低轨卫星移动通信系统中的信道分配策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种国家关键的基础通信设施,以及全球移动通信的有机组成部分,卫星移动通信系统在国家安全、紧急救援、互联网、远程教学、卫星电视广播以及个人移动通信等方面得到了广泛的应用。新一代宽带卫星通信系统可以提供个人电信业务、多信道广播、互联网的远程传送,是全球无缝个人通信、互联网空中高速通道的必要手段。近年来卫星通信新技术不断发展,特别是低轨道卫星移动通信系统受到了人们的广泛关注,其研究与应用已成为各国的战略发展重点。无线资源管理是低轨卫星移动通信系统研究中的一项重要内容,这主要是由于卫星系统的资源是非常昂贵的,因此如何合理而有效地管理并利用卫星系统的资源已成为关键。本文针对目前无线资源管理中核心问题——信道分配和切换管理,开展了研究。
     首先,提出了一种动态信道分配策略。针对低轨卫星通信系统波束切换频繁、切换掉话率高的问题,通过给出卫星波束小区业务量均值和方差的预测公式,以及预测小区信道占用分布,结合低轨卫星的特点,提出了一种基于全局业务量预测和随机控制的动态信道分配策略PSCCA。并通过仿真验证了该策略的有效性。相对于精确切换控制方法,该策略不需要终端位置信息,降低了系统复杂度和信令负荷,对卫星移动通信系统的切换呼叫掉话率有较强的控制能力。
     其次,提出了一种基于效用函数的自适应信道分配策略并建立了相应的数学模型。提供多种类型的业务是宽带卫星移动通信的发展趋势,利用业务多样性以及业务带宽可变的特点,针对多种业务给出了表征带宽与用户满意度之间关系的效用函数,利用效用函数以及语音切换呼叫的高优先级,设计了一种切换呼叫接入控制策略。在此基础上,提出了一种新的、基于效用函数的自适应信道分配策略,并建立了最大化系统用户满意度的有约束非线性规划模型。该策略以少量的效用代价换取较低的切换掉话率。
     再次,提出了两种基于智能计算的优化算法。针对自适应信道分配策略中的非线性规划问题,根据其求解具有动态性和实时性的特点,采用智能计算方法,设计了基于遗传算法和基于粒子群优化算法的两种自适应信道分配算法进行求解。采用基于遗传算法的信道分配算法,通过仿真实验验证了自适应信道分配策略的有效性;而基于粒子群优化的信道分配算法则进一步提高了求解效率,具体措施主要是采用非线性惯性权重提高算法收敛速度,采用基于粒子约束状态信息的约束处理机制,改善求得可行解的速度。仿真实验结果表明,自适应信道策略通过动态调整带宽实现对业务量的自适应,克服了预留信道策略信道利用率低的缺点。
     接着,提出了一种低轨卫星-地面综合移动通信系统的体系结构。为了提高移动通信系统的容量和效率、实现全球无缝覆盖,必须实现低轨卫星移动通信系统与地面通信系统之间的有机综合。针对卫星通信系统与地面无基础设施通信系统的综合,在分析低轨卫星通信网络的业务量强度和业务源分布特点的基础上,提出了一种低轨卫星—地面无基础设施通信系统的综合体系结构,设计了基于地面中继的负荷分担机制,并给出了相应的呼叫控制协议流程。该机制在忙时启用地面中继,用于终接近距离呼叫,分担上星信道的负荷。
     最后,本文对主要研究成果进行了全文总结,并指出了今后进一步的研究方向。
As a key national fundamental communication establishment and component of global mobile communications, satellite mobile communication systems are widely used in national security, emergent succor, internet, remote education, satellite broadcasting and personal mobile communications. The new generation wideband satellite communication system is an indispensable technique for global seamless coverage and high-speed“sky-internet”. The new technologies of satellite communication are developed quickly. Especially, the development and applications of low earth orbit satellite mobile communications are strategic consequence of countries in the world. Due to the costliness and scarceness of the satellite wireless channel, the wireless resource management is a crucial issue in the research of satellite mobile communications. In this dissertation, channel allocation and spotbeam handover management are studied, which are the hardcore of the wireless resources management.
     Firstly, a dynamic channel allocation scheme is proposed. In allusion order to tackle the problems of frequently spotbeam handovers and high handover call dropping probabilities, the predictive formulas of mean and variance of the spotbeam traffic are deduced. And then, the channel occupation distribution is predicted. A global traffic Prediction and Stochastic Control based Channel Allocation scheme (PSCCA) is designed according to the character of LEO satellites. The simulations are performed and the results reveal the validity of the scheme. Comparing with the termination location based handover scheme, PSCCA shows its strong control capability on handover call dropping probabilities. Because PSCCA need not the information of the termination location, it has lower system complexity and signaling overheads.
