大型压水堆核电站接入电网的理论和技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机的来临以及人们环保意识的提高,核电在电网中所占的比重日益增加,核电站运行特性的研究对电网的安全稳定运行具有至关重要的意义。本文以新型大型压水堆核电站AP1000为研究对象,对反应堆中子动态过程和热传递过程进行了分析和建模,并对其在反应性阶跃扰动和冷线温度阶跃扰动下的动态响应进行了深入研究。仿真研究结果表明,由于核反应堆固有温度效应和中毒效应,堆芯具有一定的自稳定性,该固有特性保障了堆芯的安全,满足了核电站堆芯在初始设计时的要求。仿真曲线与工程实践数据一致,证明本文的堆芯模型真实有效。在堆芯模型的基础上,进一步结合核电站热线和冷线模型、一回路冷却剂温度模型、U型管温度模型和二回路蒸汽压力模型、一回路平均温度模型、汽机调速器和汽机系统以及反应堆控制系统。通过单机无穷大系统仿真发现,如果故障能迅速的清除并且核电站的控制系统正确动作,核电站能承受由电网引起的部分扰动,同时也验证了模型的正确性。
     核电站投运后一般是满功率带基荷运行,以期得到较大的经济效益,并要保证机组本身的安全稳定运行。但随着我国核电建设力度的加大,一旦核电装机容量占到电网的相当比例,核电机组若不具有一定的负荷跟踪的能力,将对电网的稳定运行带来较大影响。为保证电网的安全稳定运行,压水堆核电站通过功率控制系统调节反应堆的反应性以达到负荷跟踪的目的。本文研究设计的模糊硼浓度最优功率控制系统利用模糊控制器对棒速和硼浓度进行联合控制,在棒位移和硼溶液浓度的联合调控之间做出最优选择,以保证堆芯功率跟随负荷增减的同时轴向偏差AO在规定的范围内,堆芯功率均匀变化,避免功率畸变、局部过热、堆芯融化等危险情况发生。利用功率补偿通道加快了控制系统的响应速度,经仿真研究的结果证明其具有优良的负荷跟踪特性。将该控制系统模块接入所建立的核电站全系统模型,仿真结果表明压水堆核电站的负荷跟踪能力可满足电网的日负荷调峰要求。
     核电站接入系统,需要对核电站接入点的电力系统可靠性进行评价,分析电网强度,确定其作为外部厂用电源的可靠性。电网故障或扰动会导致核电机端电压、频率的变化,从而引起核电机组内部参数的波动。核电机组的退出将会导致系统失去大量有功功率,使故障情况进一步恶化。本文首先分析电网电压、频率波动时核电站内部参数响应,为保证核电站的安全得到核电退出电网孤岛运行的判据。通过仿真校验找出所有满足核电切机判据的预想事故,统计该故障发生概率从而判定电网是否满足国际原子能机构IEAE对核电接入电网的要求。针对核电不同接入方式进行仿真模拟,由仿真结果分析不同接入方式下的稳定程度。结果表明:独立送电,与附近的送端系统相连送电以及规模打捆外送三种方式中,后两种方式优于第一种方式,而采用与附近送端系统相连或打捆式送电方式,则需根据具体问题进行具体分析。
     核电站虽然前期投资大,但由于其环保上的优势、逐渐提高的安全稳定性和调频调峰特性而得到越来越多政策上的支持。传统的电源规划问题逐渐从经济利益考虑的单目标优化问题演化为需要考虑到决策者和专家意见的多目标优化问题;而且由于多目标电源规划问题维数高,非线性、约束条件多等特点而难于求解。本文提出一种改进Pareto适应度遗传算法IPFGA针对多目标新能源联合电源规划进行求解,IPFGA在遗传算法基本思想的基础上利用模糊决策选取适当的交叉率和变异率,双倍排序原则决定染色体的适应度值,并利用种群规模自适应密度估计防止算法过早的局部收敛。通过算例分析发现该算法与其他算法得到一致的Pareto Front解,证明该算法真实有效,且更好地防止遗传漂移、保持群体多样性的同时提高搜索效率,既避免了收敛到局部最优解也提高了计算速度。该算法可根据政策对核电厂的不同扶植力度快速找到适合当地情况的最优解,且具有普适性。在安全稳定性结论的基础上,结合模糊层次分析法和专家群组决策系统,利用多个专家经验对核电接入电网方式的多方面的优劣进行了综合分析和比较从而得到最终接入方案。该思路和方法在核电接入电网的前期规划中有着重要的指导意义。
With the advent of the energy crisis and increasing awareness of environmental protection, the proportion of nuclear power in the grid increases, which makes the studies on nuclear power plant operating characteristics of critical importance in safe and stable operation of power grid. The current PWR (AP1000) nuclear power plants were taken as the research subjects in the paper, the neutron dynamic process and heat transfer process in the reactor were anaylyzed, and the modeling of reactor core was implemented. Dynamic responses of the NPP core under the input of step disturbance of reactivity and cool-line temperature were simulated, and the simulationresults showed that, owing to the temperature effect and poisoning effect of the NPP core, reactor core is endowed with certain self-stability which protects the security of the NNP core and meets the requirements of the initial design. Being consistent with the historical data, the simulation further backs the proposed NPP core model. Based on the NPP core model, various models were integrated as a comprehensive package, including nuclear power plant hot and cold-line model, first loop coolant temperature model, U-tube temperature model, second loop vapor pressure model, first loop average temperature model, steam turbine and steam turbine governor system, and reactor control system. Through the simulation of single machine infinite-bus system, the conclusion was drawn that if the fault is cleared promptly and the NPP control system works well, the nuclear power plant can accept certain disturbances from the power grid. Moreover, this simulation validates the model.
