用户名: 密码: 验证码:
群体智能算法及其在数字滤波器优化设计中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
群体智能是指无智能的主体通过合作表现出智能行为特性的系统,群体智能在没有集中控制并且不提供全局模型的前提下,为寻找复杂问题的解决方案提供了基础。群体智能算法是通过模拟社会性生物群体的群体行为,对给定的目标进行寻优的启发式搜索算法,其寻优过程体现了随机、并行和分布式等特点。群体智能算法的典型代表是模拟了鸟类群体行为的粒子群优化(Particle Swarm Optimization,PSO)算法,由Kennedy和Eberhart于1995年提出。PSO算法自提出以来,由于其计算简单、易于实现、控制参数少等特点,引起了国内外相关领域众多学者的关注和研究。具有量子行为的粒子群优化(Quantum-behaved Particle Swarm Optimization,QPSO)算法是在深入研究PSO算法单个粒子收敛行为的基础上,受量子物理学的启发而提出,QPSO算法具有控制参数更少,收敛速度快,全局搜索能力强等特点。
     本文以PSO算法与QPSO算法的理论分析及改进方法研究为重点,系统的研究了QPSO算法及其改进算法在数字滤波器优化设计中的应用方法,具体内容如下:
     (1)阐述了群体智能优化算法及数字滤波器优化设计的研究背景;介绍了两种典型的群体智能优化算法的研究现状,即蚁群优化算法与PSO算法;对多种不同类型的数字滤波器的优化设计方法作了详细介绍;提出了本课题的研究思路与方法。
     (2)通过代数方法分析了PSO算法的收敛性,得出了PSO算法的收敛条件与发散条件,并通过仿真实验验证了分析结论的正确性;然后针对PSO算法在多峰优化问题中易于出现早熟收敛的现象,根据分析的结论提出了基于群体多样性信息控制的PSO算法,算法通过判断群体的多样性来设定群体的搜索状态,即当群体多样性超出设定的上限时,立刻将群体的状态更改为收缩状态,当群体多样性低于设定的下限时,立刻将群体的状态更改为发散状态,群体通过不断的收缩、发散操作完成寻优过程:对多个不同特征的标准测试函数的求解结果显示了算法在多峰优化问题中具有较强的优化能力。
     (3)给出了QPSO算法的设计思路。分析了随机算法收敛的两个判断准则,即全局搜索算法的收敛准则与局部搜索算法的收敛准则,利用这两个收敛准则作为依据,证明了QPSO算法是一个全局搜索的随机算法,这为进一步研究QPSO算法的理论问题提供了基础。
     (4)算法参数是影响算法性能和效率的关键,文中对QPSO算法中除群体规模和迭代次数外的唯一参数(扩张-压缩因子)的取值方式作了系统的研究,提出了该参数的四种控制策略,即固定取值策略,线性取值策略,非线性取值策略与自适应控制取值策略,通过对标准测试函数的求解分别研究了这四种控制策略,得出了具有指导意义的结论。
     (5)针对QPSO算法在解决多峰优化问题中也可能出现局部收敛的现象,分析了出现局部收敛的主要原因在于群体多样性较低而使得群体失去了在大范围内进行搜索的能力,基于两种群体多样性的度量方式,提出了采用全局最优点变异策略对群体进行操作以避免群体的多样性过小,从而提高算法的全局搜索能力,通过对标准测试函数的求解结果表明改进算法的全局求解能力得到了提升。
     (6)提出了基于QPSO算法与其他进化算法的混合算法以进一步提高QPSO算法的搜索效率及优化性能。第一种方式是采用进化算法中的变异操作与OPSO算法混合,研究了多种类型的变异操作算子对QPSO算法优化性能的影响,变异操作能够增加群体的多样性,使得算法具有突跳的能力,进入新的搜索区域;第二种方式是在OPSO算法中将交叉操作引入,使得粒子可以不按照算法本身的方式产生新的位置,从而增加群体的多样性,提高算法跳出聚集区域的能力。混合的QPSO算法通过在标准测试函数中的求解显示了较好的优化能力。
     (7)分析了不同类型数字滤波器的数学模型及优化设计方法,包括FIR数字滤波器、IIR数字滤波器、自适应IIR数字滤波器与二维IIR数字滤波器。根据数字滤波器优化设计的实质,即全局优化问题,提出了通过QPSO算法及其相应改进算法来完成数字滤波器优化设计模型的求解;对应不同的滤波器类型利用多个设计实例来验证OPSO算法及改进算法的性能与设计效果;通过与其它优化算法的设计结果相比较表明OPSO算法及改进算法能够在各类型数字滤波器的设计中取得更好的设计效果。
     论文最后对所做工作与主要研究成果进行了总结,并提出了进一步的研究方向。
Swarm Intelligence (SI) is the property of a system whereby the collective behaviors of agents interacting locally with their environment. SI provides a basis with which it is possible to explore collective problem solving without centralized control or the provision of a global model. SI algorithm is a kind of heuristic search method that can solve the specified problems by simulating the collective behaviors. The characteristic of SI algorithm is stochastic, parallel and distributed. Particle Swarm Optimization (PSO) algorithm, which inspired by social behavior of bird flocking or fish schooling, is one of the typical SI algorithms and it is developed by Eberhart and Kennedy in 1995. Since PSO algorithm was developed, it has attracted many researchers in the fields concerned as its characteristics of simple computation, easy realization, and few parameters. Based on the deep study of PSO algorithm and inspired by quantum physics, Quantum-behaved Particle Swarm Optimization (QPSO) algorithm is proposed by us. QPSO algorithm has much fewer parameters and much stronger global search ability than the PSO algorithm.
     Theoretical analyses and algorithm improving on PSO algorithm and QPSO algorithm are mainly discussed in our work and the application of QPSO algorithm and its improvements in the optimal design of digital filters are also studied in the work. The main contents of this dissertation are as follows:
     (1) Research background of SI algorithms and optimal design of digital filters are expatiated. The current research situations of two typical SI algorithms are detailed introduced, which are Ant Colony Optimization (ACO) algorithm and PSO algorithm. An introduction of optimal design of different types of digital filters is presented. Research methods and ideas in the work are proposed.
     (2) Convergence of PSO algorithm is analyzed by algebraic method and then the conditions of convergence and repulse for PSO algorithm are reached. The conditions are shown to be true by the simulation experiments. According to the conditions a diversity-controlled PSO algorithm which is called DCPSO is proposed in order to solve the problem of premature convergence in PSO algorithm. In DCPSO algorithm, guided by the controlled swarm's diversity, the particles search in the attractive phase sufficiently and adjust them by moving away from the center of the swarm quickly in the repulsive phase once the diversity measure reach to a low bound. The attractive-repulsive procedure can guarantee the swarm search in a wide space and help to avoid trapping into the local minima. Experimental results on several well-known benchmark functions show that DCPSO has strong global optimization ability in solving the multimodal problems.