     Secondly, a utility function based adaptive channel allocation scheme is proposed and the corresponding mathematical model is established. Nowadays, providing multi-type services is the trend of the wideband satellite communications. With the character of variable service bandwidth, the utility function is used to express the relationship between bandwidth and user’s satisfaction and a handover call admission control scheme is designed. And then, a novel utility function based adaptive channel allocation scheme is brought forth based on the premise of the establishment of the constrained nonlinear programming model which aims at maximizing the system user’s satisfaction. The proposed scheme has the lower handover call probability at the cost of little utility.
     In succession, two intelligent computing algorithms are proposed to solve the constrained nonlinear programming problem in the proposed adaptive channel allocation scheme. Genetic algorithm and particle swarming optimization algorithm are designed respectively. Genetic algorithm is a general optimization algorithm by which the proposed adaptive channel allocation scheme is validated. While the utilization of the particle swarming optimization algorithm can improve the efficiency of the solving procedure further. The advantages of the designed particle swarming optimization algorithm consist in that the nonlinear inertia weight improves the convergence speed and the check of feasible of particles is introduced for constrains handling. The simulation results show that the proposed adaptive channel allocation scheme can adapt to the change of the traffic by dynamically adjusting the bandwidth of the calls and overcomes the defect of the lower channel utilization of the reservation channel scheme.
     Fourthly, a structure of integrated LEO satellite and terrestrial communication system is presented. It is necessary to integrate the LEO satellite communication systems and terrestrial mobile communication systems for improving the capacity and efficiency, achieving global seamless coverage. Based on the analysis of satellite network traffic and the characteristic of traffic sources distribution, an integrated structure of LEO-land non-infrastructure communication system is proposed. The load balancing scheme based on the land repeaters which is used to connect the terminations around it. And the corresponding call control protocols are designed.
     Finally, the main contributions of this dissertation are summarized and some suggestions and directions for the future work in this field are given.
引文
[1]胡光镇,瞻望卫星通信的未来[J],电信科学,2003,2,pp.27-30.
    [2] Dennis Roddy, Satellite Communication, McGraw-Hill Companies, Inc, 2001.
    [3] U. Varshney and R. Vetter, Mobile Commerce: Framework, Applications and networking Support, 2002 Kluwer Academic Publishers.
    [4] Rec. ITU-R S.1420, Performance of Broadband Integrated Service Digital Network Asynchronous Transfer Mode via Satellite, 1999.
    [5]陈振国,杨鸿文,郭文彬,卫星通信系统与技术,北京:北京邮电大学出版社,2003.
    [6]甘良才等译, Timothy Pratt, Charles Bostian, Jeremy Allnutt著, Satellite Communication,卫星通信,北京:电子工业出版社,2005.
    [7]张更新,张杭等.卫星移动通信系统,北京:人民邮电出版社,2001.
    [8]张乃通,张中兆,李英涛,卫星移动通信系统,北京:电子工业出版社,2000.
    [9]吴诗其,卫星移动通信新技术.北京:国防工业出版社,2001.
    [10] http://www.globalstar.com
    [11] Paolo Barsocchi, Nedo Celandroni, Franco Davoli and Erina Ferro, Radio resource management across multiple protocol layers in satellite networks: A tutorial overview[J],International Journal of Satellite Communication Network. 2005; 23, pp. 265–305.
    [12] Ahmed M. H., Call admission control in wireless networks: a comprehensive survey [J], IEEE Communications Surveys & Tutorials, 2005, 7(1), pp. 50-69.
    [13] Majid Ghaderi,y and Raouf Boutaba, Call admission control in mobile cellular networks: a comprehensive survey[J], Wiley, Wireless. Communication. Mobile Computing, 2006; 6, pp. 69–93.
    [14] Lata Narayanan, Yihui Tang, Worst-case analysis of a dynamic channel assignment strategy[J], Elsevier, Discrete Applied Mathematics 140 (2004) , pp. 115-141.
    [15] Hoang Nam Nguyen, Olariu, S., Todorova, P., A novel mobility model and resource reservation strategy for multimedia LEO satellite networks, Proceedings of Wireless Communications and Networking Conference, WCNC2002, Vol. 2, 17-21, March 2002, pp. 832 - 836.
    [16] E. Del Re, R. Fantacci, and G. Giambene, Characterization of user mobility in Low Earth Orbiting mobile satellite systems[J], Wireless Networks, 6, 2000, pp. 165-179.
