芳烃与羟胺直接催化合成芳香酚(胺)反应过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化工生产中,从初始原料到获得终端产物,通常要经过多步反应工艺过程才能实现。这势必导致反应和分离装置多、工艺流程长、生产效率低、能耗高和废物排放增加。另外,在此过程中往往存在易燃、易爆及有毒、有害等非安全过程产物。去除非安全化学品生产和使用的直接反应过程是解决上述问题的有效途径之一;芳香胺类和芳香酚类化合物均为重要的基本有机化工原料。传统的生产方法存在合成路线长、工艺复杂、原子利用率低,副产物多、过程不安全及环境污染等问题。本文基于高效—清洁—安全的化工过程理念,较系统地研究了芳烃与羟胺直接催化合成芳香酚(胺)类化合物的反应过程。包括催化剂设计与制备、新合成反应路线、反应产物调控及环境友好离子液体的应用等。
     甲苯与羟胺直接催化合成甲基苯胺的新负载型催化剂设计与制备:相对于传统合成方法,该工艺去除了甲苯硝化及硝基甲苯氢化等不安全工艺过程。考察了钒酸盐(NaVO_3、NH_3VO_3)和钼酸盐(Na_2MoO_4、(NH_4)_6Mo_7O_(24))等均相催化剂的甲苯氨基化反应性能。发现以钒酸盐和钼酸盐为催化剂时,对应的适宜溶剂分别为乙酸-水溶液和乙酸-硫酸溶液,其最佳体积比分别为乙酸/水=2/1和硫酸/乙酸=4:11。钼酸盐为催化剂时,甲基苯胺收率最高可达到80%;在均相催化剂研究基础上制备了负载型催化剂,考察了载体对合成甲基苯胺反应性能的影响。弱酸性载体催化剂V_2O_5/Al_2O_3、MoO_3/Al_2O_3上甲基苯胺的收率与均相催化剂相当,且显著减少了活性组分用量;针对钒酸盐均相催化剂,考察了助剂对反应性能的影响。加入硫酸铜助剂(V/Cu=16/1)使甲基苯胺收率明显提高;成功地制备出了一种新的负载型催化剂CuO-V_2O_5/Al_2O_3,在乙酸-水溶剂中,反应温度85C,常压,反应时间4h的优化条件下,甲基苯胺的收率高达60.3%;采用XRD、XPS、XRF等方法对负载型催化剂进行了表征,V_2O_5以无定型状态高度分散于催化剂中,Cu以+2价态形式存在于催化剂表面,Cu的引入,改变了V的表面物理化学环境,使更多的V5+物种在催化剂表面形成,进而提高了合成甲基苯胺的反应活性。
     芳烃与羟胺直接催化合成芳香酚的新合成路线研究:相对于以N_2O、O_2、H_2O_2等为氧化剂的直接合成方法,该工艺路线更为安全。明确提出了芳烃与羟胺直接催化合成芳香酚的新合成路线;以(NH_4)_6Mo_7O_(24)·4H_2O为催化剂,研究了不同反应溶剂对甲苯与羟胺合成甲基苯酚反应性能的影响。发现在乙酸-硫酸溶剂中加入水可明显提高甲基苯酚的选择性。在此基础上,考察了不同水含量的水-乙酸-硫酸溶剂中合成甲基苯酚的反应性能,确定出其适宜的体积比为水/乙酸/硫酸=4/10/1。优化了操作条件,在甲苯与羟胺摩尔比为1:1,反应温度80C,常压,反应时间4h条件下,甲苯转化率及甲基苯酚的选择性分别为36.3%和61.3%;将上述合成方法推广到其它芳香酚的合成,发现以(NH_4)_6Mo_7O_(24)·4H_2O为催化剂时,苯、乙基苯、二甲苯(邻、对、间)等芳香烃,均可以与羟胺反应一步合成相应的酚类化合物。其转化率分别为51%,13%和17%,生成对应的酚类化合物选择性分别为45%,74%和70%以上。
     离子液体-乙酸-水环境友好的新反应溶剂研究:采用环境友好的酸性离子液体替代合成芳香酚类反应溶剂中的硫酸,并将其与钼系催化剂结合建立一种离子液-钼(ILs-Mo)催化体系;合成了一系列的SO_3H-型离子液体,并将其用于苯酚、甲基苯酚和对二甲基苯酚的直接合成反应。结果表明,在1-磺丁基-3-甲基咪唑三氟甲磺酸盐离子液体-乙酸-水(其重量比为6:8:8)所组成的的反应溶剂中,(NH_4)_6Mo_7O_(24)·4H_2O为催化剂,苯、乙苯及对二甲苯均可以与羟胺直接反应合成相应的芳香酚类化合物。其中,对二甲基苯酚的选择性接近100%。考察了该催化剂体系的重复使用性能。反应后只需用乙醚萃取产物,催化体系即可循环使用,并且催化体系保持良好的稳定性。
Generally, a multi-stage reaction system is needed to produce a product from startingmaterial in chemical manufacturing process. However, these processes have severaldisadvantages such as multi-step procedures, more devices needed for reaction and separation,low production efficiency, high energy consumption and waste discharge. Evenmore, there alsoexist unsafe intermediate products such as inflammable or explosive compounds, toxic andharmful substances. To aovid producing and using the unsafe intermediate products, directsynthesis process is a better way to solve these problems. Aromatic amines and phenols arevaluable intermediate for organic synthesis. Traditional ways for producing these compoundsinvolve multi-step processes, suffering from the drawbacks like low atomic utilization,producing more side products, unsafe process and environmental pollution, etc. Based on theidea of high efficiency, clean and safety chemical process, a direct process for the production ofphenols (aromatic amines) was investigated in this study, including catalyst design andpreparation, new catalytic reaction, regulation of product distribution and the application of ionicliquid.
