流体力学高精度高分辨率差分格式的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在计算流体力学中,对同时包含间断和复杂流动现象的流场进行数值模拟是一个迫切的并且也是非常困难的任务。近年来,针对此类问题的捕捉激波的高精度高分辨率计算方法得到了迅速的发展。而在流体力学数值算法中,有限差分方法历史最悠久也最为成熟,并且适宜于构造高精度的格式。本论文主要研究流体力学高精度高分辨率差分格式,对格式的精度和稳定性进行了分析和讨论。论文内容主要包含以下几个方面:1. WENO格式的精度以及光滑因子的研究
     给出了一个方便使用的五点WENO格式达到最高精度的充分条件,以及一般情况下的WENO格式的精度公式。另外,对Jiang和Shu的WENO格式的光滑因子进行了分析,给出了两个低耗散的光滑因子,并分析了Liu等人的WENO格式的光滑因子,通过Borges等人的WENO权因子计算方法保证收敛精度。数值算例表明,使用这些光滑因子的WENO格式对连续流场的捕捉能力有所提高。2.紧致格式及紧致WENO混合格式的研究
     构造了一个使用对称网格模板的五阶守恒型迎风紧致格式,与经典的五阶迎风紧致格式相比,该格式耗散较低,且拥有更大的稳定性范围,并且给出了一种显式的保证整体精度为五阶的边界格式。另外,对Ren等人的紧致WENO混合格式做出了改进,对欧拉方程采用了新的处理,从而避免了块三对角方程组的求解,大大降低了计算量。3.简化了半离散差分格式稳定性条件
     傅立叶分析方法得到的稳定性条件一般为余弦函数的不等式,不易于使用。本文将余弦函数转化为多项式形式,同时证明了当差分格式每增加两阶收敛精度,该多项式就可以提取一个因子,这使得该多项式不等式的求解大为简化。该方法对判断半离散差分格式的稳定性十分有效。而在构造高精度优化格式时,该方法得到的稳定性条件可以表示为差分格式系数的有限个约束的形式,这使得在优化过程中加入稳定性限制变得可行。4.优化型格式的研究
     通过将一个给定模板上的最高阶精度格式与一种优化格式进行加权平均,权系数由本文提出的局部波数指示子确定,得到了一种保精度优化(Maximum order preserving optimized,MOPO)格式。然后将这种格式与六点对称WENO格式融合,得到了一种MOPOWENO格式。数值结果表明,MOPO格式与MOPOWENO格式不仅保持了最高阶精度,并且在所测试问题中比相应的两种子格式的相位误差更小。
In computational fluid dynamics, the numerical simulation of flow with both discontinuities andcomplex structures is an urge and difficult task. To solve these problems, high-order high-resolutionnumerical methods have been proposed recently. In the numerical methods of fluid dynamics, finitedifference schemes are simple and easy to achieve high order, therefore they have been extensivelystudied. The main object of this thesis is to find difference schemes which are more suitable for aboveproblems. Besides that, there are some discussions about the convergence order and the stability ofdifference schemes. The main content includes the following parts:1. Research about the convergence order and the smoothness indicator of WENO schemes
     A sufficient condition for five-points WENO schemes achieving the fifth-order is given which iseasy to use. And the formula of accuracy orders of WENO schemes is also given. Furthermore, thesmoothness indicator of Jiang and Shu is improved for better resolution on complex structure. Inaddition to this, the first smoothness indicator proposed by Liu et al. is analyzed in detail.2. Research about compact schemes and hybrid compact WENO schemes
     A fifth-order conservative upwind compact schemes and an explicit boundary scheme whichmaintains the global fifth-order accuracy are given. Furthermore, based on the fifth-order hybridcompact WENO scheme proposed by Ren et al., a new treatment for Euler equations is given. Sincethis treatment has avoided the block tridiagonal equations, it reduces the computation costs greatly. Atthe same time, it increases the dissipation slightly because of its global flux splitting.3. Research about stability criterion of semi-discrete difference schemes
     The stability condition for semi-discrete difference schemes obtained from Fourier analysis isusually an inequality of trigonometric function which is not convenient to use. For difference schemeon uniform grids, this trigonometric function can be converted into a polynomial form. Taking theconvergence order of the scheme into consideration, this polynomial can be factorized into a simpleform. Thus, the corresponding inequality is much easier to solve than the original one. This method isvery effective for judging the stability of semi-discrete difference schemes. Particularly, by using thismethod, it is practicable to add the stability constraints when designing high-order schemes.4. Research about optimized scheme and optimized WENO schemes
     A maximum order preserving optimized (MOPO) scheme which is an weighted average of themaximum order scheme and an optimized scheme is given. To determine the weights of these two linear weights, a local wavenumber indicator is introduced. Furthermore, a maximum order preservingoptimized WENO (MOPOWENO) scheme is achieved by integrating it with the sixth-points WENOschemes framework. Numerical results show that the proposed schemes combined both advantages ofthe maximum order schemes and the optimized schemes.