     (3) The thought of QPSO algorithm is discussed. Convergence criteria of random search algorithms are studied, including global convergence criteria and local convergence criteria. Based on these two convergence criteria, QPSO algorithm is proven to be a global search stochastic algorithm, which can provide the foundation for further studying the theoretical problems in QPSO algorithm.
     (4) The parameter of an algorithm is the key issue that affects the algorithm's performance and efficiency. The methods for taking values of Contraction-Expansion coefficient which is the only parameter in QPSO algorithm excluding the population size and iteration is analyzed systemically. Four strategies are proposed, including: setting the parameter as a fixed value, making the parameter take value linearly or nonlinearly according to the iteration, and letting the parameter take value adaptively according to the evolution results. Some guiding conclusions are summarized which can provide advantages for those algorithm users.
     (5) Premature convergence is also appeared in QPSO algorithm when solving multimodal problems. The reason for premature convergence lies in the collections of swarm which makes the swarm diversity decline and the particles lose the ability of searching in a wide space. Based on two types of diversity measure, an improvement on QPSO algorithm is proposed to avoid the swarm diversity getting into a low level. The improvement is realized by mutating the swarm's global best particle. The improved QPSO algorithm shows preferable ability in solving the multimodal problems.
     (6) By hybridizing QPSO algorithm and other evolutionary algorithms to improve the search efficiency and performance of QPSO algorithm. Firstly, mutation mechanism is introduced into QPSO algorithm. Mutation operator can increase the swarm's diversity and can put the particles into new search area. A set of mutation operators is used to compare the effects on QPSO algorithm. Secondly, crossover operator is used in QPSO algorithm and it could generate new positions for the particles instead of the origin method in the algorithm and then increase the swarm's diversity which can enhance the ability of jump out of the collective area. The hybrid QPSO algorithms show good performances by tested them on the benchmark functions.
     (7) The mathematic model of different types of digital filters and optimal design methods are discussed. FIR digital filter, IER digital filter, adaptive IIR digital filter and two-dimensional digital filter are analyzed. The essential of optimal design digital filters can be attributed to the global optimization problem. QPSO algorithm and its corresponding improvements are proposed to solve the digital filters' optimal design model. Several different design examples are used to examine the design effect of QPSO algorithm and its improvements. The results show that QPSO algorithm and its improvements can design better filters than those designed by other optimization algorithms.
     The main contributions in this work are summarized at last and further research considerations are put forward.
引文
1.高尚,杨靖宇.群智能算法及其应用[M]:中国水利水电出版社,2006
    2.张热,康琦,汪镭,等.群体智能[J].冶金自动化.2005,(2):1-4
    3.汪镭,康琦,吴启迪.群体智能算法总体模式的形式化研究[J].信息与控制.2004,06:694-697+702
    4.王军伟,任良超.基于频率采样技术的Fir数字滤波器的优化设计[J].仪器仪表学报.2005,S2:475-477
    5.Deczky A G.Synthesis of recursive digital filters using the minimum P-error criterion[J].IEEE Transactions on Audio Electroacoust.1972,20:257-263
    6.Steiglitz K.Computer aided design of recursive digital filters[J].IEEE Transactions on Audio Electroacoust.1970,AU-18:211-217
    7.Shaw A K.Optimal design of distal IIR filters by model-fitting frequency response data[C].International Symposium on circuits and systems,1993:475-478
    8.Diniz PSR.自适应滤波算法与实现[M].北京:电子工业出版社,2004
    9.川又政征,通口龙雄.多维数字信号处理[M]:科学出版社,2003
    10.Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies[C].Proceeding of 1st European Conference Artificial Life,Parris,France:Elsevier,1991:134-142