     New supported catalyst design and preparation for direct catalytic synthesis oftoluidines from toluene and hydroxylamine: Comparson with traditional synthetic routes,unsafe process including nitration of toluene and hydrogenation of nitro-toluene, were removedfrom this process. Then a series of vanadium (NaVO_3、NH_3VO_3) and molybdenum salts(Na_2MoO_4、(NH_4)_6Mo_7O_(24)) were used as catalysts and tried for amination of toluene. The resultsshowed that different catalysts need different reaction media to show higher activity. A suitablesolvent is HOAc-H_2O acid media (v/v=2:1) for vanadium catalysts, and that, for molybdenumcatalysts, is H_2SO_4-HOAc solution (v/v=4:11). Moreover, the highest yield of toluidines above80%was obtained on the molybdenum catalysts. Based on the research on the activity ofhomogeneous vanadium-based catalyst, supported vanadium catalysts were prepared, and the effect of carrier and promoter on the catalyst activity was investigated in the reaction of tolueneamination. It was found that carriers with weak acidity have a beneficial effect on the catalystactivity. Furthermore, adding Cu species to vanadium catalysts shows a peculiar behavior,maintaining a high activity toward toluene amination. An optimum Cu/V ratio appears at lowdopant loading (V/Cu=16/1). Subsequently, new supported vanadium catalysts CuO-V_2O_5/Al_2O_3were prepared prepared, and characterized by various techniques such as XRF, BET, XPS andXRD. The optimized reaction conditions investigated were HOAc:H_2O (v/v)2:1, conducted at85°C for4h. More than60%total yield of toluidines was obtained under the optimizedconditions. Catalyst characterizations revealed that V_2O_5phase was in a highly dispersed state onthe catalyst. Copper was present mainly in the+2valence, and the addition of copper improvedthe formation of V5+species, thus enhancing the activity of the catalyst. This may be due tophysical or chemical change in the environment of the vanadium species by the introduction ofCu species.
     A new approach for direct catalytic synthesis of phenols: Currently there are severalapproaches, involving direct oxidation of aromatics employing N_2O, O_2, and H_2O_2as oxidant.However, the present route was more safe for direct synthesis of phenols. In this work, a newapproach was proposed for direct catalytic synthesis of phenols from aromatics andhydroxylamine. Initially, the reaction between toluene and hydroxylamine catalyzed by(NH_4)_6Mo_7O_(24)·4H_2O was selected as a model reaction for optimizing the reaction conditions.The results showed that the incorporation of water into HOAc-H_2SO_4acidic media wouldimporved the selectivity for cresol. Thus the reaction was conducted in variousH_2O–HOAc–H_2SO_4solvents containing different amount of water. The best result is obtained fora H_2O/HOAc/H_2SO_4volumeratio of4:10:1. The optimized reaction conditions investigated wereNH_2OH/toluene (molar ratio)1:1, conducted at80°C for4h. And high toluene conversion andcresol selectivity were obtained, corresponding to36.3%and61.3%respectively. Moreover, avariety of aromatics including benzene, ethylbenzene and xylene, were examined. And thesearomatics could be hydroxylated with hydroxylamine to give the corresponding phenols. Theconversion of benzene, ethylbenzene and xylene were51%,13%and17%respectively, and theselectivity for the corresponding phenols were all above45%,74%and70%.
