扩散渗析法过程的几个关键科学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扩散渗析(DD)由于其能耗低,无污染,操作简单等,因而成为了一种极具前景的分离技术。近年来,环境问题日益严重,能源资源日益短缺,所以在钢铁生产,金属冶炼,电镀,非铁金属的熔炼,铝箔浸蚀等工业中,人们逐渐把目光投向了DD这一环保且节能的分离技术。而在DD实际应用过程往往会处于一种极端的应用环境,如高温,高酸碱度,高金属盐含量,强氧化性,以及有机溶剂氛围等,所以这就对膜材料的物化稳定性及分离性能等提出了很高的要求。正是因为DD对膜材料的要求如此苛刻,所以目前为止,能够用于DD过程的膜非常有限。此外,在这些金属加工相关行业的生产过程中,往往根据特定的应用背景会使用到不同的无机强酸,因而会产生各种不同的废酸液,同时,酸液中也会存在着不同的金属盐。在使用DD技术处理这些废酸液时,不同的酸及不同的金属盐也会对DD的分离回收性能产生巨大的影响。本文为了解决上述问题,设计制备了有机-无机杂化离子膜,并考察了该批膜的高温DD性能,而后从中选择性能优良的杂化膜,基于数学模型考察了不同的酸及不同的金属离子对DD性能的影响,具体内容包括:
     (1)对溴化后的poly(2,6-二甲基-1,4-次苯基氧化物)(PPO)聚合物羟基化,再用三甲胺季胺化,继而引入无机硅烷TEOS进行溶胶-凝胶反应,制得了BPPO-SiO2杂化膜。用三甲胺季胺化是为了保证膜有较强的离子交换基团,保证一定的IEC和WR;引入无机硅烷就是为了将无机成分和有机成分的优势完美结合起来,赋予膜优良的物理及化学稳定性。通过对该批膜基本性能表征后证明:该批膜的热稳定性和机械稳定性都得到了显著的提高,并具有较高的离子交换容量(IEC)和合适的水含量(WR)。
     (2)把这批杂化膜用于HCl+FeCl2体系的DD来回收HCl,测试温度的变化范围为15℃-65℃。研究高温DD具有重要的意义:首先,由于生产运行过程中的摩擦力等作用,从工厂里直接排出的废液温度都较高;其次,高温能够有利于促进离子的传递。结果表明:随着温度的变化,该杂化离子交换膜在高温下表现出了较好的DD性能,其分离因子(S)可达41;而商业用膜DF-120的S都在较低的水平且没有明显的变化。将膜结构与DD结果关联后发现:无机硅的网状结构对DD的选择性具有较大的影响,尤其在高温下,影响更为明显。
     (3)基于制备的杂化膜,对HCl+NaCl、H2SO4+Na2SO4和H3PO4+Na3PO4进行DD性能测试,来考察不同的酸根离子对DD性能的影响。由于实验过程中强力的搅拌,所以忽略了液膜的影响,并且为了简化,假设了该DD过程是一个拟稳态过程。进而建立了总阴离子浓度随时间变化的微分式,并附以优化条件。该项工作中,只需要测定不同时间点下两室中离子的浓度,进而进行拟合可以求出最优化的渗析系数P,以此来定量的比较考察不同酸根离子对DD的影响。最终拟合的渗析系数的顺序为:将cl-,SO42"-和PO43-离子的性质和P的变化趋势关联后发现:离子在膜内的吸附、扩散以及其在溶液中的初始浓度是影响渗析系数的重要因素。该模型简单易用,即使是不从事DD理论研究的人员也容易上手。只需要测得不同时间点下渗析液和扩散液中的离子浓度,而后即可快速的拟合出膜对特定体系的P,进而判断出膜的DD性能。
     (4)而后将该模型进行调整和拓展,进一步研究了不同价态的金属离子对HCl渗析过程的影响。选取的体系有:HCl+NaCl, HCl+FeCl2, HCl+NiCl2, HCl+CuCl2, HCl+ZnCl2或HCl+AlC13。最终拟合出的各体系的Cl-离子的渗析系数的大小顺序为:通过考察发现,金属离子对HCl的DD的影响主要是由于金属离子会和Cl-离子形成各种不同的络合离子导致的。归根究底,即Pcl-的大小,则取决于金属离子本身的性质,以及金属离子和Cl-离子形成络合离子的电荷、体积及稳定常数的大小等。
Diffusion dialysis(DD) becomes one of the most promising separation techniques due to low energy consumption, no environmental pollution, easy operation and etc. Thus, the production industries, including steel production, metal refining, electroplating, non-ferrous metal refining and etc., start to focus on DD technique with increasing serious environmental pollution and resources shortage.