    11.Colorni A,Dorigo M,Maniezzo V.An investigation of some properties of an ant algorithm[C].Proceeding of Parallel Problem Solving from Nature(PPSN),France:Elsiver,1992:509-520
    12.Dorigo M,Luca M.A study of some properties of ant-Q[C].Proceeding of 4th International Conference on Parallel Problem Solving Problem from Nature(PPSN):Springer-Verlag,1996:656-665
    13.Luca M,Carnbardella,Dorigo M.Ant-Q:an reinforcement learning approach to the traveling sales man problem[C].Proceeding of 12th Machine Learning Conference,France,1995:252-260
    14.Dorigo M,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on systems,man,cybernetics.1996,26(1):28-41
    15.丁建立,陈增强,袁著祉.基于自适应蚂蚁算法的动态最优路由选择[J].控制与决策.2003,18(6):751-753
    16.Chu C H,Gu J,Hou X.A heuristic ant algorithm for solving QoS multicast routing problem[C].Proceeding of the 2002 Congress on Evolutionary Computation,Honolulu,2002:1630-1635
    17.Tsai C F,Wu H C,Tsai C W.A new data clustering approach for data mining in large databases[C].Proceeding of International Symposium on Parallel Architectures,Algorithms and Networks,Makati,2002:315-321
    18.Parpinelli R S,Lopes H S,Freitas.Data mining with an ant colony optimization algorithm[J].IEEE Transactions on Evolutionary Computation.2002,6(4):321-332
    19.Israel A W,Michael L,Alfred M B.Distributed coveting by ant-robot using evaporating traces[J].IEEE Transactions on Robotics and Automation.1999,15(5):918-933
    20.Hoar R,Penner J,Jacob C.Ant trails-An example for robots to follow[C].Proceeding of the 2002Congress on Evolutionary Computation,Honolulu,2002:1910-1915
    21.金飞虎,洪炳熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划[J].机器人.2003,24(6):526-529
    22.樊晓平,罗熊,易晟.复杂环境下基于蚁群优化算法的及其人路径规划[J].控制与决策.2004,19(2):166-170
    23.Russell R A.Ant trails-An example for robots to follow[C].Proceeding of the 1999 IEEE Intemational Conference on Robotics and Automation,Detroit,1999:2698-2703
    24.Michael J B K,Jean-Bernard B,Laurent K.Ant-like task and recruitment in cooperative robots[J].Nature.2000,406(31):992-995
    25.Costa D,Hertz A.Ant can colour graphs[J].Journal of the Operational Research Society.1997,48(3):295-305
    26.Ando S,Iba H.Ant algorithm for construction of evolutionary tree[C].Proceeding of the Genetic and Evolutionary Computation Conference,New York,2002:1552-1557
    27.Talbi E G,Roux O,Fonlupt C,etc.Parallel ant colonies for the quadratic assignment problem[J].Future Generation Computer Systems.2001,17(4):441-449
    28.Shervin N.Agent-based approach to dynamic task allocation[C].Proceeding of 3rd International Workshop on Ant Algorithm,Brussels,2002:28-39
    29.Li Y J,Wu T J.A nested ant colony algorithm for hybrid production scheduling[C].Proceeding of the American Control Conference,Anchorage,2002:1123-1128
    30.Li Y J,Wu T J.A nested hybrid ant colony algorithm for hybrid production scheduling problems[J].Acta Automatica Sinica.2003,29(1):95-101
    31.Colomi A,Dorigo M,Maniezzo V,etc.Ant system for job-shops scheduling[J].Belgian Journal of Operations Research,Statistics and Computer Science.1994,34(1):39-53
    32.Stutzle T.An ant approach to the flow shop problem[C].Proceedings of the 6th European Confess on Intelligent Techniques & Soft Computing,Aachen,Germany,1997,3:1560-1564
    33.Stutzle T,Hhoos H.Max-rain ant system and local search for combinational optimization problems[C].Proceeding of 2nd International Conference on Metaheuristics,Wien:Springer-Verlag,1997
    34.Stutzle T,Hoos H.The Max-Min ant system and local search for the traveling salesman problem[C].Proceedings of IEEE International Conference on Evolutionary Computation,Indianapolis,1997:309-314
    35.吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展.1999,10:1240-1245
    36.张纪会,高齐圣,徐心和.自适应蚁群算法[J].控制理论与应用.2000,17(1):1-3
    37.段海滨,王道波,于秀芬.基于云模型的小生境MAX-MIN相遇蚁群算法[J].吉林大学学报(工学版).2006,36(5):803-808
    38.段海滨,王道波,于秀芬,等.基于云模型理论的蚁群算法改进研究[J].哈尔滨工业大学学报.2005.37(1):115-119
    39.Marcin L P,Tony W.Using genetic algorithm to optimize ACS-TSP[C].Proceeding of 3rd International Workshop ANTS,Brussels,2002:282-287
    40.Reynolds C W.Flocks,Herds and Schools:A Distributed Behavioral Model[J].Computer Graphics.1987,21(4):25-34
    41.Heppner F,Grenander U.A stochastic Nonlinear Model for Coordinated Bird Flocks[M]:AAAS Publications, 1990
    