     The nuclear power plant, when completed, generally keeps running at full capacity in order to obtain much greater economic benefits, and alternatively, ensure the stable operation of its own security unit. However, along with the rapid development of China's nuclear power construction, it is said that the power line will be heavily affected once the installed nuclear power capacity accounts for a considerable proportion of the grid, or fails to conduct certain load tracking. To ensure the power grid operated in a secure and stable manner, load tracking can be realized by using the power control system and regulating the reactivity of the reactor in PWR nuclear power plants. This paper deals with the fuzzy optimal power control system of boron concentration by using fuzzy controller as well as the rod speed and boron concentration. In doing so, the rod shift and boron concentration would be effectively regulated, Furthermore, the optimal choice is to be made to ensure that together with the increases or decreases of core power, Axial Deviation (AD) is guaranteed to change within a permitted range, and the reactor core power makes even changes to avoid the power distortion, local overheating, core melting and other hazardous incidents. The control system can accelerate the response speed by virtue of the power compensation channel, which has been defined by the Matlab for its excellent load tracking capacity. Connecting the self-defined control system model into the Nuclear Power Plant-wide System Model, simulation result demonstrates that the load tracking capability of the PWR nuclear power plant can meets the power requirements of the daily peak load.
     To connect the NPP into the whole power system, it is necessary to evaluate the reliability of the power system at the access point for NPP. This includes analyzing the intensity of electricity grid, and the reliability of it serving as an external power supply plant. The power grid malfunction or disturbance may lead to instability of the terminal voltage of NPP and grid frequency, which may cause the fluctuations in intrinsic parameters of nuclear power generating sets. Also the withdrawal of nuclear power units will cause the system to lose substantive active power, making the malfunction even worse. In the paper, the response of the intrinsic parameters of nuclear power generating sets is analyzed during the fluctuation of grid voltage and frequency. All the anticipatory accidents are found out by simulation when the criterion of NPP disconnection is met, and the probability of the ones is evaluated to determine whether the power grid meets the standard of IEAE. Different access ways of the NPP were simulated and stability margin of the access ways were analyzed based on the simulation results. The results demonstrated that in the three transmission modes:independent transmission mode, bundling power transmission mode, connecting the huge power supplier with sending terminal. The latter two is better than the first one. Whether to adopt the second mode or the third one depends on concrete issue.