     In practical DD application, there is always a harsh operation condition, such as high temperature, high acid or alkali, heavy metal salts content, strong oxidization or organic solvents. So, the membrane materials with high physic-chemical stability and separation effect are strongly required. Accordingly, the membranes that can be used in DD processes are quite limited. Besides, in the metal production industries, different kinds of strong acids will be selected according to different application backgrounds. Thus, large quantities of different acidic wastes with all kinds of metal salts will be produced. If DD is employed to treat those wastes, the different acids and metal salts will affect DD performance significantly. In order to investigate and deal with the above scientific problems, organic-inorganic hybride ion exchange membranes for DD are designed. Then, high temperature DD performances for hybrid membranes are investigated in HCl+FeCl2solution. And the effects of different acids and metal salts on hybrid membranes DD are also discussed based on mathematical model. The main contents can be summarized as followings:
     (1) Poly(2,6-dimethyl-1,4-phenylene oxide)(PPO)-SiO2hybrid membranes, which are produced from hydroxylation with KOH, quatemization with Trimethyl-amine(TMA), sol-gel reaction with TEOS of brominated PPO, have been prepared. Among them, TMA is used to bring in strong ion exchange groups to assure IEC and WR; inorganic silica TEOS is to combine the merits of organic and inorganic materials, endowing excellent physic-chemical stabilities and mechanical stability to membranes. From the membranes characterizations, it's demonstrated that the hybrid membranes' stabilities have been enhanced obviously, and high IEC and proper Wr can be obtained.
     (2) High temperature DD for hybrid membranes has been tested, and the temperatures are ranged from15℃to65℃. Research on high temperature DD process is meaningful:first, the wastes discharged from factories are in high temperature due to continuous processing and friction forces; second, high temperature is advantageous to ion transport. With increasing temperatures, excellent DD performances can be obtained, and separation factor(S) can be as high as41, while commercial membrane DF-120shows low separation effect throughout. The excellent DD results, especially at high temperature, can be ascribed to the silica network formation.
     (3) The effect of different acids on DD effects are discussed based on a mathematical model. The following systems are selected:HCl+NaCl, H2SO4+Na2SO4, and H3PO4+Na3PO4. Due to intensive stirring, the effects of liquid films can be neglected and the preudo-steady state of DD process is supposed for simplification. Then, the basic differential equations describing the dependence of the total anion concentrations upon time can be obtained, combined with the optimized procedure. The optimized dialysis coefficient P can be further fitted based on the experimental ions concentrations at different times. And P is used to describe the acid effect on DD quantitively. The final fitted results are as following:PH2SO4total(2.50×10-6m/s)>PHCl (1.60×10-6m/s)>PH3PO4total(1.0×10-7m/s). After correlation Cl-, SO42-and PO43-charicters with P trends, it's found ions adsorption and diffusivity in membrane and the ions initial concentrations in waste are the important factors to affect DD performance. This model is simple and easy to use, so it is readily available for users, including those who don't engate in DD.
     (4) Then, the model is modified and expanded to investigate the effects of different metal salts on DD. The investigated systems are HCl+NaCl, HCl+FeCl2, HCl+NiCl2, HCl+CuCl2, HCl+ZnCl2and HCI+AICl3. The fitted results are PCl-(CuCl2)(6.1×10-6m/s)> PCl-(FeCl2)(3.1×10-6m/s)>PXCl-(NiCl2)(2.6×10-6m/s)>PCl-(NaCl-)(2.0×10-6m/s)>PCl-(NaCl-)(1.6×10-6m/s)>PCl-(ZnCl2)(3.4×10-7m/s). The metal ions effects on HC1DD are mainly resulted from the complexes formation between metal ions and Cl-. In summary, Pci-is highly related with metal ions charicters, and the charge, volume, stability coefficients of complexes.