     A new environmental friendly reaction medium of ILs-HOAc-H_2O media: The aim ofthis study was to explore the possiblity of using ILs as a media to replace sulfuric acid in thereaction of direct synthesi of phenol, cresol and2,5-xylenol. And Several SO_3H-functionalizedILs was prepared. Then an eco-friendly and reusable catalytic system, i.e., combination of thenew reaction media with Mo catalyst (called ILs-Mo catalytic system), was designed for aromatics hydroxylation. It was found that [HSO_3-bmim][CF3SO_3]-HOAc-H_2O solution with aweight ratio of6:8:8was a better reaction media for the hydroxylation using(NH_4)_6Mo_7O_(24)·4H_2O as catalyst. And all the aromatics including benzene, ethylbenzene andxylene could be hydroxylated with hydroxylamine to give the corresponding phenols.Furthermore, high selectivity (nearly100%) of2,5-xylenol was achieved in this catalytic system.All the organic compounds could be entirely extracted by ether, and the residue including ILsand Mo catalyst can be used again. Recycling experiments suggested that the catalytic systemwas stable enough to be recycled for the hydroxylation.
引文
1王延吉,赵新强.2009(第六届)全国有机碳酸酯技术开发与应用研讨会.山东泰安:2009:40
    2Downing R S, Kunkeler P J, van Bekkum H. Catalytic syntheses of aromatic amines [J]. Catalysis Today,1997,37:121-136.
    3Weber M, Weber M, in: Pilato L (Ed.), Phenolic Resins: A Century of Progress [M]. Springer-Verlag, BerlinHeidelberg,2010, pp.9-23.
    4王延吉,赵新强.绿色催化过程与工艺[M].北京:化学工业出版社,2002.1-28.
    5Squire E N, Pa G M. Synthesis of aromatic amines by reaction of aromatic compounds with ammonia [P].US Patent3919155, Nov.11,1975.
    6Hamilton D M. Process for catalytic hydroxylation of aromatic hydrocarbons [P]. US Patent6437197B1,Aug.20,2002.
    7李佳,苯与羟胺盐一步催化合成苯胺和苯酚反应工艺研究:[硕士论文]。天津:河北工业大学:2011年。
    8李建星,邻乙基苯胺的综合开发利用[J],黎明化工,1994,41(5):23-24
    9Benz M, Prins R. Kinetics of the reduction of aromatic nitro compounds with hydrazine hydrate in thepresence of an iron oxide hydroxide catalyst [J]. Applied Catalysis A: General,1999,183:325-333.
    10Kumbhar P S, Sanchez-Valente J, Millet J M, et al. Mg-Fe Hydrotalcite as a Catalyst for the Reduction ofAromatic Nitro Compounds with Hydrazine Hydrate [J]. Joural of Catalysis,2000,191:467-473.
    11Barker R S. Preparation of aminated benzenes from hydroxy benzenes [P]. US Patent3272865, sept.13,1966.
    12Manohar B, Ganesh I, Reddy B M. Aniline synthesis from cyclohexanol and ammonia over mixed oxidecatalysts [J]. Journal of Molecular Catalysis A: Chemical,1998,129: L5-L8
    13Becker J, Niederer J P M, Keller M, et al. Amination of cyclohexanone and cyclohexanol/cyclohexanonein the presence of ammonia and hydrogen using copper or a group VIII metal supported on a carrier as thecatalyst [J]. Applied Catalysis A: General,2000,197:229-238.
    14Weigert. Process for preparation of aromatic amines [P]..US Patent4064171,Dec.20,1977.
    15余天华,甲苯直接催化氨基化制甲基苯胺的研究:[硕士学位论文]。成都:四川大学,2004:5-6
    16Squire EN, Mills G. Synthesis of aromatic amines by reaction of aromatic compounds with ammonia [P].US patent.3919155,1975-11-11.