     Although it has witnessed a huge fore-investment for nuclear power plant, more and more policy support from the government can be found due to its environmental-friendly concept, increasing security and stability, as well as frequency and peaking regulation. Economically, the traditional power supply planning has been shifted from individual optimization to multi-objective optimization by taking account of the ideas from the decision-maker and experts. However, it remains unsolvable since the multi-objective planning is labeled by high dimensionality, nonlinearity and multi-constraint condition. An improved Pareto fitness genetic algorithm (IPFGA) was proposed in this paper to deal with GEP problems. IPFGA is based on the basic concept of genetic algorithm, and decides the crossover rate and mutation rate by applying fuzzy system. In the genetic algorithm, double ranking strategy (DRS) is used to decide the fitness value, and uses population size adaptive density estimation (PSADE) to avoid premature local convergence, by which the same Pareto Front is obtained as other algorithms, and the effectiveness of the proposed algorithm is proved. Compared to other algorithms, IPFGA can effectively prevent genetic drift and maintain population diversity; in the meanwhile, it can improve the search efficiency, avoid regional optimal solution and at last, but not the least, promote the calculating speed. IPFGA can be easily applied to find the optimal solutions for various utilities via various expert opinions, and can be well and widely adopted. Based on safety stability conclusion, combining with fuzzy analytic hierarchy process and expert group decision-making system, the final access way is decided by comprehensive analysis and comparison of the NPP transmission mode. The ideas and methods are of important guiding significance at pre-planning of the connection with the power grid of NPP.
引文
[1]核电中长期发展规划(2005-2020年)[S].2007年10月.中国国家发展与改革委员会.
    [2]国家核电中长期发展规划节录[J].中国核工业报,2007,11月14日第008版.
    [3]Hu Xuehao, Zheng Xuecheng, etc, Pressurized Water Reactor Nuclear Power Plant (NPP) Modeling and the Midterm Dynamic Simulation after NPP has been introduced into Power System[J], IEEE TENCON'93,1993,367-370.
    [4]Trehan, N.K; Saran, R. Nuclear Power Revival[A]. Nuclear Science Symposium Conference Record[C],2003 IEEE, Volume 5,19-25 Oct.2003. Page(s):3630-3633 Vol.5.
    [5]Brendan Kirby, John Kueck, Harvey Leake and Michael Muhlheim. Nuclear Generating Stations and Transmission Grid Reliability[J].2007 39th North American Power Symposium (NAPS 2007).2007IEEE.279-287.
    [6]YMS, Christenson J M. Application of Optimal Control Theory to a Load-Following Pressurized Water Reactor.Nuclear Tech,1992,100(3):361.
    [7]INTERACTION OF GRID CHARACTERISTICS WITH DESIGN AND PERFORMANCE OF NUCLEAR POWER PLANTS-A Guidebook, TECHNICAL REPORTS SERIES No.224 [R].INTERNATIONALATOMIC ENERGY AGENCY, VIENNA,1983
    [8]Introducing nuclear power plants into electrical power systems of limited capacity-problems and remedial measuers, TECHNICAL REPORTS SERIES NO.271[R].INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA,1987.
    [9]Sang-Seung Lee, Jong-Keun Park, Seung-Il Moon, Yong-Tae Yoon, Jong-Won Kim, and Goon-Cherl Park. Small nuclear power generation units, and electric power system interconnection[J]. Power Engineering Society General Meeting,2006. IEEE, Montreal, Que.2006:1-6.
    [10]N. P. Mueller. RESPONSE OF PRESSURIZED WATER REACTORS TO NETWORK POWER GENERATION DEMANDS[J]. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No.10 October 1982:3943-3950.
    [11]赵福宇,钱承耀.压水堆负荷跟踪运行的新模式.核动力工程,1998,19(1):73-77
    [12]程和平,章宗耀,于俊崇.反应堆轴向功率分布控制和功率能力分析.中国核科技报告,1995,01(00):1-14
    [13]Lin Chuang,Lin Huawei. Application of Fuzzy Logic Controller to Load Follow Operation in pressurized Water Reactors.Journal of Nuclear Science and Technology.1994,31(5):407-419.
    [14]Naser J A, Chambre P L. An Efficient Solution Method for Optimal Control of Nuclear System. Nucl. Sci.Eng,1981,79:99-109
    [15]赵强.核电厂反应堆堆芯物理在线仿真系统研究[D].哈尔滨工程大学,2006
    [16]施希,吴萍,赵洁.基于PSASP的压水堆核电站堆芯建模及仿真研究.核动力工程,2009,30(3):126-130.