    [17]刘刚,苟定勇,吴诗其.低轨卫星星座网的切换研究[J],通信学报, 2004.4 Vol.25 No.4, pp. 151-159.
    [18] Hoang Nam Nguyen, Jon Schuringa and Harmen.R van As, Handover Schemes for QoS guarantees in LEO-satellite ATM Networks. Proceedings of the IEEE International Conference on Networks, ICON2000, 5-8 Sept. 2000, pp. 393-398.
    [19] Hiiseyin Uzunalioglu, Wei Yen, Managing Connection Handover in Satellite Networks, IEEE, 1997, pp.1606-1610.
    [20] Abbas Jamalipour and Jing Chen, Performance Study of Handoff Schemes in Broadband ATM Mobile Satellite Networks, IEEE, pp. 501-508.
    [21] Hoang Nam Nguyen, Lepaja, S., Schuringa, J., van As, H.R., Handover management in low Earth orbit satellite IP networks, Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM '01, Vol. 4, 25-29 Nov. 2001, pp. 2730– 2734.
    [22] Koo-Min Ahn, Sehun Kim.Optimal bandwidth allocation for bandwidth adaptation in wireless multimedia networks[J], Elsevier, Computers & Operations Research, November, 2003, Volume 30, Issue 13, pp.1917-1929.
    [23] K.D. Lee, S. Kim, Optimization for adaptive bandwidth reservation in wireless multimedia network[J], Comput. Networks, 2002, Vol.38, No.5, pp. 631-643.
    [24] Bong-Ju Lee and Young-Chon Kim, Call admission method for call dropping probability guarantee in LEO satellite networks, Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM '03, 2003, pp. 1168-1173.
    [25]龚文斌,甘仲民,无线系统中的最佳预留保护信道数[J],应用科学学报,Vol. 21,No. 4,2003,pp. 427-430.
    [26] Y.F. Hu, R.E. Sheriff, E. Del Re, F. Romano, G.Giambene, Satellite-UMTS traffic dimensioning and resource management technique analysis[J], IEEE Transactions on Vehicular Technology, 47 (4) , 1998, pp.1329–1341.
    [27] N. Celandroni, F. Davoli, E. Ferro, Static and dynamic resource allocation in a multiservice satellite network with fading[J], Intemational Joumal of Satellite Communications, Vol. 21, No. 4-5, July-Oct. 2003, pp. 469-487.
    [28] Vaduvur Bharghavan, Kang Won Lee, Songwu Lu, Sungwon Ha, The TIMELY adaptive resource management architecture[J], IEEE Personal Communications, Aug. 1998, pp. 20-31.
    [29] 29Beylot A L, Boumerdassi S. Adaptive channel reservation schemes in mutitraffic LEO satellite systems [C]. Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM '01, Vol. 4, pp. 2740-2743.
    [30] Wu S, Wong KYM, Li B. A dynamic call admission policy with precision QoS guarantee using stochastic control for mobile wireless networks[J], IEEE/ACM Transactions on Networking 2002; 10(2), pp. 257–271.
    [31] Axel Bottcher, Markus Werner, Strategies for Handover Control in Low Earth Orbit Satellite Systems, IEEE, 1994, pp. 1616-1620.
    [32] Wang Zhipeng, Takis M P., A novel traffic dependent dynamic channel allocation and reservation technique for LEO mobile satellite systems [C], Proceedings of the IEEE VTC, 2002, Vol.3, pp. 1652-1656.
    [33] Bolla R, Davoli F, Marchese M, A bandwidth allocation strategy for multimedia traffic in a satellite network, Proceedings of the IEEE Globecom 2000, San Francisco, CA, November 2000, pp. 1130–1134.
    [34] Bolla R, Davoli F, Marchese M. Adaptive bandwidth allocation methods in the satellite environment. Proceedings of the IEEE International Conference on Communications, ICC 2001, Helsinki, Finland, June 2001, pp. 3183–3190.
    [35] L.Boukhatem, A-L.Beylot, D.Gaiti, and G.Pujolle, TCRA: A Time-based Channel Reservation Scheme for Handover Requests in LEO Satellite Systems[J],International Journal of Satellite Communications and Networking, 21, 2003, pp. 227-240.
    [36] Petia Todorova, Stephan Olariu and Hoang Nam Nguyen, A Two-Cell Lookahead Call Admission and Handoff Management Scheme for Multimedia LEO Satellite Networks, Proceedings of the 36th IEEE Hawaii International Conference on System Sciences, 6-9 Jan 2003, pp.9 .