    17胡常伟,余天华.一种由甲苯一步直接氨基化合成甲基苯胺的方法[P].中国专利CN1706807A,2004年10月30日.
    18Turski J S. Method of introducing an amino group into aromatic compounds [P]. US Patent2401525, Jun.4,1946.
    19Turski J S. Method of introducing an amino group into aromatic compounds [P]. US Patent2585355, Feb.12,1952.
    20Kuznetsova N L, Kuznetsova L L, Detusheva L G, et al. Amination of benzene and toluene withhydroxylamine in the presence of transition metalredox catalysts [J], Journal of Molecular Catalysis A:Chemical,2000,161:1-10.
    21Mantegazza M A, Leofanti G, Petrini G, et al. in: Corberan VC, Bellon SV (Ed.), New Developments inSelective Oxidation [M],1993, p. G51, G.E.C.
    22Kuznetsova N I, Kuznestova L I, G.Dtusherva L, et al. Amination of benzene and toluene withhydroxylamine in the presence of transition metalredox catalysts [J], Journal of MolecularCatalysisA:Chemical,2000,161: l-9.
    23钱伯章,朱建芳.苯酚生产的市场分析与技术进展[J].化工科技市场,2005,05:7-11
    24肖梅.甲酚生成现状与发展趋势[J].化工中间体,2003,10:8-12.
    25Weber M, Weber M, in: Pilato L (Ed.), Phenolic Resins: A Century of Progress [M]. Springer-Verlag,Berlin Heidelberg,2010, pp.9-23.
    26Weissermel K, Arpe H-J. Industrial organic chemistry [M]. Fourth ed., Wiley-VCH, Weinheim,2003.
    27Shinohara Y, Isaka T. Process for preparation of cresol and acetone from cymene hydroperoxide [P]. USPatent3720716, Mar.13,1973..
    28Sad M E, PadróC L, Apesteguía C R. Synthesis of cresols by alkylation of phenol with methanol on solidacids [J]. Catalysis Today,2008,133-135:720-728.
    29Sad M E, PadróC L, Apesteguía C R. Selective synthesis of p-cresol by methylation of phenol [J]. AppliedCatalysis A: General,2008,342:40-48.
    30Sreekumar K, Sugunan S. Ferrospinels based on Co and Ni prepared via a low temperature route asefficient catalysts for the selective synthesis of o-cresol and2,6-xylenol from phenol and methanol [J].Journal of Molecular Catalysis A: Chemical,2002,85:259-268.
    31Moon G, B hringer W, O’Connor C T. An investigation into factors which influence the formation ofp-cresol in the methanol alkylation of phenol over MCM-22and ZSM-5[J], Catalysis Today.2004,97:291-295.
    32李继烈.邻甲酚合成工艺路线述评[J].农药,1981,1:36-41.
    33杨华.甲酚的开发与市场前景[J].精细化工原料及中间体,2005,8:25-29.
    34季东,闫亮,任通,等. FeZSM-5/N2O体系催化氧化甲苯制甲酚的研究[J].分子催化.2004,18(3):198-202.
    35Imre B, Halász J, Frey K, et al. Oxidative hydroxylation of benzene and toluene by nitrous oxide overFe-containing ZSM-5zeolites [J]. Reaction Kinetics and Catalysis Letters,2001,74:377-383.
    36Vogel B, Schneider C, Klemm E. The synthesis of cresol from toluene and N2O on H[Al]ZSM-5:miniming the product diffusion limitation by the use of small crystals [J]. Catalysis Letters,2002,79:107-112.
    37Vogel B, Klemm E, Seitz M, et al. Process for prepararing hydroxyaromatics [J]. US Patent6476277B2,Nov.5,2002.
    38Burton H A, Kozhevnikov I V. Biphasic oxidation of arenes with oxygen catalysed by Pd(II)-heteropolyacid system: oxidative coupling versus hydroxylation [J]. Journal of Molecular Catalysis A: Chemical,2002,185:285-290.
    39Mita S, Sakamoto T, Yamada S, et al. Direct hydroxylation of substituted benzenes to phenols with air andCO using molybdovanadophosphates as a key catalyst [J]. Tetrahedron Letters,2005,46:7729-7732.