引文
[1]张涵信.关于CFD计算结果的不确定度问题.空气动力学学报,2008,26(1):47-49.
    [2]张涵信,査俊.关于CFD验证确认中几个概念和计算结果的不确定度问题.空气动力学学报,2010,28(1):39-45.
    [3]邓小刚,宗文刚,张来平等.计算流体力学中的验证与确认.力学进展,2007,37(2):279-288.
    [4]Godunov S K. A difference scheme for numerical computation of discontinuous solutions ofequations of fluid dynamics, Mat. Sb.,1959,47:271–306.
    [5]Roe P. Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys.,1978,27:1–31.
    [6]Leer B V. Towards the ultimate conservative difference scheme V. A second order sequel toGodunov’s method. J. Comput. Phys.,1979,32:101–136.
    [7]Colella P, Woodward P R. The piecewise parabolic method (PPM) for gas dynamical simulations. J.Comput. Phys.,1984,54:174–201.
    [8]Harten A. High resolution schemes for conservation laws. J. Comput. Phys.,1983,49:357-393.
    [9]Goodman J B, LeVeque R J.A geometric approach to high resolution TVD schemes. SIAM J.Numer. Anal.,1988,25(2):268-284.
    [10]LeVeque R J. Numerical methods for conservation laws(Second Edition). Boston: Birkhauser,1992.
    [11]Jameson A. Artificial diffusion, upwind biasing, limiters and their effect on accuracy andmultigrid convergence in transonic and hypersonic flows. The11th Computational Fluid DynamicsConference, Orlando, FL United States: AIAA,1993.
    [12]Shu C W. TVB Uniformly High-order Schemes for Conservation Laws. Mathematics ofComputation,1987,49:105-121.
    [13]Chakravarthy S R, Harten A, Osher S. Essentially nonoscillatory shock capturing schemes ofarbitrarily high accuracy. The24th Aerospace Sciences Meeting, Reno, NV: AIAA,1986.
    [14]Harten A, Engquist B, Osher S, Chakravarthy S R. Uniformly high-order accurate essentiallynon-oscillatory shock-capturing schemes III. J. Comput. Phys.,1987,71:231-323.
    [15]Shu C W, Osher S. Efficient Implementation of essentially non-oscillatory shocks capturingschemes. J. Comput. Phys.,1988,77:439-471.
    [16]Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shocks capturingschemes II. J. Comput. Phys.,1989,83:32-78.
    [17]Harten A. ENO schemes with subcell resolution. J. Comput. Phys.,1989,83:148-184.
    [18]Shu C W. Numerical experiments on the accuracy of ENO and modified ENO schemes. J. Sci.Comput.,1990,5:127-149.
    [19]Yang H. An artificial compression method for ENO schemes: The slope modification method. J.Comput. Phys.,1990,89:125-162.