    [17]沈如刚,许慧中.核电站与电网的相互影响[J].广东电力,1996.3.
    [18]Brendan Kirby, John Kueck, Harvey Leake and Michael Muhlheim. Nuclear Generating Stations and Transmission Grid Reliability [J].2007 39th North American Power Symposium (NAPS 2007).2007IEEE.279-287.
    [19]林金东,胡永泰.浅述大型核电机组接入福建电网出现的问题及其对策[J].福建电力与电工,1997,17(4).
    [20]王文,贺峰,李远德,等.PGA在水火电混合系统电源规划中的应用[J].电力系统及其自动化学报,2003,15(5):14-18.
    [21]Kannan S, Mary Raja Slochannal S, Subbaraj P, et al. Application of evolutionary computation technique for generation expansion planning[C],Transmission and Distribution Conference and Exposition,2003,120-125.
    [22]Young-Moon Park, Jong-Ryul Won, Jong-Bae Park, et al. Generation expansion planning based on an advanced evolutionary programming[J].IEEE Trans on Power Systems,1999,14(1): 299-305.
    [23]Kannan, S, Mary Raja Slochannal S, Subbaraj P, et al. Application of partial swarm optimization technique and its variants to generation expansion planning problem[J]. Electrical Power System Research,2004,70(3):203-210.
    [24]Kannan S, Mary Raja Slochanal S, Narayana Prasad Padhy. Application and comparison of metaheuristic techniques to generation expansion planning problem[J]. IEEE Trans on Power Systems,2005,20(1):466-475.
    [25]唐权,吴耀武,熊信银,娄素华.SP-PSO在水火电混合电力系统电源规划中的应用[J].高电压技术,2006,32(4):104-107.
    [26]康重庆,夏清,相年德.随机生产模拟的序列化分析[J].中国电机工程学报,2002,22(4):8-12.
    [27]Life Cycle Management Planning at V.C. Summer Nuclear Plant-Main Condenser, Radiation Monitoring System, and Nuclear Safety-Related HVAC Chilled Water[R]. EPRI, Final Report, USA, December 2001.
    [28]胡亚蕾.核电先进堆型与我国核电发展.中国工程科学,2005,7(11):98-102.
    [29]“第二代改进型核电厂安全水平的综合评估”课题组.第二代改进型核电厂安全水平的综合评估[J].核安全.2007,(4):1-26.
    [30]汪胜国.世界核能发电的现状及未来堆型的开发[J].东方电气评论VOl.20,No.3,Sep,2006.
    [31]顾军扬,石文报.现阶段我国核电发展的堆型选择[J].中国电力.2006,39(1):50-54.
    [32]李经纬.秦山核电二期工程反应堆热工水力设计.核动力工程,1999,20(4):308-312.
    [33]张森如.先进压水堆核电站关键技术研究开发综述[J].核动力工程.2002,23(2):1-6.
    [34]杨孟嘉,任俊生,周志伟.未来10年核电先进堆型介绍[J].国际电力.2004,8(3):32-35.
    [35]西屋电气公司.西屋公司的AP1000先进非能动型核电厂[J].现代电力.2006,23(5):55-65.
    [36]陈泓.世界先进反应堆型——欧洲压水堆EPR介绍[J].中国电力,2000,33(2):65-69.
    [37]汪胜国,萧雨.日本的改进型沸水堆(ABWR) [J]东方电气评论.1999,13(3):192-199.
    [38]通用电气公司的先进沸水堆的主要特点[J].国外核新闻.2001,(3):9-10.
    [39]Di Lascio, M.A.; Moret, R.; Poloujadoff, M..Reduction of Program Size for Long-Term Power System Simulation with Pressurized Water Reactor[J] IEEE Transactions on Power Apparatus and Systems.Volume PAS-102, Issue 3, March 1983 Page(s):745-751.