    40Kumar R, Bhaumik A, Triphase, solvent-free catalysis over the TS-1/H2O2system in selective oxidationreactions [J]. Microporous and Mesoporous Materials,1998,21:497-504.
    41Bianchi D, Bertoli M, Tassinari R, et al. Direct synthesis of phenols by iron-catalyzed biphasic oxidation ofaromatic hydrocarbons with hydrogen peroxide [J]. Journal of Molecular Catalysis A: Chemical,2003,200:111-116.
    42Balland V, Mathieu D, Pons-Y-Moll N, et al. Non-heme iron polyazadentate complexes as catalysts foroxidations by H2O2: particular efficiency in aromatic hydroxylations and beneficial effects of a reducingagent [J]. Journal of Molecular Catalysis A: Chemical,2004,215:81-87.
    43Monfared H H, Amouei Z. Hydrogen peroxide oxidation of aromatic hydrocarbons by immobilized iron(III)[J]. Journal of Molecular Catalysis A: Chemical,2004,217:161-164
    44胡常伟,钟永科,李桂英,等.一种由甲苯一步催化氧化制备甲基苯酚的方法[P].中国专利200610021200.0,2006年06月19日.
    45Joseph J K, Singhal S, Jain S L, et al. Studies on vanadium catalyzed direct hydroxylation of aromatichydrocarbons using hydrogen peroxide as oxidant [J]. Catalysis Today,2009,141:211-214.
    46Yu T, Hu C, Wang X, Direct Amination of Toluene with Hydroxylamine in the Presence ofVanadium-based Catalysts [J]. Chemistry Letters,2005,34:406-407.
    47李汝雄.绿色溶剂-离子液体的合成与应用.北京:化学工业出版社,2004.10.
    48Wilkes J S, Levisky J A, Wilson R A, et al. Dialkylimidazolium choroaluminate melts: A new class ofroom-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis [J]. Inorganic Chemistry,1982,21(3):1263-1264.
    49张锁江,吕兴梅,刘志平,等.离子液体-从基础研究到工业应用[M].北京:科学出版社,2006,2.
    50Seddon K R. Ionic Liquids for clean technology [J]. Journal of Chemical Technology and Biotechnology,1997,68(4):351-356
    51Stegemann H, Rhode A, Fullbier H, et al. Room temperature molten polyiodides [J]. ElectrochimicaActa.1992,37(3):379-383
    52Larsen A S, Holbrey J D, Reed C A. One of the most inert anions of modern chemistry [J]. Journal of theAmerican Chemical Society,2000,122(14):7264-7268
    53张英峰,李长江,张永安,等.离子液体的分类、合成与应用[J].化学教育,2005,(2):7-12
    54Wasserscheid P, Keim W. Ionic liquids-new―solutions‖for transition metal catalysis [J]. AngewandteChemie International Edition in English,2000,39(21):3772-3789
    55Dymek C J, Stewart J P. Calculation of hydrogen-bonding interactions between ions in room-temperaturemolten salts [J]. Inorganic Chemistry,1989,28:1472-1476
    56Bonhǒte P, Dias A P, Papageorgious N, et al. Hydrophobic, highly conductive ambient-temperature moltensalts [J]. Inorganic Chemistry,1996,35(5):1168-1178
    57顾彦龙,彭家建,乔琨,等.室温离子液体及其在催化和有机合成中的应用[J].化学进展,2003,15(3):222-241
    58唐培堃.有机化学中的溶剂效应[J].化学工业出版社,1987:47
    59胡德荣,张新位,赵景芝.离子液体简介[J].首都师范大学学报(自然科学版),2005,26(2):40-44
    60Anthony J L, Maginn E J, Brennecke J F. Solution thermodynamics of imidazolium-based ionic liquidsand water [J]. Journal of Physical Chemistry B,2001,105(44):10942-10949
    61Chiappe C, Pieraccini D. Ionic liquids: solvent properties and organic reactivity [J], Journal of ChemicalPhysics,2005,18(4):275-297
    62George L, Watson P R. Surface tension measurements of N-alkylimidazolium ionic liquids[J]. Langmuir,2001,17(20):6138-6141
    63Tait S, Osteryoung R A. Infrared study of ambient-temperature chloroaluminates as a function of meltacidity[J]. Inorganic Chemistry,1984,23(25):4352-4360.