    [37] G.Maral, J. Restrepo, E.del Re, R.Fantacci, and G.Giambene, Performance Analysis for a Guaranteed Handover Service in an LEO Constellation with a‘Satellite-Fixed Cell’System[J], IEEE Transactions on Vehicular Technology, 47, 1998, pp. 1200 -1214.
    [38] El-Kadi, M.; Olariu, S.; Todorova, P., Predictive resource allocation in multimedia satellite networks, Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM '01, Vol. 4, 25-29 Nov. 2001, pp. 2735– 2739.
    [39] Stephan Olariu and Petia Todorova, QoS on LEO satellites: a resource reservation framework[J], IEEE Potentials, Aug./Sept. 2004, pp. 11-17.
    [40] Maria Gkizeli, Rahim Tafazolli, Barry Evans, Performance Analysis of Handover Mechanisms for Non-Geo Satellite Diversity Based Systems, Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM '01, San Antonio, Texas, Volume 4, 25-29 Nov. 2001, pp. 2744– 2748.
    [41] Mona El-Kadi, Stephan Olariu, Petia Todorovaj, Predictive resource allocation in multimedia satellite networks, Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM '01, San Antonio, Texas, 2001, pp. 2735-2739.
    [42] E. Papapetrou, S. Karapantazisn, G. Dimitriadis and F.-N. Pavlidou, Satellite handover techniques for LEO networks[J], International Journal of Satellite Communication Network. 2004; 22: pp.231–245.
    [43] Hoang Nam Nguyen, Salem Lepaja, Jon Schuringa and Harmen R. van As, Handover Management in Low Earth Orbit Satellite IP Networks, IEEE, 2001, pp. 2730-2734.
    [44] Gkizeli, Rahim Tafazolli, Bany Evans,Modeling Handover in Mobile Satellite Diversity Based Systems,Maria IEEE, 2001, pp. 132-135.
    [45] D. Levine, I.Akyildiz and M. Naghshineh, A resource estimation and call admission algorithm for wireless multimedia networks using the shadow cluster concept[J], IEEE/ACM Transactions on Networking, 5, 1997, pp. 1-12.
    [46] Ioannis C. Panoutsopoulos, Stavros Kotsopoulos, Handover and New Call Admission Policy Optimization for G3G Systems[J], Wireless Networks 8, 2002, Kluwer Academic Publishers, pp. 381–389.
    [47] Chisci L, Fantacci R, Pecorella T. Predictive bandwidth control for GEO satellite networks. Proceedings of the IEEE International Conference on Communications, ICC 2004, Paris, France, June 2004, pp. 3958–3962.
    [48] S. Cho.Adaptive dynamic channel allocation scheme for spot-beam handoff in LEO satellite networks. Vehicular Technology Conference, 2000. IEEE VTS-Fall VTC 2000, 24-28 Sept. 2000, Volume 4: pp. 1925~1929.
    [49] Sungrae Cho, Ian F. Akyildiz Michael D. Bender Huseyin,A new spotbeam handover management technique for LEO satellite networks, Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM '00, Vol.2, 27 Nov.-1 Dec. 2000, pp. 1156– 1160.
    [50] Sungrae Cho, Akyildiz IF, Bender MD, Uzunalioglu H., A new connection admission control for spotbeam handover in LEO satellite networks[J], Wireless Networks, vol. 8(4). Kluwer Academic Publishers: Dordrecht, July 2002, pp. 403-415.
    [51] Papapetrou E, Pavlidou F-N. QoS handover management in LEO/MEO satellite systems[J], Wireless Personal Communications 2003; 24(2), pp. 189–204.
    [52] Papapetrou, E., Pavlidou, F.-N., Analytic study of Doppler-based handover management in LEO satellite systems[J], IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, Issue 3, July 2005, pp. 830– 839.
    [53] Stephan Olariu, Rajendra Shirhatti Albert Y. Zomaya.; OSCAR–An Opportunistic Call Admission Protocol for LEO Satellite Networks, IEEE Proceedings of the 2004 International Conference on Parallel Processing , ICPP’04, 15-18, Aug. 2004, pp.548– 555.
    [54] Boukhatem, L., Gaiti, D., Pujolle, G., Resource Reservation Schemes for Handover Issue in LEO Satellite Systems, The 5th International Symposium, Wireless Personal Multimedia Communications, Vol. 3, 2002, pp. 1217-1221.
    [55] Zhao, W., Tafazolli, R., Evans, B.G., Combined handover algorithm for dynamic satellite constellations[J], Electronics Letters, Volume 32, Issue 7, 28 March 1996, pp. 622– 624.
    [56] Sriram Rajagopal, Narayanan Srinivasan, R. Badri Narayan, GPS based predictive resource allocation in cellular networks, 10th IEEE International Conference on Networks, ICON 2002, 27-30 Aug. 2002, pp. 229-234.