引文
付丹,徐静.2008.酸回收的扩散渗析技术及其发展现状[J].污染防治技术,21:59-65
    Yonghui Wu, Cuiming Wu, Tongwen Xu2009. Novel silica/poly(2,6-dimethyl-1,4-phynylene oxide) hybrid anion-exchange membranes for alkaline fuel cells:effect of heat treatment[J]. Journal of Membrane Science.338:51-60.
    STANCHEVA, K.A.2008. APPLICATION OF DIALYSIS [J]. Oxidation Communications.31(4): 758-775.
    张启修,张传福.2001.离子交换膜分离技术在冶金中的应用[J].膜科学与技术,21:37-43.
    Tongwen Xu.2005. Ion exchange membranes:State of their development and perspective[J]. Journal of Membrane Science.263(1-2):1-29.
    Jeong, J., M.S. Kim, B.S. Kim, et al.2005. Recovery of H2SO4 from waste acid solution by a diffusion dialysis method[J]. Journal of Hazardous Materials.124(1-3):230-235.
    Tongwen, Xu. and Weihua Yang.2004. Tuning the diffusion dialysis performance by surface cross-linking of PPO anion exchange membranes--simultaneous recovery of sulfuric acid and nickel from electrolysis spent liquor of relatively low acid concentration [J]. Journal of Hazardous Materials.109(1-3):157-164.
    Palaty, Z. and A. Zakova.2006. Competitive transport of hydrochloric acid and zinc chloride through polymeric anion-exchange membrane[J]. Journal of Applied Polymer Science.101(3): 1391-1397.
    Negro, C., M.A. Blanco, F. Lopez-Mateos, et al.2001. Free acids and chemicals recovery from stainless steel pickling baths[J]. Separation Science and Technology.36(7):1543-1556.
    张启修,肖连生.2003.膜技术在稀有金属冶炼中的应用[J].稀有金属,27:1-7.
    Palaty, Z. and H. Bendova.2009. Separation of HCl+FeCl2 mixture by anion-exchange membrane[J]. Separation and Purification Technology.66(1):45-50.
    Stachera, D.M., R. F. Childs, A.M. Mika, et al.1998. Acid recovery using diffusion dialysis with poly(4-vinylpyridine)-filled microporous membranes[J]. Journal of Membrane Science.148(1): 119-127.
    Choi, Y.-J., J.-M. Park, K.-H. Yeon, et al.2005. Electrochemical characterization of poly(vinyl alcohol)/formyl methyl pyridinium (PVA-FP) anion-exchange membranes [J]. Journal of Membrane Science.250(1-2):295-304.
    Tongwen, Xu.2002. Electrodialysis processes with bipolar membranes (EDBM) in environmental protection--a review [J]. Resources, Conservation and Recycling.37(1):1-22.
    Wijmans, J.G. and R.W. Baker.1995. The solution-diffusion model:a review[J]. Journal of Membrane Science.107(1-2):1-21.
    Palaty, Z., A. Zakova and P. Prchal.2007a. Continuous dialysis of carboxylic acids. Permeability of Neosepta-AME membrane[J]. Desalination.216:345-355.
    徐铜文,李传润.2011.一种螺旋卷式扩散渗析膜组件及其制备方法[J].中国专利.
    Luo, J., C. Wu, T. Xu, et al.2011a. Diffusion dialysis-concept, principle and applications[J]. Journal of Membrane Science.366(1-2):1-16.
    B., K.A.J.2000. Electrodialysis water splitting-application of electrodialysis with bipolar membranes[J]. Handbook-Bipolar membrane Technology, Twente University Press, Enschede, Holland,Chapter 9.
    Tongwen, X. and Y. Weihua.2001a. Fundamental studies of a new series of anion exchange membranes:membrane preparation and characterization[J]. Journal of Membrane Science. 190(2):159-166.
    Tongwen Xu.2002. Fundamental studies on a new series of anion exchange membranes:Effect of simultaneous amination-crosslinking processes on membranes ion-exchange capacity and dimensional stability[J], Journal of Membrane Science.199:203-210.
    葛道才.1989.IM-2型强碱性阴离子交换膜的制备及其在苦碱水脱盐中的应用[J].膜科学与技术.9:26-30.
    Mika, A.M., R.F. Childs;, J.M. Dickson;, et al.1995. A new class of polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity[J]. Journal of Membrane Science.108:37-56.