    [40]Shinaishin, M. A. Sultan, M. A.; El-Shaer, H. M.; Rashad, S. M..Simulation of the Dynamic Performance of a PWR Plant as a Power Supply in a Large Power System[J]; IEEE Transactions on Nuclear Science, Volume 28, Issue 1, Feb.1981 Page(s):923-928.
    [41]Zhang Xuecheng, Hu Xuehao, Zhou Xiuming, etc, "Development of Midterm Dynamic Simulation Program Including Nuclear power plant model and Study of Interaction between Large Nuclear Power Plant and Power system", Power System Technology, vol.15, no.2, pp. 5-10, Feb,1995.
    [42]T. Inoue, Ichikawa. T, Kundur. P, P. Hirsch, "Nuclear Plant Models for Medium- to Long-term Power System Stability Studies", IEEE Transactions on Power systems, vol.10, no.1, P 141-148, Feb,1995.
    [43]Kerlin T W, KatzE M. Pressurized water reactor modeling for long term Power system dynamics simulation[J]. EPRI Final Report EL—3087,1983.
    [44]Zhou Xiuming, Gan Fulinlin, Zhong Wenhua, etc, the Pressurized Water Reactor Nuclear Power Plant Model for the Study of the Interaction between Power System and Nuclear Power Plant under Large Disturbance[J], Nuclear Power Engineering, vol.17, no.1, pp.6-12, Feb,1996.
    [45]Huimin Gao, Chao Wang, Wulue Pan. A Detailed Nuclear Power Plant Model for Power System Analysis Based on PSS/E[A]. Proceedings of IEEE PES Power System Conference and Exposition[C], Atlanta, USA,29 October,2006.
    [46]周秋森.核电站的调峰运行.华北电力.1990,(11):53-55.
    [47]YMS.Christenson J M. Application of Optimal Control Theory to a Load-Following Pressurized Water Reactor.Nuclear Tech,1992,100(3):361.
    [48]赵福宇,钱承耀.压水堆负荷跟踪运行的新模式.核动力工程,1998,19(1):73-77
    [49]程和平,章宗耀,于俊崇.反应堆轴向功率分布控制和功率能力分析.中国核科技报告,1995,01(00):1-14
    [50]段新会,姜萍,佟振声.用于压水堆负荷跟踪运行的硼浓度模糊控制系统.核动力工程2002,23(1):20-23
    [51]赵强.核电厂反应堆堆芯物理在线仿真系统研究[D].哈尔滨工程大学,2006
    [52]Lin Chuang,Lin Huawei. Application of Fuzzy Logic Controller to Load Follow Operation in pressurized Water Reactors.Journal of Nuclear Science and Technology.1994,31(5):407-419.
    [53]Naser J A, Chambre P L. An Efficient Solution Method for Optimal Control of Nuclear System. Nucl. Sci.Eng,1981,79:99-109
    [54]赵福宇,周大为.压水反应堆负荷跟踪的最优控制.核科学与工程,2000,20(3):282-288
    [55]廖业宏,肖岷,李现锋,朱闽宏.大亚湾核电站延伸运行及降功率期间反应堆轴向功率偏差的控制及其计算机模拟分析.核动力工程,2004,25(04):297-300.
    [56]Jong B P, Young M P, Kwang R.. An improved geneticalgorithm for generation expansion planning. IEEE Transactions on Power Systems,2000,15(3):916-922.
    [57]Turgeon. Optimal short-term hydro scheduling from the principle of progressive optimality[J]. Water Resour.Res.1981,17(3):481-486.
    [58]陈金富,李小明,段献忠,等.结合独立发电商和环境保护的电源规划模型[J].华中科技大学学报(自然科学版).2006,34(6):55-57.
    [59]J.Tang,P.B.Luh. Hydrothermal scheduling via extended differential dynamic programming and mixed coordination[J]. IEEE Transaction on Power Systems,1922,7(2):791-797.
    [60]S.Ruzic, N.Rajakovic, and A.Vuckovic. A Flexible Approach to Short-term Hydrothermal Coordination[J]. IEEE Transactions on Power Systems.1996,11(3):1564-1578.
    [61]N.Jimenez.Redondo, A.J.Conejo. Short-term Hydrothermal Coordination by Lagrangian relaxation:Solution of the Dual Problem[J]. IEEE Transactions on Power Systems.1999,14(1): 89-95.