    [57] Mahmoud Naghshineh, Mischa Schwartz, Distributed Call Admission Control in Mobile/Wireless Networks[J], IEEE Journal on selected areas in communications, Vol. 14, No. 4 , May 1996, pp. 711-717.
    [58] Yieh-Ran Haung, Jan-Ming Ho, Distributed call admission control for a heterogeneous PCS network[J], IEEE Transactions on Computers, Vol. 51, Issue 12, Dec. 2002, pp. 1400 - 1409.
    [59] Henry C. B. Chan, Jie Zhang, and Hui Chen, A Dynamic Reservation Protocol for LEO Mobile Satellite Systems[J], IEEE Journal of Selected Areas in Communications, Vol. 22, No. 3, APRIL 2004, pp. 559-573.
    [60] Chaporkar, P.; Sarkar, S., Stochastic control techniques for throughput optimal wireless multicast, Proceedings of the 42nd IEEE Conference on Decision and Control, Volume 2, 9-12 Dec. 2003, pp. 1598-1603.
    [61] Neely, M.J., Modiano, E., Chih-Ping Li, Fairness and optimal stochastic control for heterogeneous networks, Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2005, Vol. 3, 13-17 March 2005, pp.1723-1734.
    [62] Chaporkar, P., Sarkar, S., Stochastic control techniques for throughput optimal wireless multicast, Proceedings of the 42nd IEEE Conference on Decision and Control, Vol. 2, 9-12 Dec. 2003, pp. 1598-1603.
    [63] T. Zhang, E. Berg, J.Chennikara, P. Agrawal, J. C. Chen and T. Kodama, Local predictive resource reservation for handoff in multimedia wireless IP network[J], IEEE Journal of Selection on Areas Communication, Vol. 12, Oct. 2001, pp. 1353-1364.
    [64] Ki-Dong Lee, Variable-target admission control for nonstationary handover traffic in LEO satellite networks[J], IEEE Transactions on Vehicular Technology, Vol. 54, No.1, Jan. 2005, pp. 127-135.
    [65] Wu S, Wong KYM, Li B., A dynamic call admission policy with precision QoS guarantee using stochastic control for mobile wireless networks[J], IEEE/ACM Transactions on Networking, 10(2), 2002, pp. 257–271.
    [66] Lui, J.C.S., Tam, P.T.S., Chan, H.W., Routing and channel reservation strategies for a low Earth orbit satellite system, IEEE/AFCEA. Information Systems for Enhanced Public Safety and Security, EUROCOMM 2000, 17 May 2000, pp.189– 193.
    [67] J. Siwkot, I. Rubin, Call Admission Control Policy for Capacity-Varying Networks with Stochastic Capacity Change Times, Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM 2000, San Francisco, pp. 1150-1155.
    [68] Byoung Wan Kim, Sang Lyul Min, Hyun Suk Yang, and Chong Sang Kim, A Predictive Call Admission Control Scheme for Low Earth Orbit Satellite Networks[J], IEEE Transactions on Vehicular Technology, Vol. 49, No. 6, November 2000, pp. 2320-2335.
    [69] Yeo, B.S.; Turner, L.F.; A multi-class services LEO satellite network, Proceedings of the IEEE VTS 54th Vehicular Technology Conference, VTC 2001 Fall, Vol 4, 7-11 Oct. 2001, pp. 2202– 2205.
    [70] Nguyen, H.N., Jukan, A., An approach to QoS-based routing for low Earth orbit satellite networks, Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM '00, San Francisco, Vol 2, 27 Nov.-1 Dec. 2000, pp. 1114– 1118.
    [71] Yeo, B.S., A multi-class services mobile satellite system using RSVP, Proceedings of the IEEE 56th Vehicular Technology Conference, VTC 2002-Fall, Vol. 2, 24-28 Sept. 2002, pp. 1026– 1030.
    [72] John Farserotu, Ramjee Prasad, IP/ATM Mobile Satellite Networks, Norwood, MA, USA, Artech House, Inc., 2000.
    [73] Ween, A., Qureshi, A.; Kraetz, M., Rossiter, M.; Dynamic resource allocation for multi-service packet based LEO satellite communications, Proceeding of the IEEE Global Telecommunications Conference, The Bridge to Global Integration, GLOBECOM 98, Vol. 5, 8-12 Nov. 1998, pp, 2954– 2959.
    [74] Antonio Iera, Antonella Molinaro, Salvatore Marano, Call Admission Control and Resource Management Issues for Real-Time VBR Traffic in ATM-Satellite Networks[J], IEEE Journal on Selected Areas in Communications, Vol. 18, No. 11, Nov. 2000 pp. 2393-2403.