    Cuiming Wu, Yonghui Wu, J. Luo, et al.2010. Anion exchange hybrid membranes from PVA and multi-alkoxy silicon copolymer tailored for diffusion dialysis process[J]. Journal of Membrane Science.356(1-2):96-104.
    Yonghui Wu, Cuiming Wu, Yiwen Li, et al.2010. PVA-silica anion-exchange hybrid membranes prepared through a copolymer crosslinking agent[J]. Journal of Membrane Science.350(1-2): 322-332.
    Xiao, X., C. Wu, P. Cui, et al.2011. Cation exchange hybrid membranes from SPPO and multi-alkoxy silicon copolymerpreparation, properties and diffusion dialysis performances fro sodium hydroxide recovery[J]. Journal of Membrane Science.379:112-120.
    Wang, H., C. Wu, J. Luo, et al.2011. Cation exchange hybrid membranes based on PVA for alkali recovery through diffusion dialysis[J]. Journal of Membrane Science.376:233-240.
    Luo, J., C. Wu, Y. Wu, et al.2010. Diffusion dialysis of hydrochloride acid at different temperatures using PPO-SiO2 hybrid anion exchange membranes[J]. Journal of Membrane Science.347(1-2): 240-249.
    Tongwen, X. and Y. Weihua.2001b. Sulfuric acid recovery from titanium white (pigment) waste liquor using diffusion dialysis with a new series of anion exchange membranes-static runs[J]. Journal of Membrane Science.183(2):193-200.
    Xu, T.W. and W.H. Yang.2003. Industrial recovery of mixed acid (HF+HNO3) from the titanium spent leaching solutions by diffusion dialysis with a new series of anion exchange membranes [J]. Journal of Membrane Science.220(1-2):89-95.
    Xu, T., Z. Liu, Y. Li, et al.2008. Preparation and characterization of Type II anion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)[J]. Journal of Membrane Science.320(1-2):232-239.
    Kiyono, R., G.H. Koops, M. Wessling, et al.2004. Mixed matrix microporous hollow fibers with ion-exchange functionality[J]. Journal of Membrane Science.231(1-2):109-115.
    杨骥,刘开成,贾金平等.2006.草浆黑液中碱的扩散渗析回收与处理[J].
    Strathmann, H.1995. Membrane separations technology-Principles and Applications [J]. Electrodialysis and related processes.
    李博,刘述平,唐湘平.2010.铜铅锌多金属共生矿湿法冶金研究进展[J].矿产综合利用.6:33-36.
    杨金洪.2009.我国钨矿原料NaOH分解的理论与工艺研究进展[J].中国钨业.24:28-31.
    杜仰民.1997.造纸工业废水治理进展与评述[J].工业水处理.17:1-5.
    Ersoz, M., I.H. Gugul and A. Sahin.2001. Transport of Acids through Polyether-Sulfone Anion-Exchange Membrane[J]. Journal of Colloid and Interface Science.237(1):130-135.
    Palaty, Z., P. Stocek, A. Zakova, et al.2007b. Transport characteristics of some carboxylic acids in the Polymeric anion-exchange membrane Neosepta-AMH:Batch experiments [J]. Journal of Applied Polymer Science.106(2):909-916.
    Palaty, Z. and A. Zakova.2004a. Separation of H2SO4+CuSO4 mixture by diffusion dialysis[J]. Journal of Hazardous Materials.114(1-3):69-74.
    Palaty, Z. and A. Zakova.2004b. Separation of H2SO4+ZnSO4 mixture by diffusion dialysis[J]. Desalination.169(3):277-285.
    Elmidaoui, A., A.T. Cherif, J. Molenat, et al.1995. Transfer of H2SO4, Na2SO4 and ZnSO4 by dialysis through an anion exchange membrane[J]. Desalination.101(1):39-46.
    Wei, C., X.B. Li, Z.G. Deng, et al.2010. Recovery of H2SO4 from an acid leach solution by diffusion dialysis[J]. Journal of Hazardous Materials.176(1-3):226-230.
    Xu, J., D. Fu and S. Lu.2009a. The recovery of sulphuric acid from the waste anodic aluminum oxidation solution by diffusion dialysis[J]. Separation and Purification Technology.69(2):168- 173.
    Lin, S.H. and M.C. Lo.1998. Recovery of sulfuric acid from waste aluminum surface processing solution by diffusion dialysis[J]. Journal of Hazardous Materials.60(3):247-257.