    64Quarmby I C, Mantz R A, Goldenberg L M. Stoichiometry of latent acidity in buffered chloroaluminateionic liquids [J]. Analytical Chemistry,1994,66(21):3558-3561
    65Quarmby I C, Osteryoung R A. Latent acidity in buffered chloroaluminate ionic liquids [J]. Journal of theAmerican Chemical Society,1994,116(6):2649-2650
    66Howarth J, Hanlon K, Fayne D, et al. Moisture stable dialkylimidazolium salts as heterogeneous andhomogeneous lewis acids in the Diels-Alder reaction [J]. Tetrahedron Lett,1997,38(17):3097-3100
    67Yang J G, Yu X Y, Wu H H, et al. The synthesis of2,4,6-triisopropyl-1,3,5-trioxane catalyzed by ionicliquids [J]. Chinese Chemical Letters,2005,16(3):299-302
    68Zhu H P, Yang F, Tang J, et al. Bronsted acidic ionic liquid1-methylimidazolium tetrafluoroborate: a greencatalyst and recyclable medium for esterification [J]. Green Chemistry,2003,5(11):38-39.
    69Wu H H, Yang F, Cui P, et al. An efficient procedure for protection of carbonyls in Br nsted acidic ionicliquid [Hmim]BF4[J]. Tetrahedron Letters,2004,45(25):4963-4965.
    70Dzyuba S V, Bartsch R A. Expanding the polarity range of ionic liquids [J]. Tetrahedron Letters,2002,43(26):4657-4659.
    71Wilkes J S. Properties of ionic liquid solvents for catalysis [J]. Journal of Molecular Catalysis A:Chemical,2004,214:11-17.
    72Swatloski R P, Holbrey J D, Memon S B, et al. Using caenorhabditis elegans to probe toxicity of1-alkyl-3-methylimidazolium chloride based ionic liquids [J]. Chemical Communications,2004,(6):668-669.
    73Gathergood N, Garica M T, Scammells P J. The first readily biodegradable ionic liquids [J]. GreenChemistry,2004,6(3):166-175.
    74Sugden S, Wilkins H. The parachor and chemical constitution Part Ⅶ fused metals and salts [J]. Journal ofthe Chemical Society,1929,(26):1291-1298.
    75Dupont J, Souza R F, Suarez P A. Ionic liquid (molten salt) phase organometallic catalysis [J]. ChemicalReviews,2002,102(10):3667-3692.
    76Cole A C, Jensen J L, Ntai I, et al. Novel Br nsted acidic ionic liquids and their use as dual solvent-catalysts [J]. Journal of the American Chemical Society,2002,124(21):5962-5963.
    77Christian P M, Raymond A C, Nicholas C D, et al. Supported ionic liquid catalysis-a new concept forhomogeneous hydroformylationcatalysis [J]. Journal of the American Chemical Society,2002,124(44):12932-12933.
    78Dai L Y, Yu S Y, Shan Y K, et al. Novel Room Temperature Inorganic Ionic Liquids [J]. European Journalof Inorganic Chemistry,2004,2:237-241.
    79Dyson P J, Welton T, Williams D J, et al. Organometallic synthesis in ambient temperaturechloroaluminate(III) ionic liquids.Ligand exchange reactions of ferrocene [J]. Journal of The ChemicalSociety-dalton Transactions,1997,3465-3469.
    80Fuller J, Carlin R T, Haworth D, et al. Structure of1-ethyl-3-methylimidazolium hexafluorophosphate:model for room temperature molten salts [J]. Journal of the Chemical Society, Chemical Communications,1994,(3):299-300.
    81Poole C F, Kersten B R, Coddens M. E, et al. Organic salts, liquid at room temperature, as mobile phases inliquid chromatography [J]. Journal of Chromatography A,1986,352(c):407-425.
    82Bonhote P, Dias A P, Papageorgiou N, et al. Hydrophobic,highly conductive ambient-temperature moltensalts. Inorganic Chemistry,1996,35(5):1168-1178.
    83Wasserscheid P, Hal R V, Bosmann A.1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate—an even‘greener’ ionic liquid [J]. Green Chemistry,2002,4(4):400-404.
    84Yoshida Y, Muroi K, Otsuka A, et al.1-ethyl-3-methylimidazolium based ionic liquids containing cyanogroups: synthesis, characterization, and crystal structure [J]. Inorganic Chemistry,2004,43(4):1458-1462.