    [75] Yang Xiao, Haizhon Li, C. L. Philip Chen, Bin Wang and Yi Pan, Proportional degradation services in wireless/mobile adaptive multimedia networks[J], Wireless Communication Mobile Computing, 2005, 5, pp. 219–243.
    [76] Cheung M., Mark J. W., Resource allocation for handling two QoS classes at a generic radio cell. Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM '01, San Antonio, Texas, 2001. pp. 2617-2621.
    [77] Leong C. W., Zhuang W. H., Novel system modeling in call admission control for wireless personal communications. Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM '00, San Francisco, November 2000, Vol. 1, pp. 177-181.
    [78] Yi X, Ding QL, KO C. An elastic handover scheme for LEO satellite mobile communication systems. Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM '00, San Francisco, November 2000, Vol. 2, pp. 1161 - 1165.
    [79] Dhaou, R.; Beylot, A.; Becker, M., ATCR: an adaptive time-based channel reservation mechanism for LEO satellite fixed cell systems, Proceedings of the IEEE 58th Vehicular Technology Conference, 2003, Vol. 4, pp. 2688–2692.
    [80]吴乐,朱立东,吴诗其,多业务低轨道卫星通信系统的一种切换方案[J],电子科技大学学报, Vol.34, No.4,2005,8,pp. 456-459.
    [81] Alberto Gotta, Resource Partitioning and Call Admission Control in a Rain Faded Satellite Channel with Real-Time Connections, Proceeding of the 2nd International Symposium on Wireless Communication Systems, 5-7 Sept. 2005, pp. 865– 869.
    [82] Chao-Hsu Chang; Hsiao-Kuang Wu; Yueh-O Tseng, Quality of service support for broadband satellite multimedia service, Proceedings of the IEEE Wireless Communications and Networking Conference, WCNC. 1999, 21-24 Sept. 1999, pp. 187– 191.
    [83] Fang Y. Thinning schemes for call admission control in wireless networks[J], IEEE Transactions on Computers 2003; 52(5), pp. 686–688.
    [84] Hong D., Rapport S., Traffic modeling and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures [J]. IEEE Transaction on Vehicular Technology, 1986, 35(8), pp. 77-92.
    [85] Rima Abi Fadel, Samir Tohme, Connection Admission Control and Comparison of Two Differentiated Resources Allocation Schemes in a Low Earth Orbit LEO Satellite Constellation[J],Wireless Networks 10, 245–258, 2004, pp. 245-258.
    [86] Enrico Del Re, Romano Fantacci, and Giovanni Giambene, Efficient dynamic channel allocation techniques with handover queuing for mobile satellite networks[J],IEEE Journal on Selected Areas in Communications, Vol. 13. No. 2, FEB. 1995, pp. 397-405.
    [87] Enrico Del Re, Romano Fantacci, and Giovanni Giambene, An efficient technique for dynamically allocating channels in satellite cellular networks, Proceedings of the. IEEE Global Telecommunications Conference, GLOBECOM’95, Singapore, Nov. 13–17, 1995, pp. 1624-1628.
    [88] Enrico Del Re, Romano Fantacci, Giovanni Giambene, Queuing of handover requests in low Earth orbit mobile satellite systems, 1996, pp. 1684-1688.
    [89] Ki-Dong Lee, Deock Gil Oh, and Ha-Jin Lee, Selective load sharing for handover admission in overlapping coverage, Proceedings of the 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2004, Vol. 2, 5-8 Sept. 2004, pp. 1491– 1495.
    [90] Enrico Del Re, Romano Fantacci, IEEE, and Giovanni Giambene, Handover queuing strategies with dynamic and fixed channel allocation techniques in low Earth orbit mobile satellite systems[J], IEEE Transcations on Communication, Vol. 47, No. 1, JAN. 1999, pp. 89-102.
    [91] Enrico Del Re, Romano Fantacci, and Giovanni Giambene, Different queuing policies for handover requests in low Earth orbit mobile satellite systems[J], IEEE Transcations on Vehicular Technology, Vol. 48, No. 2, MARCH 1999, pp.448-458.
    [92] Zhipeng Wang, and P. Takis Mathiopoulos, On the performance analysis of dynamic channel allocation with FIFO handover queuing in LEO-MSS[J], IEEE Transcations on Communications, Vol. 53, No. 9, SEPT. 2005, pp. 1443-1446.
