30(1): 35-48.
    [73] Bolat. A. Sequencing jobs on an automobile assembly line: objectives and procedures [J]. International Journal of Production Research, 1994, 32(5):1219-1236.
    [74] Boysen, N., Fliednerb. Review and comparison of three methods for the solution of the car sequencing problem [J]. Journal of the Operational Research. 2006, 57: 1497-1498.
    [75] Scholl, A., Klein, R., Domschke. Pattern based vocabulary building for effectively sequencing mixed-model assembly lines [J]. Journal of Heuristics. 1998, 4: 359-381.
    [76] Lahmar M, Ergan H, and Benjaafar S. Resequencing and feature assignment on an automated assembly line [J]. IEEE Transactions on Robotics and Automation, 2003, 19(1): 89-102.
    [77] Kim Y, Kim J. A coevolutionary algorithm for balancing and sequencing in mixed model assembly lines [J]. Applied Intelligence, 2000, 13(3):247-258.
    [78] Azizoglu M, Cakmak E, Kondakci S. A flexible flow-shop problem with total flow time minimization [J]. European Journal of Operational Research, 2001, 132(3): 528-538.
    [79] Zhao Xiao-bo, Katsuhisa Ohno. Algorithms for sequencing mixed models on an assembly line in a JIT production system [J]. Computer & Industrial Engineering. 1997, 32: 47-56.
    [80] Mansouri. A Multi-Objective Genetic Algorithm for mixed-model sequencing onJIT assembly lines [J]. European Journal of Operational Research, 2004, 167: 696-716.
    [81] McMullen P.R, Frazier G.V. A simulated annealing approach to mixed-model sequencing with multiple objectives on a JIT line [J]. IIE Transactions 2000, 32, 679–686.
    [82] McMullen P.R., Peter Tarasewich. A beam search heuristic method for mixed-model scheduling with setups [J]. International Journal of Production Economics. 2005, 96: 273-283.
    [83] Tavakkoli, A.R. Rahimi. Multi-criteria sequencing problem for a mixed-model assembly line in a JIT production system [J]. Applied Mathematics and Computation, 2006, 12: 204-210.
    [84] Allahverdi A. The two and m-machine flow-shop scheduling problems with bi-criteria of make span and mean flow time [J]. European Journal of Operational Research, 2003, 147(2): 373-396.
    [85]郜庆路,罗欣,杨叔子.基于蚂蚁算法的混流车间动态调度研究[J].计算机集成制造系统-CIMS, 2003,9(6): 456-459.
    [86] Tatsushi Nishi, Akihiro Sakata, Shinji Hasebe, Iori Hashimoto. Autonomous decentralized scheduling system for just-in-time production [J]. Computers &Chemical Engineering, 2000, 24: 345-351.
    [87] Miltenburg J, Steiner G, Yeomans S. A dynamic programming algorithm for scheduling mixed-model just-in-time production systems [J]. Mathematical Computation Modeling, 1990, 13: 57-66.
    [88] Tadeusz Sawik. An LP-based approach for loading and routing in a flexible assembly line [J]. International journal of Production Economics, 2000, 64: 49-58.
    [89] Davenport A., E. Tsang, K. Zhu, C. Wang. A connectionist architecture for solving constraint satisfaction problems by iterative improvement, in: Proceedings of AAAI Press, Seattle, Washington, Menlo Park, California, 1994: 325-330.
    [90] Puchta M., J. Gottlieb. Solving car sequencing problems by local optimization [J]. Lecture Notes in Computer Science, 2002, 2279: 132-142.
    [91] Gottlieb J., M. Puchta, C. Solnon. A study of greedy, local search and ant colony optimization approaches for car sequencing problems [J]. Applications of Evolutionary Computing, 2003: 246-257.
    [92] K. Smith, M. Palaniswami, M. Krishnamoorthy. Traditional heuristic versusHopfield neural network approaches to a car sequencing problem [J]. European Journal of Operational Research, 1996, 93 (2): 300-317.
    [93] C. Solnon. Solving car sequencing problems with artificial ants. European Conference on Artificial Intelligence (ECAI-2000), IOS Press, Berlin, Germany, 2000: 118-122.
    [94] Matthias Holweg. The Order Fulfillment Process in the Automotive Industry Conclusions of the Current State Analysis. 3DayCar System & Organization Streams. 2000.
    [95] Zhao Xiaobo, Zhaoying Zhou, Ainishet Asres. A note on Toyota's goal of sequencing mixed models on an assembly line [J]. Computer & Industrial engineering, 1999, 36: 57-65.
    [96] Moden Y. Toyota Production System: an integrated approach to Just in Time, 3rd ed. Norcross: Engineering and Management Press: 1998.
    [97] Kubiak W. Minimizing variation of production rates in just-in-time systems: a survey [J]. European Journal of Operational research, 1993, 66: 259-271.
    [98] Zhao Xiaobo, Ohno K. A Sequencing Problem for a Mixed-model Assembly Line in a JIT Production System [J]. Computer & Industrial Engineering, 1994, 27: 71-74.