    [20]Shu C W, Zang T A. High order ENO schemes applied to two-and three-dimensionalcompressible flow. Appl. Numer. Math.,1992,9:45-71.
    [21]Hannappel R, Hauser T, Friedrich R. A comparison of ENO and TVD schemes for thecomputation of shock turbulence interaction. J. Comput. Phys.,1995,121:176-184.
    [22]Liu X D, Osher S. Convex ENO high order multi-dimensional schemes without field by fielddecomposition or staggered grids. J. Comput. Phys.,1998,142:304-330.
    [23]Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory shock-capturing schemes. J.Comput. Phys.,1994,115:200-212.
    [24]Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes. J. Comput. Phys.,1996,126:202-228.
    [25]Peer A A I, Dauhoo M Z, Bhuruth M. A method for improving the performance of the WENO5scheme near discontinuites. Applied Mathematics Letters,2009,22,1730-1733.
    [26]Susana S, Antonio M. Power ENO methods: a fifth-order accurate Weighted Power ENO method.J. Comput. Phys.,2004,194:632-658.
    [27]Henrick A K, Aslam T D, Powers J M. Mapped weighted essentially non-oscillatory schemes:achieving optimal order near critical points. J.Comput.Phys.,2005,207:542-567.
    [28]Borges R, Carmona M, Costa B, Don W S. An improved weighted essentially non-oscillatoryscheme for hyperbolic conservation laws. J. Comput. Phys.,2008,227:3192-3211.
    [29]Shen Y, Zha G. Improvement of the WENO scheme smoothness estimator. Int. J. Numer. Meth.Fluids,2010,64:653-675.
    [30]Zhang S H, Shu C W. A new smoothness indicator for the WENO Schemes and its effect on theconvergence to steady state. J. Sci. Comp.,2007,31:273-305.
    [31]Balsara D S, Shu C W. Monotonicity preserving weighted essentially non-oscillatory schemeswith increasingly high order of accuracy. J. Comput. Phys.,2000,160:405-452.
    [32]Gerolymos G A, Senechal D, Vallet I. Very high order WENO schemes. J. Comput. Phys.,2009,228,8481-8524.
    [33]Shi J, Hu C Q, Shu C W. A technique of treating negative weights in WENO schemes. J. Comput.Phys.,2002,175:108-127.
    [34]Shi J, Zhang Y T, Shu C W. Resolution of high order WENO schemes for complicated flowstructures. J. Comput. Phys.,2003,186:690-696.
    [35]Kang L, Lee C. A non-flux-splitting WENO scheme with low numerical dissipation. Sci ChinaTech. Sci.,2010,53,3365-3378.
    [36]宗文刚,邓小刚,张涵信.双重加权实质无波动激波捕捉格式.空气动力学学报,2003,21(2):218-224.
    [37]宗文刚,邓小刚,张涵信.双重加权实质无波动激波捕捉格式的改进和应用.空气动力学学报,2003,21(4):399-407.
    [38]朱君,赵宁.一种MWENO格式的构造与应用.空气动力学学报,2005,23(3):330-333.
    [39]Friedrichs O. Weighted essentially non-oscillatory schemes for the interpolation of mean valueson unstructured grids. J. Comput. Phys.,1998,144:194-212.
    [40]Hu C Q, Shu C W. Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput.Phys.,1999,150:97-127.
    [41]Levy D, Puppo G, Russo G. A third order central WENO scheme for2D conservation laws.Appl.Numer. Math.,2000,33:415-421.
    [42]Levy D, Puppo G, Russo G. A fourth-order central WENO scheme for multidimensionalhyperbolic systems of conservation law. SIAM J. Sci. Comput.2002,24(2):480-506.
    [43]Levy D, Puppo G, Russo G. Compact central WENO schemes for multidimensional conservationlaws. SIAM J. Sci. Comput.,2000,22:656-672.
    [44]Qiu J X, Shu C.W. On the construction, comparison and local characteristic decomposition forhigh order central WENO schemes. J. Comput. Phys.,2002,183:187-209.