    42. Boyd R, Richerson P J. Culture and the Evolutionary Process[M]: The University of Chicago Press, 1985
    
    43. Kennedy J, Eberhart R C. Particle swarm optimization [C]. Proceedings of IEEE International Conference on Neural Networks, 1995: 1942-1948
    
    44. Ozcan E, Mohan C. Particle swarm optimization: Surfing the waves[C]. Proceedings of 1999 Congress on Evolutionary Computation, 1999: 1939-1943
    
    45. Clerc M, Kennedy J. The Particle Swarm : Explosion, Stability and Convergence in a Multi-Dimensional Complex Space[J]. IEEE Transactions on Evolutionary Computation. 2002, 6: 58-73
    
    46. Bergh F V d. An Analysis of Particle Swarm Optimizers [D]: [PhD Thesis]: University of Pretoria, 2001
    
    47. Bergh F V d. A new locally convergent particle swarm optimizer[C]. IEEE International Conference on systems, Man and Cybernetics, 2002:
    
    48. Trelea I C. The particle swarm optimization algorithm: convergence analysis and parameter selection[J]. Information Processing Letters. 2003, (85): 317-325
    
    49. Emara H M, Fattah H A A. Continuous swarm optimization technique with stability analysis[C]. Proceedings of American Control Conference, Boston, MA, 2004, 3: 2811 -2817
    
    50. Kadirkamanathan V, Selvarajah K, Fleming P J. Stability Analysis of the Particle Dynamics in Particle Swarm Optimizer [J]. IEEE Transactions on Evolutionary Computation. 2006, 10(3): 245-255
    
    51. Jiang M, Luo Y P, Yang S Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm[J]. Information Processing Letters. 2007, 102: 8-16
    
    52. 潘峰,陈杰,甘明刚,等。 粒子群优化算法模型分析[J].2006,03:368-377
    
    53. Kennedy J, Eberhart R C.A Discrete Version of the Particle Swarm Algorithm [C]. Proceedings of the 1997 Conference on System, Man and Cybernetics, Piscataway, NJ: IEEE Service Center, 1997: 4104-4109
    
    54. Shi Y, Eberhart R C.A modified particle swarm optimizer[C]. Proceedings of the IEEE International Conference on Evolutionary Computation, Piscataway, NJ: IEEE Press, 1998: 69-73
    
    55. Yuhui S, Eberhart R C. Fuzzy adaptive particle swarm optimization[C]. Proceedings of the 2001 Congress on Evolutionary Computation, 2001, 1: 101-106
    
    56. Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization [C]. Proceedings of the 1999 Congress on Evolutionary Computation, 1999, 3: 1957
    
    57. Angeline P J. Using selection to improve particle swarm optimization[C]. The 1998 IEEE International Conference on Evolutionary Computation, 1998: 84-89
    
    58. Angeline P J. Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and performance Differences[J]. Evolutionary Programming VII, Lecture Notes in Computer Science. 1998, 1447:601-610
    
    59. Suganthan P N. Particle swarm optimiser with neighbourhood operator[C]. Proceedings of the 1999 Congress on Evolutionary Computation, 1999,3: 1962
    
    60. Kennedy J. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance[C]. Proceedings of the 1999 Congress on Evolutionary Computation, 1999, 3: 1938
    