    [62]陈皓勇,王锡凡.电源规划JASP的改进算法[J].电力系统自动化.2000,24(11):22-25.
    [63]娄素华,李研,吴耀武,等.多目标电网无功优化的量子遗传算法[J].高电压技术,2005,31(9):69-71.
    [64]Chrisoforos E. Zoumas, Anastasiors GBakirtzis, John B.Theocharis, etal. A Genetic Algorithm Solution Approach to the Hydrothermal Coordination Problem[J]. IEEE Transactions on Power Systems.2004,19(2):1356-1364.
    [65]吴耀武,侯云鹤,熊信银,等.基于遗传算法的电力系统电源规划模型[J].电网技术,1999,23(3):10-14.
    [66]王艳松,赵智,陈国明,等.应用禁忌搜索方法优化配电网的开关配置[J].高电压技术,2005,31(3):74-76.
    [67]谢云.模拟退火算法的原理及实现[J].高等学校计算数学学报,1999(3):212-218.
    [68]孙吉良.秦山300MW核电机组全范围仿真机反应堆堆芯物理模型.核动力工程,1996,17(2):112-117.
    [69]IEEE Task Force on Excitation Limiters. Underexcitation limiter models for power system stability studies[J], IEEE Transactions on Energy Conversion,1995,10(3).
    [70]IEEE Task Force on Excitation Limiters. Recommended Models for overexcitation limiting devices[J]. IEEE Transactions on Energy Conversion,1995,10(4).
    [71]周修铭,干福麟,衷文华等.适用于分析大扰动下机网相互影响的压水堆核电站数学模型研究[J].核动力工程.1996,17(1):6-12.
    [72]张学成.用于电力系统动态模拟的压水堆核电站数学模型[J].电网技术.1990(4):71-77.
    [73]邓亮,邓深.反应堆中子通量密度仿真研究.核动力工程,1999,20(6):209-213.
    [74]GENERATION IV NUCLEAR ENERGY SYSTEMS[S]. Fiscal Year 2005. Volume I. Nuclear Energy Systems.
    [75]Yu Tao. The Person-Computer Simulation And Demonstrate platform Research on PWR Nuclear Power Plant Physics-Running[D]. China Institute of Atomic Energy,2001.
    [76]高慧敏.核电站与抽水蓄能电站的数学建模及联合运行研究[D].浙江大学,2006.
    [77]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [78]电力系统分析综合程序(PSASP)用户手册[R],中国电力科学研究院.2001,05.
    [79]党杰,刘涤尘,潘晓杰,等.基于RTDS和PSASP的华中电网低频振荡研究.继电器.2006,34(13):33-37.
    [80]徐英,邵玉槐,薛永强,等.基于PSASP的电力系统稳定性仿真分析.太原理工大学学报.2007,38(3):247-249.
    [81]李惜玉.基于PSASP的电力网潮流和暂态稳定性分析.实验室科学.2009,2(1):92-96.
    [82]张建华,张国华,杨京燕.基于PSASP的廊坊电网静态电压稳定性分析.电力系统保护与控制.2009,37(5):65-70.
    [83]何志强,丁坚勇.基于PSASP的可控串联补偿电容器潮流建模.广东电力.2006,19(11):18-21.
    [84]冯俊婷,黄晓津,张良驹.核反应堆功率调节系统控制特性的研究.原子能科学技术.2006,40(3):306-410.
    [85]P.Kundur. Power System Stability and Control[M]北京:中国电力出版社,2002.
    [86]邬国伟,陶谨.压水堆核电站负荷跟踪的研究.核动力工程,1999,19(5):394-397.
    [87]朱雪耀,赵福宇,万百五.压水堆负荷跟踪的模糊控制系统[J].核动力工程,1998,(05):456-460.
    [88]Von Jan R, Wunderlich F, Gartner M. Fuel Performance Aspects for Load Following Operation of Light Water Reactor. Atomkernenergic Kerntechnik.1986,48(30):156-161.
    [89]Duborg M. Recent Development for Improving of PWR Flexibility to Load Follow and Frequency Control Operation. FRA-142-3,1983.