    [45]Capdeville G. A central WENO scheme for solving hyperbolic conservation laws on non-uniformmeshes. J. Comput. Phys.,2008,227:2977-3014.
    [46]Yousef H Z. An efficient WENO scheme for solving hyperbolic conservation laws. AppliedMathematics and Computiation,2009,212,37-50.
    [47]Lee C, Seo Y. A new compact spectral scheme for turbulence simulations. J. Comput. Phys,2002,183:438-469.
    [48]Nagarajan S, Lele S K, Ferziger J H. A robust high order compact method for large eddysimulation. J. Comput. Phys.,2003,191:392-419.
    [49]Park N, Yoo J Y, Choi H. Discretization errors in large eddy simulation: on the suitability ofcentered and upwindbiased compact difference schemes. J. Comput. Phys.,2004,198:580-616.
    [50]Zhong X. High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition. J. Comput. Phys.,1998,144:662-709.
    [51]Ekaterinaris J A. Implicit, high-resolution compact schemes for gas dynamics and aeroacoustics. J.Comput. Phys.,1999,156:272-299.
    [52]Lerat A, Corre C. A residual-based compact scheme for the compressible Navier–Stokes equations.J. Comput. Phys.,2001,170:642-675.
    [53]Visbal M R, Gaitonde D V. Very high-order spatially implicit schemes for computational acousticson curvilinear meshes. J.Comput. Acoust.,2001,9:1259-1286.
    [54]Cheong C, Lee S, Grid-optimized dispersion-relation-preserving schemes on general geometriesfor computational aeroacoustics. J.Comput. Phys.,2001,174:248-276.
    [55]Lele S K. Compact finite difference schemes with spectral-like resolution. J.Comput.Phys.,1992,103:16–42.
    [56]Adams N A, Shariff K. A high-resolution hybrid compact-ENO scheme for shock–turbulenceinteraction problems. J. Comput. Phys.,1996,127:27–51.
    [57]Tolstykh A I, Lipavskii M V. On performance of methods with third-and fifth-order compactupwind differencing. J. Comput. Phys.1998,140:205-232.
    [58]Zhuang M, Chen R F. Optimized upwind dispersion-relation-preserving finite difference schemefor computational aeroacoustics. AIAA Journal,1998,36(11):2146-2148.
    [59]Zhou Q, Yao Z H, He F, Shen M Y. A new family of high-order compact upwind differenceschemes with good spectral resolution. J. Comput. Phys.,2007,227:1306-1339.
    [60]Chu P C, Fan C. Sixth-order difference scheme for sigma coordinate ocean models. Journal ofPhysical Oceanography,1997,27(9):2064-2071.
    [61]Mahesh K. A family of high order finite difference schemes with good spectral resolution. J.Comput. Phys.,1998,145:332-358.
    [62]沈孟育,牛晓玲.三点五阶优化广义紧致格式.空气动力学学报,2003,21(4):384-391.
    [63]Fu D, Ma Y. Analysis of super compact finite difference method and application to simulation ofvortex-shock interaction. International Journal for Numerical Methods in Fluids,2001,36(7):773-805.
    [64]Ravichandran K S. Higher order KFVS algorithms using compact upwind differenced operators. J.Comput. Phys.,1997,130:161–173.
    [65]Wang Z, Huang G P. An essentially nonoscillatory high-order Pade-type (ENO-Pade) scheme. J.Comput. Phys.,2002,177:37–58.
    [66]Jiang L, Shan H, Liu C Q. Weighted compact scheme for shock capturing. Transactions ofNanjing University of Aeronautics and Astronautics,2001,18:67-70.
    [67]Xie P, Liu C Q. Weighted compact and non-compact scheme for shock tube and shock entropyinteraction. The45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Neveda: AIAA,2007.
    [68]涂国华,罗俊荣.利用通量限制思想改进紧致格式.计算物理,2005,29(4):329-336.