    61. Lovbjerg M, Rasussen T K, Krink T. Hybrid Particle Swarm Optimiser with Breeding and Subpopulations[C]. Proceedings of the third Genetic and Evolutionary Computation Conferences, San Francisco,2001:469-476
    62.Kennedy J.Probability and dynamics in the particle swarm[C].2004 Confess on Evolutionary Computation,2004,1:340-347
    63.Krohling R A.Gaussian swarm:a novel particle swarm optimization algorithm[C].2004 IEEE Conference on Cybernetics and Intelligent Systems,2004,1:372-376 vol.371
    64.Riget J,Vesterstroem J.A diversity-guided particle swarm optimizer-the ARPSO[R]:Department of Computer Science,University of Aarhus;2002
    65.崔志华,曾建潮.基于控制理论的微粒群算法分析与改进[J].小型微型计算机系统.2006,05:849-853
    66.崔志华,曾建潮.基于微分模型的改进微粒群算法[J].计算机研究与发展.2006,04:646-653
    67.王丽芳,曾建潮.基于微粒群算法与模拟退火算法的协同进化方法[J].自动化学报.2006,04:630-635
    68.高海兵,周驰,高亮.广义粒子群优化模型[J].计算机学报.2005,12:1980-1987
    69.窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展.2005,05:897-904
    70.刘宇,覃征,史哲文.简约粒子群优化算法[J].西安交通大学学报.2006,08:883-887
    71.刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策.2006,06:636-640+645
    72.俞欢军,张丽平,陈德钊,等.基于反馈策略的自适应粒子群优化算法[J].浙江大学学报(工学版).2005,09:12-17
    73.Nanbo J,Rahmat-Samii Y.Advances in Particle Swarm Optimization for Antenna Designs:Real-Number,Binary,Single-Objective and Multiobjective Implementations[J].IEEE Transactions on Antennas and Propagation.2007,55(3):556-567
    74.Donelli M,Azaro R,De Natale F G B,etc.An innovative computational approach based on a particle swarm strategy for adaptive phased-arrays control[J].IEEE Transactions on Antennas and Propagation.2006,54(3):888-898
    75.Khodier M M,Christodoulou C G.Linear Array Geometry Synthesis With Minimum Sidelobe Level and Null Control Using Particle Swarm Optimization[J].IEEE Transactions on Antennas and Propagation.2005,53(8):2674-2679
    76.Youngwook K,Hao L.Equivalent Circuit Modeling of Broadband Antennas using Vector Fitting and Particle Swarm Optimization[C].IEEE International Symposium on Antennas and Propagation,2006:3555-3558
    77.Gies D,Rahrnat-Samii Y.Particle swarm optimization(PSO) for reflector antenna shaping[C].IEEE International Symposium Antennas and Propagation Society,2004,3:2289-2292
    78.Nanbo J,RahmatSamii Y.Real-Number and Binary Multi-Objective Particle Swarm Optimizations:Aperiodic Antenna Array Designs[C].IEEE International Symposium on Antennas and Propagation Society,2006:3523-3526
    79.Perez J R,Basterrechea J.Comparison of Different Heuristic Optimization Methods for Near-Field Antenna Measurements[J].IEEE Transactions on Antennas and Propagation.2007,55(3):549-555
    80.Eberhart R C,Xiaohui H.Human tremor analysis using particle swarm optimization[C].Proceedings of Congress on Evolutionary Computation, 1999,3: 1930
    81. Rui X, Wunsch D C, II. Gene regulatory networks inference with recurrent neural network models[C]. IEEE International Joint Conference on Neural Networks, 2005, 1: 286-291
    82. Khemka N, Jacob C, Cole G. Making soccer kicks better: a study in particle swarm optimization and evolution strategies[C]. IEEE Congress on Evolutionary Computation, 2005, 1: 735-742
    83. Elgallad A, El-Hawary M, Phillips W, etc. PSO-based neural network for dynamic bandwidth re-allocation [power system communication][C]. Large Engineering Systems Conference on Power Engineering, 2002:98-102 .
    84. Mohemmed A W, Kamel N. Particle swarm optimization for Bluetooth scatternet formation[C]. 2nd International Conference on Mobile Technology, Applications and Systems, 2005: 5
    85. Cohen S C M, de Castro L N. Data Clustering with Particle Swarms[C]. IEEE Congress on Evolutionary Computation, 2006: 1792-1798
    86. van der Merwe D W, Engelbrecht A P. Data clustering using particle swarm optimization[C]. Congress on Evolutionary Computation, 2003, 1: 215-220
    87. Oliveira L S, Britto A S, Jr., Sabourin R. Improving cascading classifiers with particle swarm optimization[C]. Proceedings Eighth International Conference on Document Analysis and Recognition, 2005,2:570-574
    88. Lope H S, Coelho L S. Particle Swarm Optimization with Fast Local Search for the Blind Traveling Salesman Problem[C]. Fifth International Conference on Hybrid Intelligent Systems, 2005: 245-250
    89. Xiaohui H, Eberhart R C, Yuhui S. Swarm intelligence for permutation optimization: a case study of n-queens problem[C]. Proceedings of IEEE Swarm Intelligence Symposium, 2003: 243-246
    90. Zwe-Lee G. A particle swarm optimization approach for optimum design of PID controller in AVR system[J]. IEEE Transaction on Energy Conversion. 2004, 19(2): 384-391
    91. Jih-Gau J, Bo-Shian L, Kuo-Chih C. Automatic landing control using particle swarm optimization[C]. IEEE International Conference on Mechatronics, 2005: 721-726
    92. Paul A, Victoire T A A, Jeyakumar A E. Particle swarm approach for retiming in VLSI[C]. Proceedings of the 46th IEEE International Midwest Symposium on Circuits and Systems, 2003, 3: 1532-1535
    93. Eberhart R, Yuhui S. Particle swarm optimization and its applications to VLSI design and video technology[C]. Proceedings of 2005 IEEE International Workshop on VLSI Design and Video Technology, 2005: xxiii-xxiii
    94. Luna E H, Coello Coello C A, Aguirre A H. On the use of a population-based particle swarm optimizer to design combinational logic circuits[C]. Proceedings NASA/DoD Conference on Evolvable Hardware, 2004:183-190
    95. Baskar S, Alphones A, Suganthan P N, etc. Design of Yagi-Uda antennas using comprehensive learning particle swarm optimisation[C]. IEE Proceedings-Microwaves, Antennas and Propagation, 2005, 152: 340-346
    96. Wen W, Yilong L, Fu J S, etc. Particle swarm optimization and finite-element based approach for microwave filter design[J]. IEEE Transactions on Magnetics. 2005,41(5): 1800-1803