    [99] Lee, H., Schaefer, S. Sequencing methods for automated storage and retrieval systems with dedicated storage [J]. Computers and Industrial Engineering, 1997, 32(2): 351-362.
    [100] Inman, R. ASRS sizing for recreating automotive assembly sequences [J]. International Journal of Production Research, 2003, 41(5): 847-863.
    [101] Bautista, J, Corominas. Heuristics and exact algorithms for solving the modern problem [J]. European Journal of Operational research, 1996, 88(1): 101-105.
    [102] Kis T. On the Complexity of the car sequencing problem [J]. Operation Research Letters, 2004, 32(4): 331-336.
    [103] Caroline G, Marc G, Wilson L P. Solving real car sequencing problems with ant colony optimization [J]. European Journal of Operation Research, 2006, 174: 1427-1448.
    [104] Camazines. Self-organization in biological systems [M]. Princeton USA: Princeton University Press, 2001.
    [105] T. Stützle, H. Hoos. MAX-MIN Ant System [J]. Future Generation Computer System. 2000, 16(8): 889-914.
    [106] Dorigo M. Ant colonies for the traveling salesman problem [J], Biosystem, 1997,43: 73-81.
    [107]赵伟,韩文秀,罗永泰.准时制生产方式下混流装配线的调度问题[J].管理科学学报, 2000, 3(4): 23-28.
    [108] Sumichrast, Russel. Evaluating mixed-model assembly line sequencing heuristics for just-in-time production system [J]. Journal of Operations Management, 1990, 9(3): 371-390.
    [109] Tugrul Korkmazel, Sedef Meral. Bi-criteria sequencing methods for the mixed-model assembly line in just-in-time production systems [J]. European Journal of Operational Research. 2001, 131(1): 188-207.
    [110] Inman, Bulfin. Notes on sequencing JIT mixed-model assembly lines [J]. Managemnt Science. 1991.37(7): 901-904.
    [111] M. Gravel, C. Gagne, W.L. Price. Review and comparison of three methods for the solution of the car-sequencing problem [J]. Journal of the Operational Research Society, in press.
    [112] Li, H., Li, Z.C., Li, L.X., Hu, B. A production rescheduling expert simulation system [J]. European Journal of Operational Research, 2000, 124(3): 283-293.
    [113] Zhang, Q., Rao, Y.Q. Study on dynamic scheduling method for job shop [J]. Mechanical Manufacturing, 2003. 41(461): 39-41.
    [114] D.A.V, Veldhuizen, G.B.Lamont. Multi-objective Evolutionary Algorithms: Analyzing the State-of-the-Art [J]. Evolutionary Computation, 2000, 125-147.
    [115]朱学军.基于Pareto多目标进化计算的健壮性设计方法及应用研究[D].上海交通大学博士学位论文, 1999.10.
    [116]孙志峻.智能制造系统车间生产优化调度[D].南京航空航天大学博士学位论文, 2002.
    [117]王笑容,吴铁军.蚁群优化的理论模型及在生产调度中的应用研究[D].浙江大学博士学位论文, 2003.
    [118] Saaty T L. Decision making with the AHP: Why is the Principal Eigenvector Necessary [J]. European Journal of Operational Research, 2003, 145(1): 85-91.
    [119] Zhao Xiao-bo, Katsuhisa Ohno. A sequencing problem for a mixed model assembly line in a JIT production system [J]. Computers and Industrial Engineering, 1994, 27(3): 71-74.
    [120] Zhao Xiao-bo, Katsuhisa Ohno. Algorithms for sequencing mixed on an assembly line in a JIT production system [J]. Computers and Industrial Engineering, 1997, 32(1): 47-56.
    [121] Zhao Xiao-bo, Katsuhisa Ohno. Properties of a sequencing problem for a mixedmodel assembly line with conveyor stoppages [J]. European Journal of Operational Research, 2000, 124(3): 560-570.
    [122] Celano G, Costa A. Human factor policy testing in the sequencing of manual mixed model assembly lines [J]. Computers & Operations research, 2004, 31(1): 39-59.
    [123] Yan H S, Xia Q F, Zhu M R, et al. Integrated production planning and scheduling on automobile assembly lines [J]. IIE Transactions, 2003, 35(8): 711 -725.
    [124]严洪森,夏琦峰,朱旻如.汽车装配车间生产计划与调度的同时优化方法[J].自动化学报, 2002, 28(6): 911-919.
    [125] Church L., Uzsoy R. Analysis of periodic and event-driven rescheduling policies in dynamic shop [J]. International journal of Computer Integrated Manufacturing. 1992, 5(3): 153-163.
    [126] Gutjahr. A graph-based ant system and its convergence, Future Generation [J].ComPuter System. 2000, 16(8): 873-88.
    [127] Quinlan. Combining instance-based and model-based learning. In Proceedings of the Tenth International Conference on Machine learning. 236-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700