    [69]Tu G H, Yuan X J. A characteristic-based shock capturing scheme for hyperbolic problems. J.Comput. Phys.,2007,225:2083-2097.
    [70]Tu G H, Yuan X J, Xia Z Q, Hu Z. A class of compact upwind TVD difference schemes. AppliedMathematics and Mechanics (English Edition),2006,27(4):765-772.
    [71]Ma Y, Fu D. Fourth order accurate compact scheme with group velocity control (GVC). Sciencein China, Series A: Mathematics, Physics, Astronomy,2001,44(9):1197-1204.
    [72]宗文刚,张涵信.基于NND格式、ENN格式的高阶紧致格式.第九届全国计算流体力学会议,北京:中国空气动力研究所,1998:102-107.
    [73]Deng X G, Mao M L. Weighted compact high-order nonlinear schemes for the欧拉equations.The13th AIAA Computational Fluid Dynamics Conference, Snowmass Village, CO, UNITEDSTATES: AIAA,1997:539-551.
    [74]Deng X G. A class of high order dissipative compact schemes. The27th Fluid DynamicsConference, New Orleans, LA, UNITED STATES: AIAA,1996.
    [75]Deng X G, Maekawa H. Compact high order accurate nonlinear schemes. J. Comput. Phys.,1997,130:77-91.
    [76]Deng X G, Zhang H X. Developing high-order accurate nonlinear schemes. J. Comput. Phys,2000,165:22–44.
    [77]Liu X, Deng X G, Mao M L. High-order behaviors of weighted compact fifth-order Nonlinearschemes. AIAA Journal,2007,45:2093-2097.
    [78]Taku N, Kozo F. Effects of difference scheme type in high-order weighted compact nonlinearschemes. J.Comput.Phys.,2009,228:3533-3539.
    [79]Zhang S H, Jiang S F, Shu C W. Development of nonlinear weighted compact schemes withincreasingly higher order accuracy. J.Comput.Phys.,2008,227:7294-7321.
    [80]Yee H C, Sandham N D, Djomehri M J. Low-dissipative high-order shock-capturing methodsusing characteristic-based filters. J.Comput. Phys.,1999,150:199-238.
    [81]Kim D, Kwon J H. A high-order accurate hybrid scheme using a central flux scheme and aWENO scheme for compressible flowfield analysis. J.Comput.Phys,.2005,210:554-583.
    [82]Pirozzoli S. Conservative hybrid compact-WENO schemes for shock–turbulence interaction. J.Comput. Phys,2001,178:81–117.
    [83]Ren Y X, Liu M, Zhang H X. A characteristic-wise hybrid compact-WENO scheme for solvinghyperbolic conservation laws. J. Comput. Phys.,2003,192:365–386.
    [84]Tam C K W, Webb J C. Dispersion-relation-preserving finite difference schemes forcomputational acoustics. J. Comput. Phys.,1993,107:262-281.
    [85]Tam C K W. Recent advances in computational aeroacoustics. Fluid Dynamics Research,2006,38:591–615.
    [86]Hu F Q, Hussaini M Y, Manthey J L. Low-dissipation and low-dispersion Runge–Kutta schemesfor computational acoustics. J.Comput. Phys.,1996,124:177-191.
    [87]Lin S Y, Hu S J. Parametric study of weighted essentially nonoscillatory schemes forcomputational aeroacoustics. AIAA Journal,2001,39(3):371-379.
    [88]Weirs V G, Candler G V. Optimization of weighted ENO schemes for DNS of compressibleturbulence. Technical Paper97-1940, Washington DC:AIAA Press,1998.
    [89]Wang Z J, Chen R F. Optimized weighted essentially nonoscillatory schemes for linear waveswith discontinuity. J.Comput.Phys.,2001,174:381–404.
    [90]Ponziani D, Pirozzoli, Grasso F. Development of weighted-Eno schemes for multiscalecompressible flows. Int. J. Numer. Meth. Fluids.,2003,42:953-977.