    [90]Renwick B L. Nuclear station performance fuels industry renaissance[J]. Power,2001,145(4): 24-30.
    [91]张干周编译.美国核电站运行特性调查[J].国际电力International Electric Power for China. 2002,6(4).
    [92]Grum A.Design of Nuclear Power Plant with Pressurized Water Reactor for Optimum Load Follow Capbility.Atomkernenergic Kerntechnik,1986.48(3):138-143.
    [93]YMS,Christenson J M.Application of Optimal Control Theory to a Load-Following Pressurized Water Reactor.NuclTech,1992,100(3):361-366.
    [94]章宗耀.核电站反应堆运行物理分析.核动力工程,1996,17(4):311-317.
    [95]马习朋.探讨大型压水堆核电机组参与电网中间负荷调峰.现代电力.2007,24(4):28-33.
    [96]张健.化学(硼浓度)调节在核电站压水堆中的应用[J].核动力工,1982,(05):85-90.
    [97]程和平,章宗耀,谢仲生.压水堆核电厂反应堆轴向功率分布控制.1992,13(1):18-25.
    [98]马习朋.大型压水堆核电机组参与电网中间负荷调峰的探讨[J].山东电力技术,2007,(06):35-40.
    [99]赵云,桑维良.压水堆核电厂G模式反应堆功率控制[J].核工业自动化,1996,3:10-13.
    [100]Aleite W, Vonjan R. Germany Designs for Optimum Operating Flexibillty. Nuclear Engineering International,1985,30(1):28-30.
    [101]Jung-In Chai, Yung-Joon Hah, Un-Chul Lee. Automatic Reactor Power Control for A Pressurized Water Reactor.1993,102(5):277-286.
    [102]廖业宏,肖岷,李现锋,等.大亚湾核电站延伸运行及降功率器件反应堆轴向功率偏差的控制及其计算机模拟分析.核动力工程,2004,25(4):297-300.
    [103]濮继龙.大亚湾核电站运行教程.北京:原子能出版社,1999.
    [104]Morita T, Scherpereel L R, Dzikowski K J et al. Power Distribution Control and Load Following Procedures. WCAP-8403.1974.
    [105]赵福宇.反应堆负荷跟踪过程中的功率分布控制[D].西安交通大学(西安).1988.
    [106]杜佳璐,林叶锦,郭晨.控制系统仿真新算法的研究[J].大连海事大学学报,1999,25(03):85-88.
    [107]Abraham Kandel. Gideon Langholz. Fuzzy control systems[M]. CRC Press,1993,(4.3.2).
    [108]M. Marseguerra, E. Zio, P. Baraldi. Fuzzy logic for signal prediction in nuclear systems. Progress in Nuclear Energy.2003,43:373-380.
    [109]张林鹏,李好文.PLC实现的模糊PID控制器研究.榆林学院学报.2009,19(2):40-43.
    [110]胡兆光,王平洋,周孝信,胡兆意.多目标电源规划模糊决策支持系统[J].电网技术.1993,2:38-43.
    [111]Nanju Na, Keechoon Kwon, Changshik Ham, Zeungnam Bien. A study on water level control of PWR steam generator at low power and the self-tuning of its fuzzy controller. Fuzzy Sets and Systems,1995,74(1):43-51.
    [112]武红幸,赵福宇,张仲明.新型模糊控制器在小型反应堆功率控制系统中的应用[J].核动力工程,2008,29(5):80-82.
    [113]Introducing Nuclear Power Plants into Electrical Power Systems of Limited Capacity: Problems and Remedial Measures[R]. IAEA Technical Reports Series No.271,1987.
    [114]核电站厂用系统可靠性分析资料,法国国家电力局EDF.
    [115]刘肇旭,徐征雄,王德生,等.大亚湾核电站的外部电网运行可靠性评价[J].中国电力,1994,(11):24.
    [116]R. Billinon, R. N. Allan, Reliability Evaluation of Power System[M].2nded. New York:Plenum, 1996.
    [117]郭永基.电力系统可靠性分析[M].北京:清华大学出版社,2003:78-97.
    [118]罗海斌.地方电厂接入系统方式的分析[J].广东输电与变电技术,2003,04:52-54.