    Tang, J.J., K.G. Zhou and Q.X. Zhang.2006. Sulfuric acid recovery from rare earth sulphate solutions by diffusion dialysis[J]. Transactions of Nonferrous Metals Society of China.16(4): 951-955.
    Xu, J., S. Lu and D. Fu.2009b. Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis[J]. Journal of Hazardous Materials.165(1-3):832-837.
    Palaty, Z., A. Zakova and P. Dolecek.2000. Modelling the transport of Cl-ions through the anion-exchange membrane NEOSEPTA-AFN-Systems HCl/membrane/H2O and HC1-FeCl3/membrane/H2O[J]. Journal of Membrane Science.165(2):237-249.
    Palaty, Z. and A. Zakova.2007c. Separation of HC1+NiCl2 mixture by diffusion dialysis[J]. Separation Science and Technology.42(9):1965-1983.
    Elmidaoui, A., J. Molenat and C. Gavach.1991. Competitive diffusion of hydrochloric acid and sodium chloride through an acid dialysis membrane[J]. Journal of Membrane Science.55(1-2): 79-98.
    Palaty, Z. and A. Zakova.2001. Transport of hydrochloric acid through anion-exchange membrane NEOSEPTA-AFN-Application of Nernst-Planck equation[J].Journal of Membrane Science. 189(2):205-216.
    Kang, M.S., K.S. Yoo, S.J. Oh, et al.2001. A lumped parameter model to predict hydrochloric acid recovery in diffusion dialysis[J]. Journal of Membrane Science.188(1):61-70.
    Agrawal, A. and K.K. Sahu.2009. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries[J]. Journal of Hazardous Materials.171(1-3):61-75.
    张惠敏,李德良,黎定标等.2006.废退锡液中硝酸和锡的综合回收[J].
    Palaty, Z. and A. Zakova.2004c. Transport of nitric acid through the anion-exchange membrane NEOSEPTA-AFN[J]. Desalination.160(1):51-66.
    Narebska, A. and M. Staniszewski.2008. Separation of carboxylic acids from carboxylates by diffusion dialysis[J]. Separation Science and Technology.43(3):490-501.
    Narebska, A. and M. Staniszewski.1997. Separation of fermentation products by membrane techniques.1. Separation of lactic acid lactates by diffusion dialysis[J]. Separation Science and Technology.32(10):1669-1682.
    Akgemci, E.G., M. Ersoz and T. Atalay.2004. Transport of formic acid through anion exchange membranes by diffusion dialysis and electro-electro dialysis[J]. Separation Science and Technology.39(1):165-184.
    Bendova, H., Z. Palaty and A. Zakova.2009. Continuous dialysis of inorganic acids:permeability of Neosepta-AFN membrane[J]. Desalination.240(1-3):333-340.
    Palaty, Z., P. Stocek, H. Bendova, et al.2009. Continuous dialysis of carboxylic acids:Solubility and diffusivity in Neosepta-AMH membranes[J]. Desalination.243(1-3):65-73.
    Noma, Y.1995.离子交换膜废水处理技术[J].
    罗爱平,王晓春.2000.离子交换膜扩散渗析分离碱钨的可行性研究[J].
    何善媛,刘敏.2005.利用膜技术回收利用碱性废水研究进展[J].
    彭会清,庞翠玲.2006.膜分离技术在处理酸性废液中的应用概述[J].
    Horwitz, E.P., M.L. Dietz and D.E. Fisher.1991. Srex:a new process for the extraction and recovery of strontium from acidic nuclear waste streams[J]. Solvent Extraction and ion exchange.9:1-25.
    Faubel, W. and A. Alis.1989. Partitioning of nitric acid intermediate-level waste solutions by sorption[J].NuclearTechnology.86:60-65.
    Mathur, J.N., M.S. Murali, M.V.B. Krishna, et al.1998. Diffusion dialysis aided electrodialysis process for concentration of radionuclides in acid medium[J]. Journal of Radioanalytical and Nuclear Chemistry.232(1-2):237-240.
    Wodzki, R. and P. Szczepanski.2001. Treatment of electroplating rinse solution by continuous membrane extraction and diffusion dialysis[J]. Polish Journal of Environmental Studies.10(2): 101-111.
    唐建军,陈建军,张伟等.2005.扩散渗析法回收硫酸稀土溶液中硫酸研究[J].