    [93] Shang Dan, NI Li, ZHANG Ping, A dynamic priority reservation queue scheme for handover in mobile cellular systems supporting multi-rate traffics, Proceedings of the 14th IEEE 2003 International Symposium on Personal Indoor and Mobile Radio Communication Proceedings, PIMRC 2003, pp. 1461-1465.
    [94] Gibbens R, Kelly F, Key P., A decision theoretic approach to call admission control in ATM networks[J], IEEE Journal on Selected Areas in Communications 1995; 13(6), pp. 101–1114.
    [95] Ramjee R, Towsley D, Nagarajan R., On optimal call admission control in cellular networks[J], Wireless Networks 1997; 3(1), pp. 29–41.
    [96] Kwon T, Choi Y, Naghshineh M. Optimal distributed call admission control for multimedia services in mobile cellular networks, Proceedings of 5th International Workshop on Mobile Multimedia Communication, MoMuC’98, Berlin, Germany, October 1998, pp.263-266.
    [97] Choi J, Kwon T, Choi Y, Naghshineh M. Call admission control for multimedia service in mobile cellular networks: a Markov decision approach, Proceedings of IEEE, ISCC’00, Antibes, France, July 2000, pp. 594–599.
    [98] Yoon I-S, Lee BG., A distributed dynamic call admission control that supports mobility of wireless multimedia users, Proceedings of IEEE ICC’99, Vancouver, Canada, June 1999, pp. 1442–1446.
    [99] Xiao Y, Chen CLP, Wang Y, An optimal distributed call admission control for adaptive multimedia in wireless/mobile networks, Proceedings of IEEE 8th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, MASCOTS’00, San Francisco, USA, August 2000, pp. 477–482.
    [100] W. Usaha and J. Barria, Markov decision theory framework for resource allocation in LEO satellite constellations, Proceedings of the IEE on Communication, Vol. 149, No. 5, October 2002, pp. 270-276.
    [101] Kwon T, Choi J, Choi Y, Das S. Near optimal bandwidth adaptation algorithm for adaptive multimedia services in wireless/mobile networks, Proceedings of IEEE VTC’99, Vol. 2, Amsterdam, Netherlands, September 1999, pp. 874–878.
    [102] El-Alfy E-S, Yao Y-D, Heffes H. A learning approach for call admission control with prioritized handoff in mobile multimedia networks, Proceedings of IEEE VTC’01, Vol. 2, Rhodes, Greece, May 2001, pp. 972–976.
    [103] Yener A, Rose C., Near optimal call admission policies for cellular networks using genetic algorithms, Proceedings of IEEE Wireless’94, Calgary, Canada, July 1994, pp. 398–410.
    [104] Xiao Y., Chen C L P, Wang Y. A near optimal call admission control with genetic algorithm for multimedia services in wireless/mobile networks, IEEE NAECON 2000, Dayton, Ohio, USA, 2000, pp. 787-792.
    [105] A. H. Zaim, H. G. Perros and G. N. Rouskas, Computing call-blocking probabilities in LEO satellite constellations[J], IEEE Transactions on Vehicular Technology, 52, 2003, pp. 622-636.
    [106] L. S. Zhang, R. E. Sheriff, and Y. F. Hu , Simulation of traffic characteristics of non-GSO stationary satellite systems, Proceedings of the International Conference for Communication Technology, Proceedings of ICCT'96, Beijing, 1996, pp. 285-288.
    [107] A. H. Zaim, H. G. Perros and G. N. Rouskas, Computing call-blocking probabilities in LEO satellite constellations[J], IEEE Transactions on Vehicular Technology, 2003, 52, pp. 622-636.
    [108] Ruiz TL, Doumi J, Gardiner JG, Teletraffic analysis and simulation of mobile satellite systems. Proceedings of the IEEE International Conference on Communications, ICC’99, vol. 2, Vancouver, Canada, June 1999, pp. 1074–1078.
    [109] Restrepo, J.; Maral, G., Providing appropriate service quality to fixed and mobile users in a non-geo satellite-fixed cell system, Mobile and Personal Satellite Communications, 1996, Proceedings of the Second European Workshop on Mobile/Personal Satcoms (EMPS '96) Oct. 9-11, 1996, pp.79– 96.
    [110] Yuguang Fang.Performance evaluation of wireless cellular networks under more realistic assumptions[J], Wireless Communications and Mobile Computing, 2005, 5, pp. 867 - 885.
    [111] Dong Yan, Zhou Chi, Suo siliang, Huang Zailu, Adaptive Bandwidth Allocation Based on Particle Swarm optimization for Multimedia LEO Satellite Systems, First International Conference on Communications and Networking in China, ChinaCom 2006, Beijing, China.
    [112] 3GPP TS 23.107 V6.3.0. Quality of Service (QoS) concepts and architecture, 2005–2006.