    [91]Martín M P, Taylor E M, Wu M, Weirs V. A bandwidth-optimized WENO scheme for theeffective direct numerical simulation of compressible turbulence. J. Comput. Phys.,2006,220:270–289.
    [92]Liu M S, Sterren C J. A new flux-vector splitting scheme. J. Comput. Phys.,1993,107:23-29.
    [93]Liou M S. A sequel to AUSM: AUSM+. J. Comput. Phys.,1996,129:364-382.
    [94]Kim K H, Lee J H, Rho O H. Improvement of AUSM schemes by introducing the pressure-basedweight functions. Computers&Fluids,1998,27(3):311-346.
    [95]Kim K H, Kim C, Rho O H. Accurate computations of hypersonic flows using AUSMPW+scheme and shock-aligned grid technique. AIAA98-2442,1998.
    [96]Cockburn B, Shu CW. TVB Runge–Kutta local projection discontinuous Galerkin finite elementmethod forconservation laws II: general framework. Math Comp1989;52:411–35.
    [97]Cockburn B, Lin SY, Shu CW. TVB Runge–Kutta local projection discontinuous Galerkin finiteelement method for conservation laws III: one-dimensional systems. J. Comput. Phys.,1989;84(1):90–113.
    [98]Cockburn B, Hou S, Shu CW. TVB Runge–Kutta local projection discontinuous Galerkin finiteelement method for conservation laws IV: the multidimensional case. Math. Comp.,1990,54:545-81.
    [99]Cockburn B, Shu C W. Runge–Kutta discontinuous Galerkin methods for convection-dominatedproblems. J. Sci. Comput.,2001,16(3):173–261.
    [100]Cockburn B. Discontinuous Galerkin methods. Z. Angew. Math. Mech.,2003,83:731-754.
    [101] Hu F Q, Hussaini M Y, Pasetarinera P, An analysis of the discontinuous Galerkin method forwave propagation problems. J.Comput.Phys.,1999,151(2):921-946.
    [102]Qiu J X, Shu C W. Hermite WENO schemes and their application as limiters for Runge-Kuttadiscontinuous Galerkin method: one-dimensional case. J. Comput. Phys.,2003,193:115-135.
    [103]Qiu J X, Shu C W. Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM JSci. Comput.,2005,26(3):907-929.
    [104]Qiu J X, Shu C W. Hermite WENO schemes and their application as limiters for Runge-Kuttadiscontiuous Galerkin method II: two dimensional case. Computers&Fluids,2005,34:642-663.
    [105]Wang ZJ. Spectral (Finite) volume method for conservation laws on unstructured grids. J.Comput. Phys.,2002,178(1):210–51.
    [106]Wang ZJ, Liu Y. Spectral (finite) volume method for conservation laws on unstructured grids II:extension to two-dimensional scalar equation. J. Comput. Phys.,2002,179(2):665–97.
    [107]Wang ZJ, Liu Y. Spectral (finite) volume method for conservation laws on unstructured grids III:one-dimensional systems and partition optimization. J. Sci. Comput.,2004,20:137–57.
    [108]Wang ZJ, Zhang L, Liu Y. Spectral finite volume method for conservation laws on unstructuredgrids IV: extension to two-dimensional systems. J. Comput. Phys.,2004,194(2):716–41.
    [109]张涵信.无波动、无自由参数的耗散差分格式.空气动力学学报,1988,6:143-165.
    [110]Zhang H X, Zhuang F G. NND schemes and their applications to numerical simulation of two-and three-dimensional flows. Advance in Applied Mechanics,1992,29:193-256.
    [111]张来平,张涵信. NND格式在非结构网格中的推广.力学学报,1996,28(2):135-142.
    [112]张涵信,沈孟育.计算流体力学:差分方法的原理和应用.北京:国防工业出版社,2003.
    [113]张涵信,李沁,庄逢甘.关于建立高阶差分格式的问题.空气动力学学报,1998,16(1):14-23.