    97. Abido M A. Optimal design of power-system stabilizers using particle swarm optimization[J]. IEEE Transaction on Energy Conversion. 2002, 17(3): 406-413
    98.Cui S,Weile D S.Application of a parallel particle swarm optimization scheme to the design of electromagnetic absorbers[J].IEEE Transactions on Antennas and Propagation.2005,53(11):3616-3624
    99.Fu-yuan H,Rong-jun L,Han-xia L,etc.A Modified Particle Swarm Algorithm Combined with Fuzzy Neural Network with Application to Financial Risk Early Warning[C].IEEE Asia-Pacific Conference on Services Computing,2006:168-173
    100.Nenortaite J,Simutis R.Adapting particle swarm optimization to stock markets[C].Proceedings 5th International Conference on Intelligent Systems Design and Applications,2005:520-525
    101.Senaratne R,Halgamuge S.Optimised landmark model matching for face recognition[C].International Conference on Automatic Face and Gesture Recognition,2006:6
    102.Chia-Feng J.A hybrid of genetic algorithm and particle swarm optimization for recurrent network design[J].Systems,Man and Cybernetics,Part B,IEEE Transactions on.2004,34(2):997-1006
    103.Chandrasekaran S,Ponnambalam S G,Suresh R K,etc.A Hybrid Discrete Particle Swarm Optimization Algorithm to Solve Flow Shop Scheduling Problems[C].IEEE Conference on Cybernetics and Intelligent Systems,2006:1-6
    104.Yong Y,Zhihai H,Min C.Virtual MIMO-based cross-layer design for wireless sensor networks[J].IEEE Transactions on Vehicular Technology.2006,55(3):856-864
    105.Kodak D.Design of optimal finite wordlength FIR digital filters with linear phase[J].IEEE Transactions on acoustics,speech,and signal processing.1980,28(3):304-308
    106.Lin Y C,Parker S R FIR filter design over a discrete power-of-two coefficient sapce[J].IEEE Transactions on acoustics,speech,and signal processing.1983,31(3):583-591
    107.Benvenuto N,Marchesi M.Digital filters design by simulated annealing[J].IEEE Transactions on Circuits and Systems.1989,36(3):459-465
    108.Xu D J,Daley M L.Design of optimal digital filter using a parallel genetic algorithm[J].IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing.1995,42(10):673-675
    109.陈小平,于盛林.遗传算法在FIR滤波器没计-频率抽样法中的应用[J].电子学报.2000,28(10):118-120
    110.陈小平,于盛林.FIR滤波器设计:基于进化规划的频率采样技术[J].通信学报.2000,21(7):29-32
    111.陈小平,赵鹤鸣.FIR滤波器设计:基于免疫算法的频率抽样技术[J].电子与信息学报.2002,24(11):1723-1727
    112.李辉,张安,赵敏,等.粒子群优化算法在Fir数字滤波器设计中的应用[J].电子学报.2005,07:1338-1341
    113.Huang W-P,Zhou L-F,Qian J-X.FIR filter design:frequency sampling filters by particle swarm optimization algorithm[C].Proceedings of 2004 International Conference on Machine Learning and Cybernetics,2004,4:2322-2327
    114.Huang W,Zhou L,Qian J,etc.FIR Frequency Sampling Filters Design Based on Adaptive Particle Swarm Optimization Algorithm[C].Proceedings of International Conference on Natural Computation,Changsha:Springre-Verlag Berlin Heidelberg,2005,3612:289-298
    115.Langlois J M P.Design of Linear Phase FIR Filters using Particle Swarm Optimization[C]. Proceedings of the Queen's Biennial Symposium on Communications,Kingston,2004:172-174
    116.李建华,殷福亮.设计IIR数字滤波器的遗传优化算法[J].通信学报.1996,17(3):1-7
    117.Ma Q,Cowan C F N.Genetic algorithms applied to the adaptation of IIR filters[J].Signal Processing.1996,(48):155-163
    118.张葛祥,金纬东,胡米招.一种有效的IIR数字滤波器优化设计方法[J].信号处理.2004,20(2):152-156
    119.侯志荣,吕振肃.IIR数字滤波器设计的粒子群优化算法[J].电路与系统学报.2003,8(4):16-20
    120.Tsai J-T,Chou J-H.Design of Optimal Digital IIR Filters by Using an Improved Immune Algorithm[J].IEEE Transactions on signal processing.2006,54(12):4582-4596
    121.Tang K S,Man K F,Kwong S,etc.Design and optimization of IIR filter structure using hierachical genetic algorithms[J].IEEE Transactions on Industrial Electronics.1998,45(3):481-487
    122.R.Nambiar,P.Mars.Genetic and annealing approaches to adaptive digital filtering[C].IEEE 26th Asilomar Conference on Signal Systems and Computers,1992:871-875
    123.S.C.Ng,C.Y.Chung,S.H.Leung,etc.Fast convergent genetic search for adaptive IIR filtering[C].IEEE International Symposium on Circuits and Systems,London,1994,3:19-22
    124.S.C.Ng,S.H.Leung,C.Y.Chung,etc.The genetic search approach-A New Learning Algorithm for Adaptive IIR Filtering[J].IEEE signal processing magazine.Nov 1996,13(6):38-46
    125.Salami M,Cain G.Genetic algorithm for adaptive IIR filters[C].IEEE International Conference on Evolutionary Computation,Perth,Australia,1995,1:423-428
    126.Griesbach J D,Etter D M.Fitness-based exponential probabilities for genetic algorithms applied to adaptive IIR filtering[C].The Thirty-Second Asilomar Conference on Signals,Systems & Computers,Nov 1998,1:523-527
    127.周上玖,罗肚钦.自适应IIR滤波器的遗传算法[J].现代电子技术.2004,183(16):3-5
    128.Karaboga N,Kalinli A,Karaboga D.Designing digital IIR filters using ant colony optimisation algorithm[J].Engineering Applications of Artificial Intelligence.2004,(17):301-309
    129.Kalinli A,Karaboga N.A new method for adaptive IIR filter design based on tabu search algorithm[J].AE(U|¨) International Journal of Electronics and Communications.2005,(59):111-117
    130.Karaboga N.Digital IIR Filter Design Using Differential Evolution Algorithm[J].EURASIP Journal on Applied Signal Processing.2005,(8):1269-1276
    131.Kalinli N,Karaboga N.Artificial immune algorithm for IIR filter design[J].Engineering Applications of Artificial Intelligence.2005,18(8):919-929
    132.Chen S,lstepanian R,Luk B L.Digital IIR filter design using adaptive simulated annealing[J].Digital Signal Processing 2001,11(3):214-251
    133.S.Chen,B.L.Luk.Adaptive simulated annealing for optimisation in signal processing applications[J].Signal Processing.1999,79(1):117-128