    [113]魏丫丫,林闯,任丰原等,无线多媒体网络中动态越区切换方案[J],软件学报, 2003, 14 (7): pp. 1310-1315.
    [114] Mugen Peng, Wenbo Wang, A Framework for Investigating Radio Resource Management Algorithms in TD-SCDMA Systems[J], IEEE Radio Communications, June 2005, pp. S12-18.
    [115] M. Peng and W. Wang, A Novel Dynamic Channel Allocation Scheme to Support Asymmetrical Services in TDD-CDMA Systems, ICCT 2003, Beijing, China, pp. 3920–3925.
    [116] Yanbo Cao, Xingqing Cheng, Chengshu Li, Dynamic Channel Allocation in TD-SCDMA, Proceedings of ICCT2003, IEEE, 2003, pp. 1129-1132.
    [117] Calin Curescu, Simin Nadjm-Tehrani, Time-Aware Utility-Based Resource Allocation in Wireless Networks[J], IEEE Transactions on Parallel and Distributed Systems, Vol. 16, No. 7, JULY 2005, pp. 624-636.
    [118] Wen-Hsing Kuo and Wanjiun Liao, Utility-based Optimal Resource Allocation in Wireless Networks, Proceedings of the IEEE Global Telecommunications Conference, Globecom 2005, pp.2508-2512.
    [119] Stanisic, V., Devetsikiotis, M., Dynamic utility-based bandwidth allocation policies: the case of overloaded network, Proceedings of the 2004 IEEE International Conference on Communications, Vol 4, 20-24 June 2004, pp. 1958– 1962.
    [120]牛志升,王兰,段翔.多媒体DS-CDMA系统中基于效用函数的无线资源优化策略[J].电子学报,2004, 10(32), pp.1594~1599.
    [121] M. Xiao, N. B. Shroff , E. Chong.An utility-based power-control scheme in wireless cellular systems[J].IEEE/ ACM Trans. Networking , Volume 11, Issue 2, April 2003, pp. 210~221.
    [122]黄席樾,张著洪,何传江,胡小兵等著,现代智能算法理论及应用,北京:科学出版社,2005.
    [123]刑文训,谢金星.现代优化计算方法.北京:清华大学出版社,1999.
    [124]褚蕾蕾,陈绥阳,周梦,计算智能的数学基础,北京:科学出版社,2002.
    [125]张文修,粱怡.遗传算法的数学基础.西安:西安交通大学出版社,2000.
    [126] (日)玄光南,程润伟著,于韵杰,周根贵译,遗传算法与工程优化,北京:清华大学出版社, 2004.
    [127] James Kennedy, Russell C Eberhart, Swarm Intelligence, San Fracisco: Morgan Kaufmann Publisher, 2001, pp. 165-178.
    [128]彭喜元,彭宇,戴毓丰,群智能理论及应用,电子学报[J],2003,31(12),pp. 1982-1988.
    [129]段海滨,蚁群算法原理及其应用,北京:科学出版社,2005.
    [130]高尚,杨静宇,群智能算法及其应用,北京:中国水利水电出版社,2006
    [131] Kennedy J, Eberhart RC. Particle swarm optimization, Proceedings of the IEEE International Conference on Neural Networks, Piscataway, NJ, WA Australia IEEE service center, 1995. IV, pp. 1942-1948.
    [132] Chi Zhou, Liang Gao and Hai-Bing Gao, Particle Swarm Optimization for simultaneous Optimization of Design and Machining Tolerances, Lecture Notes in Computer Science, 4247, 2006, pp. 873-880.
    [133] H. N. Nguyen, S. Lepaja, H. R. van As, Mobile Internet provisioning in satellite-IP networks: Mobility Management, interworking and integration with terrestrial networks, Proceedings of the 19th AIAA International Communications Satellite Systems Conference, Toulouse, France, April 2001.
    [134] Iera A, Molinaro A. Designing the interworking of terrestrial and satellite IP networks[J], IEEE Communications Magazine 2002; 40(2), pp. 136–144.
    [135]朱近康,未来移动通信的技术挑战和解决方案[J],电子学报,2004年12月.
    [136] L. Hui, M. Lott, M. Weckerle, W. Zirwas, and E. Schulz, Multihop communications in future mobile radio networks, Proceeding of IEEE PIMRC 2002, pp. 54-58.
    [137] W. Hongyi, Q. Chunming, S. De, and O. Tonguz, Integrated cellular and ad hoc relaying systems: iCAR[J], IEEE Journal on Selected Areas in Communications, vol. 19, no. 10, 2001, pp. 2105-2115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700