    [114]张涵信,贺国宏.高阶精度差分求解气动方程的几个问题.空气动力学学报,1993,11(4):347-356.
    [115]郑华盛,赵宁,戴嘉尊.一类时空二阶精度高分辨率MmB差分格式的构造及数值试验.计算数学,1998,20(2):137-146.
    [116]Zheng H S, Zhao N. MmB difference schemes for two-dimensional hyperbolic conservationlaws. Nanjing University of Aeronautics and Astronautics,2004,21:253-257
    [117]郑华盛,赵宁.一个基于通量分裂的高精度MmB格式.空气动力学学报,2005,23:52-57.
    [118]郑华盛.流体力学高精度数值方法研究,[博士学位论文].南京:南京航空航天大学,2005.
    [119]马延文,傅德薰.群速度直接控制四阶迎风紧致格式.中国科学A辑,2001,31(6):554-561.
    [120]高慧,马延文,傅德薰.六阶精度的群速度直接控制紧致格式及其应用.航空动力学报,2003,18(1):197-207.
    [121]李新亮,傅德薰,马延文.8阶群速度控制格式及其应用.力学学报,2004,36(1):79-83.
    [122]田保林,傅德薰,马延文.群速度控制格式及二维Riemann解.计算力学学报,2005,22(1):104-108.
    [123]沈孟育,牛晓玲,张志斌.满足“抑制波动原则”的广义紧致格式的特性及应用.应用力学学报,2003,20(2):12-16.
    [124]沈孟育,张志斌,牛晓玲.满足抑制波动原则的五阶精度紧致格式.清华大学学报(自然科学版),2002,42(11):1511-1514.
    [125]沈孟育,蒋莉.满足熵增原则的高精度高分辨率格式.清华大学学报(自然科学版),1999,39(4):1-5.
    [126]Ren Y, Xu H. Shock capturing scheme based on two-shock approximation to riemann problem.Qinghua Daxue Xuebao/Journal of Tsinghua University,2001,41(11):15-18.
    [127]Yuan X, Zhou H. Numerical schemes with high order of accuracy for the computation of shockwaves. Applied Mathematics and Mechanics (English Edition),2000,21(5):480-500.
    [128]徐振礼,刘儒勋,邱建贤.双曲守恒律方程的加权本质无振荡格式新进展.力学进展,2004,34(1):9-22.
    [129]Shu C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes forhyperbolic conservation laws. Advanced Numerical Approximation of Nonlinear HyperbolicEquations, Lecture Notes in Mathematics, Berlin/Heidelberg: Springer;1998:325-432.
    [130]Lockard D P, Brentner K S, Atkins H L. High accuracy algorithms for computationalaeroacoustics. AIAA J.,1995,33(2):246-251.
    [131]Woodward P, Collela P. The numerical simulation of two-dimensional fluid flow with strongshocks. J. Comput. Phys.,1984,54:115-173.
    [132]Gustafsson B. The convergence rate for difference approximations to mixed intitial boundaryvalue problems, Math. Comput.,1975,29:396-406.
    [133]Sengupta T K, Ganeriwal G, De S. Analysis of central and upwind compact schemes. J. Comput.Phys.,2003,192:677-694.
    [134]Sanders R, Morano E, Druguet M. Multidimensional dissipation for upwind schemes: Stabilityand applications to gas dynamics. J. Comput. Phys.,1998,145:511-537.
    [135]Zalesak S T. Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput.Phys.,1979,31(3):335-362.
    [136]Zingg D W. Comparison of high-accuracy finite-difference methods for linear wave propagation.SIAM J.Sci.Comput.,2000,22(2):476-502.
    [137]Vichnevetsky R, Bowles J B. Fourier analysis of numerical approximation of hyperbolicequations. Philadelphia: SIAM,1982.
    [138]Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum fornonlinear and non-stationary time series analysis.London: Proceeding of Royal Society,1998, A(454):903-995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700