    134.朱幼莲,何世春,何振亚.进化规划用于自适应IIR滤波器的优化设计[J].通信学报.1998,19(7):43-49
    135.朱幼莲,何世春,何振亚.自适应格型IIR滤波器的进化学习算法[J].信号处理.1999,15(1):42-46
    136. 王凌,李令莱,郑大钟.设计自适应,IIR 滤波器的单纯型-退火策略[J]. 系统工程与电子技术. 2002. 24(7): 99-102
    137. D.J.Krusienski, W.K.Jenkins. A particle swarm optimization-least mean squares algorithm for adaptive filtering[C]. Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Nov 2004, 1: 241-245
    138. D.J.Krusienski. Enhanced structured stocastic global optimization algorithms for IIR and nonlinear adaptive filtering [D]: [PhD Thesis]: The Pennsylvania State University, Aug 2004
    139. Mladenov V M, Mastorakis N E. Design of Two-Dimensional Recursive Filters by Using Neural Networks[J]. IEEE Transactions on Neural Networks. 2001, 12(3): 585-590
    140. Mastorakis N E, Gonos I F, Swamy M N S. Design of Two-Dimensional Recursive Filters Using Genetic Algorithms[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 2003, 50(5): 634-639
    141. Gonos I F, Virirakis L I, Mastorakis N E, etc. Evolutionary Design of 2-Dimensional Recursive Filters via the Computer Language GENETICA[J]. IEEE Transactions on Circuits and Systems II. Apr 2006, 53(4): 254-258
    142. Das S, Konar A. A swarm intelligence approach to the synthesis of two-dimensional HR filters[J]. Engineering Applications of Artificial Intelligence. 2007
    143. Bergh F v d. An Analysis of Particle Swarm Optimizers [D]: [PhD Thesis]: University of Pretoria, Nov 2001
    144. Tsutsui S, Fujimoto Y, Ghosh A. Forking Genetic Algorithms: GAs with Search Space Division Schemes[J]. Evolutionary Computation. 1997, 5: 61-80
    145. Shimodaira H. A Diversity Control Oriented Genetic Algorithm (DCGA): Development and Experimental Results[C]. Proceedings of the Genetic and Evolutionary Computation Conference, 1999, 1: 603-611
    146. Oppacher F, Wineberg M. The Shifting Balance Genetic Algorithm: Improving the GA in a Dynamic Environment[C]. Proceedings of the Genetic and Evolutionary Computation Conference, 1999, 1: 504-510
    147. Ursem R K. Diversity-Guided Evolutionary Algorithms[C]. Proceedings of Parallel Problem Solving from Nature VII (PPSN-2002): Springer Verlag, 2002: 462-471
    148. Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[C]. Proceedings of the Congress on Evolutionary Computation, Washington D C, USA: IEEE Service Center, 1999: 1951 -1957
    149. Corne D, Dorigo M, Glover F. New Ideas in Optimization[M]: McGraw Hill, 1999
    150. Eberhart R C, Shi Y. Particle Swarm Optimization: Developments, Applications and Resource[C]. IEEE Conference on Evolutionary Computation, Seoul, 2001: 81-86
    151. Schutte J F, Groenwold A A. Sizing Design of Truss Structures Using Particle Swarm[J]. Structural and Multidisciplinary Optimization. 2003, 25(4): 261-269
    152. Sun J, Feng B, Xu W. Particle Swarm Optimization with Particles Having Quantum Behavior[C]. IEEE Congress on Evolutionary Computation, 2004: 325-331
    153. Sun J, Feng B, Xu W. A Global Search Strategy of Quantum-behaved Particle Swarm OptimizationfC]. IEEE Conference on Cybernetics and Intelligent Systems, 2004: 111-116
    154.刘静.粒子群优化算法研究及其在优化理论中的应用[D]:[博士学位论文].无锡:江南大学,2007
    155.冯斌.群体智能优化算法及其在生化过程控制中的应用研究[D]:[博士学位论文].无锡:江南大学,2005
    156.王凌.智能优化算法及其应用[M].北京:清华大学出版社,施普林格出版社,2001
    157.Sun J,Xu W,Feng B.Adaptive Parameter Control for Quantum-behaved Particle Swarm Optimization on Individual Level[C].2005 IEEE International Conference on Systems,Man and Cybernetics,Waikoloa,Hawaii,2005:3049-3054
    158.Stacey A,Jancic M,Grundy I.Particle swarm optimization with mutation[C].The 2003 Congress on Evolutionary Computation,2003,2:1425-1430
    159.Higashi N,Iba H.Particle swarm optimization with Gaussian mutation[C].Proceedings of the 2003IEEE Swarm Intelligence Symposium,2003:72-79
    160.Kennedy J.Bare bones particle swarms[C].Proceedings of the 2003 IEEE Swarm Intelligence Symposium,2003:80-87
    161.Tiew-On T,Rao M V C,Loo C K,etc.A new class of operators to accelerate particle swarm optimization[C].The 2003 Congress on Evolutionary Computation,2003,4:2406-2410
    162.Liu J,Sun J,Xu W.Quantum-behaved particle swarm optimization with adaptive mutation operator[C].ICNC,2006,4221:959-967
    163.Das S,Konar A,Chakraborty U K.Improving Particle Swarm Optimization with Differentially Pertubed Velocity[C].Proceedings of the 2005 conference on Genetic and evolutionary computation,Washington DC,USA ACM Press,Jun 2005:177-184
    164.程佩青.数字信号处理教程[M].北京:清华大学出版社,2001
    165.丁玉美,高西全.数字信号处理[M]:西安电子科技大学出版社,2000
    166.胡广书.数字信号处理.理论、算法与实现[M].北京:清华大学出版社,1997
    167.普罗基斯.统计信号处理算法[M].北京:清华大学出版社,2006
    168.K.L.Blackmore,R.C.Williamson,I.M.Y.Mareels,etc.Online Learning via Congregational Gradient Descent[J].Mathematics of Control,Signals and Systems.1997,10:331-363
    169.S.Haykin.Adaptive Filter Theory[M]:Prentice Hall,2001
    170.Parsopoulos K E,Plagianakos V P,Magoulas G D,etc.Objective function "stretching" to alleviate convergence to local minima[J].Nonlinear Analysis,Theroy,Methods and Applications.2001,47(5):3419-3424
    171.Fan H,Jenkins W K.A new Adaptive IIR filter[J].IEEE Transactions on Circuits and Systems.1996,CAS-33(10):939-947
    172.Shynk J J.Adaptive IIR Filtering[J].IEEE ASSP Magazine.Apr 1989,6(2):4-21
    173.Metropolis N,Rosenbluth A W,Rosenbluth M N.Equations of state calculations by fast computing machines[J].Journal of Chem Phys.1953,21:1087-1091
    174.Nambiar R,Mars P.Genetic and annealing approaches to adaptive digital filtering[C].IEEE 26th Asilomar Conference on Signal Systems and Computers,1992:871-875
    175.Ingber L,Rosen B.Genetic algorithms and very fast simulated reannealing:a comparison[J]. Mathematical and Computer Modelling. 1992, 16:87-100
    