    85MacFarlane D R, Forsyth S A, Deacon G B, et al. Ionic liquids based on imidazolium.ammonium.andpyrrolidinium salts of the dicyanamide ion [J]. Green Chemistry,2002,4:444-448.
    86Zhou Z B, Matsumoto H, Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids:1-alkyl(alkylether)-3-methylimidazolium perfluoroalkyltrifluoroborate [J]. Chemistry-A European Journal,2004,10(24):6581-6591.
    87Golding J, Forsyth S, MacFarlane D R, et al. Methanesulfonate and p-toluenesulfonate salts of theN-methyl-N-alkylpyrrolidinium and quaternary ammonium cations: novel low cost ionic liquids [J]. GreenChemistry,2002,4:223-229.
    88Ford W T, Hauri R J, Hart D J. Syntheses and properties of molten tetraalkylammonium etraalkylborides.Journal of Chemical Physics [J],1973,38(22):3916-3918.
    89Ohno H, Yoshizawa M. Ion conductive characteristics of ionic liquids prepared by neutralization ofalkylimidazoles. Solid State Ionics [J],2002,154-155(c):303-309.
    90Poole S K, Shetty P H, Poole C F. Chromatographic and spectroscopic studies of the solvent properties of anew series of room-temperature liquid tetraalkylammonium sulfonates [J]. Analytica Chimica Acta,1989,218(2):241-264.
    91Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from20natural amino acids. Journalof the American Chemical Society,2005,127(8):2398-2399.
    92Zhang J, Martin G R, DesMarteau D D. Direct methylation and trifluoroethylation of imidazole andpyridine derivatives [J]. Chemical Communications,2003,(18):2334-2335.
    93Wasserscheid P, Hal R V, Steffens H C, et al. New, functionalised ionic liquids from michael-typereactions-a chance for combinatorial ionic liquid development [J]. Chemical Communications,2003,(16):2038-2039.
    94Handy S T, Okello M, Dickenson G. Solvents from biorenewable sources: ionic liquids based on fructose[J]. Organic Letters,2003,5(14):2513-2515.
    95顾彦龙,石峰,邓友全.室温离子液体:一类新型的软溶剂和功能材料[J].科学通报,2004,49(6):515-521.
    96Gordon C M. New developments in catalysis using ionic liquids [J]. Applied Catalysis A: General,2002,222:101-117.
    97邓友全,石峰,彭家建,等.微孔材料装载金属络合物离子液体催化剂[J].中国专利. CN,1389298A.2003.
    98Freemantle M, Designer solvents-ionic liquids may boost clean technology development [J]. Chemical&Engineering News,1998,76(13):32-37.
    99韩金玉,黄鑫,王华,等.绿色溶剂离子液体的性质和应用研究进展[J].化学工业与工程,2005,22(1):62-66.
    100Huddlestou J G, Willauer H D, Swatloski R P. Room temperatureionic liquids as novel media for cleanliquid liquid extraction [J]. Chemical Communications,1998,(16):1765-1766.
    101Visser A E, Swatloski R P, Rogers R D, et al. Task-specific ionic liquidsfor the extraction of metal ionsfrom aqueous solutions [J]. Chemical Communications,2001,(10):135-136.
    102Harmon C D, Smith W H, Costa D A. Criticability calculations forplutonium metal at room temperaturein ionic liquid solutions [J]. Radiation Physics and Chemistry,2001,60(3):157-159.
    103Zhang S, Zhang Q, Zhang Z C. Extractive desulfurization and denitrogenation of fuels using ionic liquids[J]. Industrial and Engineering Chemistry Research,2004,43(2):614-622.
    104Gu Y L, Shi F, Yang H, et al. Leaching separation of taurine and sodiumsulfate solid mixture using ionicliquids [J]. Separation and Purification Technology,2004,35(2):153-159.
    105苏策,张磊,张应鹏.离子液体/水混合溶剂促进醛酮还原反应[J].兰州理工大学学报,2008,34(4):74-76.
    106练习中,李毅群,周美云.离子液体/水混合溶剂促进芳醛与罗丹宁的缩合反应[J].有机化学,2006,26(9):1272-1274.