    Banat, F.A. and J. Simandl.1996. Removal of benzene traces from contaminated water by vacuum membrane distillation[J]. Chemical Engineering Science.51(8):1257-1265.
    Zhao, Y., Y. Zhang, W. Xing, et al.2005. Treatment of titanium white waste acid using ceramic microfiltration membrane[J]. Chemical Engineering Journal.111(1):31-38.
    Zhao, Y.J., Y. Zhang, W.H. Xing, et al.2005. Treatment of titanium white waste acid using ceramic microfiltration membrane[J]. Chemical Engineering Journal.111(1):31-38.
    赵宜江,邢卫红,徐南平*.2001.陶瓷膜微滤-扩散渗析集成膜过程处理钛白废酸的研究[J]. Membrane Science & Technology Research Center.
    Wu, Y, C. Wu, T. Xu, et al.2008. Novel anion-exchange organic-inorganic hybrid membranes: Preparation and characterizations for potential use in fuel cells[J]. Journal of Membrane Science. 321(2):299-308.
    Wu, Y, C. Wu;, T. Xu;, et al.2008. Free-standing anion-exchange PEO-SiO2 hybrid membranes[J]. Journal of Membrane Science.307:28-36.
    Wu, C, T. Xu, W. Yang.2005. Synthesis and characterizations of novel, positively charged poly(methyl acrylate)-SiO2 nanocomposites[J]. Nanocomposites, Eur. Polym. J.41:1901-1908.
    Wu, C., X. Tongwen and Y. Weihua.2003. Fundamental studies of a new hybrid(inorganic-organic) positively charged membrane:membrane preparation and characterizations[J]. Journal of Membrane Science.216:269-278.
    Regel-Rosocka, M.2010. A review on methods of regeneration of spent pickling solutions from steel processing[J]. J Hazard Mater.177(1-3):57-69.
    Gohil, G.S., R.K. Nagarale, V.V. Binsu, et al.2006. Preparation and characterization of monovalent cation selective sulfonated poly(ether ether ketone) and poly(ether sulfone) composite membranes[J]. Journal of Colloid and Interface Science.298(2):845-853.
    Berezina, N.P., N.A. Kononenko, O.A. Dyomina, et al.2008. Characterization of ion-exchange membrane materials:Properties vs structure[J]. Advances in Colloid and Interface Science. 139(1-2):3-28.
    Sata, T., M. Tsujimoto, T. Yamaguchi, et al.1996. Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature[J]. Journal of Membrane Science. 112(2):161-170.
    Tang, B., T. Xu and W. Yang.2006a. A novel positively charged asymmetry membranes from poly(2,6-dimethyl-1,4-phenylene oxide) by benzyl bromination and in situ amination:Part Ⅱ: Effect of charged group species on membrane performance and morphologies[J]. Journal of Membrane Science.268(2):123-131.
    Tang, B., T. Xu, P. Sun, et al.2006b. A novel of positively charged asymmetry membrane prepared from poly(2,6-dimethyl-1,4-phenylene oxide) by in situ amination:Part Ⅲ. Effect of benzyl and aryl bromination degrees of polymer on membrane performance and morphologies[J]. Journal of Membrane Science.279(1-2):192-199.
    Xu, T., Z. Liu and W. Yang.2005. Fundamental studies of a new series of anion exchange membranes:membrane prepared from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and triethylamine[J]. Journal of Membrane Science.249(1-2):183-191.
    Herman, H., R.C.T. Slade and J.R. Varcoe.2003. The radiation-grafting of vinylbenzyl chloride onto poly(hexafluoropropylene-co-tetrafluoroethylene) films with subsequent conversion to alkaline anion-exchange membranes:optimisation of the experimental conditions and characterisation[J]. Journal of Membrane Science.218(1-2):147-163.
    Slade, R.C.T. and J.R. Varcoe.2005. Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes[J]. Solid State Ionics.176(5-6):585-597.
    Zhang, S., T. Xu and C. Wu.2006. Synthesis and characterizations of novel, positively charged hybrid membranes from poly(2,6-dimethyl-1,4-phenylene oxide)[J]. Journal of Membrane Science.269(1-2):142-151.
    Xiong, Y., Q.L. Liu, A.M. Zhu, et al.2009. Performance of organic-inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells[J]. Journal of Power Sources.186(2): 328-333.