    176. Ingber L. Adaptive simulated annealing (ASA): lessons learned[J]. J Control and Cybernetics. 1996, 25: 33-54
    
    177. Chen S, Luk B L. Adaptive simulated annealing for optimisation in signal processing applications[J]. Signal Processing. 1999,79(1): 117-128
    
    178. Holland J H. Adaptation in Natural and Artificial SystemsfM]: The MIT Press,Cambridge, Massachusetts, 1992
    
    179. Nambiar R, Tang C K K, Mars P. Genetic and learning automata algorithms for adaptive digital filters[C]. Proceedings of ICASSP, 1992, IV: 41-44
    
    180. Etter D M, Hicks M J, Cho K H. Recursive adaptive filter design using an adaptive genetic algorithm[C]. IEEE International Conference Acoustics, Speech, Signal Processing, Albuquerque, NM, USA, May 1982, 7:635-638
    
    181. Storn R, Price K. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. In: International Computer Science Institute. Berkeley, Calif, USA; March 1995
    
    182. Storn R. Differential evolution design of an IIR-filter with requirements for magnitude and group delay[C]. IEEE International Conference on Evolutionary Computation, Nagoya, Japan, May 1996: 268-273
    
    183. Krusienski D J, Jenkins WK.A particle swarm optimization-least mean squares algorithm for adaptive filteringfC]. Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Nov 2004, 1: 241-245
    
    184. Krusienski D J. Enhanced structured stochastic global optimization algorithms for HR and nonlinear adaptive filtering [D]: The Pennsylvania State University, Aug 2004
    
    185. Glover F. Future paths for integer programming and links to artificial intelligence[J]. Computers and Operations Research. 1986, 13: 533-549
    
    186. Tzafestas S G. Multidimensional Systems, Techniques and ApplicationsfM]. NewYork: Marcel Dekker, 1986
    
    187. Lu W S, Antoniou A. Two-Dimensional Digital Filters[M]. NewYork: Marcel Dekker, 1992
    
    188. Kaczorek T. Two-dimensional Linear SystemsfM]. Berlin,Germany: Springer, 1985
    
    189. Maria G A, Fahmy M M. An lp design technique for two-dimensional digital recursive filters[J]. IEEE Transactions on acoustics, speech, and signal processing. Feb 1974, 22: 15-21
    
    190. Rajan P K, Swamy M N S. Quadrantal Symmetry Associated with two-dimensional Digital Transfer Functions[J]. IEEE International Sympoisum on Circuits and Systems. 1983, 29: 449-456
    
    191. T.Laasko, S.Ovaska. Design and Implementation of Efficient HR Notch Filters with Quantization Error Feedback[J]. IEEE Transactions on Instrumentation and Measurement. Jun 1994,43(3): 449-456
    
    192. Daniel M, Willsky A. Efficient Implementations of 2-D non-causal HR Filters[J]. IEEE Transactions on Circuits and Systems II. July 1997, 44(7): 549-563
    
    193. Tsai J-T, Chou J-H, Liu T-K, etc. Design of Two-Dimensional Recursive Filters by Using a Novel Genetic Algorithm[C]. IEEE International Symposium on Circuits and Systems, 2005, 3: 2603 - 2606
    
    194. Das S, Konar A, Chakraborty U K. An Efficient Evolutionary Algorithm Applied to the Design of Two-dimensional HR Filters[C]. Proceedings of the 2005 conference on Genetic and evolutionary computation Washington DC, USA: ACM Press Jun 2005: 2157-2163
    
    195. Deb K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering. 2000, 186(2-4): 311-328
    
    196. Sun J, Xu W, Fang W. Quantum-behaved Particle swarm Optimization Algorithm with Controlled Diversity[C]. Proc 2006 International Conference on Computational Science, 2006, 3: 847-854

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700