    107龚勇华,薛浩然,何鸣远,等.离子液体[bmim]BF4/水混合溶剂中的1-丁烯氢甲酰化反应研究[J].有机化学,2004,24(9):1108-1110.
    108Yu T, Hu C, Wang X, Direct Amination of Toluene with Hydroxylamine in the Presence ofVanadium-based Catalysts [J]. Chemistry Letters,2005,34:406-407.
    109Van Krevelen D W, Chermin HAG. Estimation of the free enthalpy (Gibbs free energy) of formation oforganic compounds from group contributions [J]. Chemical Engineering Science,1952,1:66-80.
    110Zhu L F, Guo B, Tang DY, et al. Sodium metavanadate catalyzed one-step amination of benzene to anilinewith hydroxylamine [J]. Journal of Catalysis,2007,245:446-455.
    111D. Zhang, R. Wang, X. Yang, Catalysis Letters,124(2008):384-391.
    112Reddy E P, Varma R S. Preparation, characterization, and activity of Al2O3-supported V2O5catalysts [J].Journal of Catalysis,2004,221:93-101.
    113Arnby K, Rahmani M, Sanati M, et al. Characterization of Pt/γ-Al2O3catalysts deactivated byhexamethyldisiloxane [J]. Applied Catalysis B: Environmental,2004,54:1-7.
    114García-Serrano J, Galindo A G, Pal U. Au-Al2O3nanocomposites: XPS and FTIR spectroscopic studies [J].Solar Energy Materials&Solar Cells,2004,82:291-298.
    115Liu Q, Liu Z, Wu W. Effect of V2O5additive on simultaneous SO2and NO removal from flue gas over amonolithic cordierite-based CuO/Al2O3catalyst [J]. Catalysis Today,2009,147S: S285-S289.
    116Zhou J, Xia Q H, Shen S C, et al. Catalytic oxidation of pyridine on the supported copper catalysts in thepresence of excess oxygen [J]. Journal of Catalysis,2004,225:128-137.
    117Boudali K L, Ghorbel A, Grange P, et al. Selective catalytic reduction of NO with ammonia over V2O5supported sulfated titanium-pillared clay catalysts: influence of V2O5content [J]. Applied Catalysis B:Environmental,2005,59:105-111.
    118Wu Y, Fang S, Jiang Y. Investigation of the effects of V2O5addition on the electrochemical properties ofcarbon anodes [J]. Journal of Power Sources,1998,75:167-170.
    119Parida K M, Dash S S, Singha S. Structural properties and catalytic activity of Mn-MCM-41mesoporousmolecular sieves for single-step amination of benzene to aniline [J]. Applied Catalysis A: General,2008,351:59-67.
    120Yu T, Hu C, Wang X, Direct Amination of Toluene with Hydroxylamine in the Presence ofVanadium-based Catalysts [J], Chemistry Letters,2005,34:406-407.
    121Bremner D H, Burgess A E, Li F B. Coupling of chemical, electrochemical and ultrasonic energies forcontrolled generation of hydroxyl radicals: direct synthesis of phenol by benzene hydroxylation [J].Applied Catalysis A: General,2000,203:111-120.
    122K l M, Ko türk G, San N, et al. A model for prediction of product distributions for the reactions ofphenol derivatives with hydroxyl radicals [J]. Chemosphere,2007,69:1396-1408.
    123Sayyar M H, Wakeman R J. Comparing two new routes for benzene hydroxylation [J]. ChemicalEngineering Research and Design,2008,86:517-526.
    124Bahidsky M, Hronec M. Direct hydroxylation of aromatics over copper–calcium–phosphates in the gasphase [J]. Catalysis Today,2005,99:187-192.
    125Schulera RH, Albarran G. The rate constants for reaction of.OH radicals with benzene and toluene [J].Radiation Physics and Chemistry,2002,64:189-195.
    126Mathieu D, Bartoli J F, Battioni P, et al. Monooxygenation of aromatic compounds by dioxygen withbioinspired systems using non-heme iron catalysts and tetrahydropterins: comparison with other reducingagents and interesting regioselectivity favouring meta-hydroxylation [J]. Tetrahedron,2004,60:3855-3862.
    127张锁江,刘晓敏,姚晓倩,董海峰,张香平.离子液体的前沿、进展及应用[J].中国科学(B辑:化学),2009,39(10):1134-1144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700