    Li, Y., Z. Huang and Y. Lu.2006. Electrospinning of nylon-6,66,1010 terpolymer[J]. European Polymer Journal.42(7):1696-1704.
    Yang, C.-C.2007. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC[J]. Journal of Membrane Science.288(1-2):51-60.
    Colicchio, Ⅰ., D.E. Demco, M. Baias, et al.2009. Influence of the silica content in SPEEK-silica membranes prepared from the sol-gel process of polyethoxysiloxane:Morphology and proton mobility[J]. Journal of Membrane Science.337(1-2):125-135.
    Brown, W.H. Organic Chemistry[J]. Harcourt College Publishers:New York.
    Li, Y., T. Xu and M. Gong.2006. Fundamental studies of a new series of anion exchange membranes: Membranes prepared from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) and pyridine[J]. Journal of Membrane Science.279(1-2):200-208.
    Chang, H.Y., R. Thangamuthu and C.W. Lin.2004. Structure-property relationships in PEG/SiO2 based proton conducting hybrid membranes—A 29Si CP/MAS solid-state NMR study[J]. Journal of Membrane Science.228(2):217-226.
    Zhang, Q.G., Q.L. Liu, Z.Y. Jiang, et al.2007. Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes[J]. Journal of Membrane Science.287(2):237-245.
    Kujawski, W. and A. Narebska.1991. Transport of electrolytes across charged membranes. Part Ⅳ. Frictional interactions of the neutral and alkaline permeants and the permeability/reflection phenomena[J]. Journal of Membrane Science.56(1):99-112.
    Narebska, A., S. Koter, A. Warszawski, et al.1995. Irreversible thermodynamics of transport across charged membranes. Part Ⅳ. Frictional interactions and coupling effects in transport of acid through anion exchange membranes[J]. Journal of Membrane Science.106(1-2):39-48.
    Tugas, Ⅰ., G. Pourcelly and C. Gavach.1993. Electrotransport of protons and chloride ions in anion exchange membranes for the recovery of acids. Part Ⅰ. Equilibrium properties [J]. Journal of Membrane Science.85(2):183-194.
    Palaty, Z. and A. Zakova.1996. Transport of sulfuric acid through anion-exchange membrane NEOSEPTA-AFN[J]. Journal of Membrane Science.119(2):183-190.
    Palaty, Z. and A. Zakova.2003. Transport of some strong incompletely dissociated acids through anion-exchange membrane[J]. Journal of Colloid and Interface Science.268(1):188-199.
    Palaty, Z. and A. Zakova.1994. Diffusion dialysis of sulfuric acid in a batch cell[J]. Collect. Czech. Chem. Commun.59.
    Kotrly, S. and L. Sucha.1985. Handbook of Chemical Equilibria in Analytical Chemistry[J]. Ellis Horwood, Chichester.
    Kielland, J.1937. Individual activity coefficients of ions in aqueous solutions[J]. J. Am. Chem. Soc. 59:1675-1678.
    Xue, T., R.B. Longwell and K. Osseo-Asare.1991. Mass transfer in Nation membrane systems: Effects of ionic size and charge on selectivity [J]. Journal of Membrane Science.58(2):175-189.
    Le, X.T.2008. Permselectivity and microstructure of anion exchange membranes[J]. Journal of Colloid and Interface Science.325(1):215-222.
    Palaty', Z. and A. Zakova.2000. Apparent diffusivity of some inorganic acids in anion-exchange membrane[J]. Journal of Membrane Science.173(2):211-223.
    Aouad, F., A. Lindheimer, M. Chaouki, et al.1999. Loss of permselectivity of anion exchange membranes in contact with zinc chloride complexes[J]. Desalination.121(1):13-22.
    Mori, K., H. Ohya, S.I. Semenova, et al.2000. Diffusional characteristics of sodium chloride in symmetrical cellulose acetate membranes measured by an unsteady-state dialysis method[J]. Desalination.127(3):225-249.
    Luo, J., C. Wu, Y. Wu, et al.2011b. Diffusion dialysis processes of inorganic acids and their salts: The permeability of different acidic anions[J]. Separation and Purification Technology.78(1): 97-102.
    Jung Oh, S., S.-H. Moon and T. Davis.2000. Effects of metal ions on diffusion dialysis of inorganic acids[J]. Journal of Membrane Science.169(1):95-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700