    [119]邱文千.“一厂两站”方案在电厂接入系统的应用[J].华东电力,2004,32(02):25-27.
    [120]王梅义,吴竞昌,蒙定中.大电网系统技术[M].北京中国电力出版社,1995.
    [121]秦晓辉,毕天姝.联络线三相金属性短路地点对电力系统暂态稳定性的影响[J]:电网技术,2007,31(2):22-27.
    [122]SD131-81,电力系统技术导则[S].
    [123]薛禹胜.非自治非线性多刚体系统的稳定性分析[M].南京:江苏科学技术出版社,1999.
    [124]高洵,吴涛.电网交流互联对电网暂态稳定性的影响[J].电网技术,2000,24(6):21-26.
    [125]Sanghvi A P, Shave] I H, Spann R M. Strategic planning for power system reliability and vulnerability:An optimization model for resource planning under uncertainty [J].IEEE Trans Power Syst,1982, PAS-101 (6):1420-1429.
    [126]张 奔,何大愚.电源规划与数学模型[M].北京:能源出版社,1989.
    [127]王锡凡.电力系统优化规划[M].北京:水利电力出版社,1990.
    [128]Gorenstin B G, CampodonicoNM, Costa J P. Power system expansion planning under uncertainty [J]. IEEETrans PowerSyst,1993,8(1):129-136.
    [129]Hadjicostas TP, Adams R N. The flexible rolling schedule for infinite-horizon optimality in generation expansion planning [J]. IEEETrans Power Syst,1992,7(3):1182-1188.
    [130]Firmo HT, Legey L F L. Generation expansion planning:An iterative genetic algorithm approach[J].IEEE Trans Power Syst,2002,17(3):901-906.
    [131]丁明,石雪梅.基于遗传算法的电力市场环境下电源规划的研究[J].中国电机工程学报.2006,26(21):44-49.
    [132]何仕安,张宗益.基于专家系统的电源规划[J].重庆大学学报(自然科学版).2000,23(4):106-109.
    [133]魏本宁.基于目标规划理论的电源规划方法研究[D].华北电力大学(北京).
    [134]孔祥玉,房大中.不确定多目标电源规划模型[J].天津大学学报.2008,41(2):183-188.
    [135]Elaoud S, Loukil T, Teghem J.The Pareto fitness gengtic algorithm:Test function studyfJ]. European Journal of Operational Research,2007,177 (3):1703-1719.
    [136]PARKS G T. Multiobjective pressurized water reactor reload core design by nondominated genetic algorithm search. Nuclear science and engineering.1996,124(1):178-187.
    [137]Y.M.Park,K.Y.Lee,L.T.O.Youn. New Analytical Approach for Long-term Generation Expansion Planning Based on Maximum Principle and Gaussian Distribution Function, IEEE, Trans, Vol.Pas-104, No.2,1985.
    [138]贾焰,王志英.知识库系统原理与技术[M].长沙:国防科技大学出版社,1993.
    [139]吴信东.专家系统设计[M].合肥:中国科学技术大学出版社,1990.
    [140]Elias M. Awad. Building Expert Systems:Principles, Procedures, and Applications (4 edition)[M]. Course Technology, October 15,2004.
    [141]DAVID A K, ZHAO R. An Expert System with Fuzzy Sets for Optimal Planning [J]. IEEE Trans.on Power Systems,1991,6(1):59-65.
    [142]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2000.
    [143]张光澄.非线性最优化计算方法[M].北京:高等教育出版社,2005.
    [144]Melanie Mitchell. An introduction to genetic algorithms[M].The MIT Press,1998.
    [145]Fonseca, C.M, Fleming, P.J, Zitzler, E. etal. Evolutionary Multi-Criterion Optimization[M]. Springer Berlin/Heidelberg, April,2003
    [146]Wang Lipo, Chen Ke, Ong Yew Soon. Advances in Natural Computation[M]. Springer Berlin/ Heidelberg, August,2005.
    [147]TeixeiraFirmo H, Fernando L, Lggey L. Generation.expansion planning:an iterative genetic algorithm approach[J].IEEE Transactions on Power Systems 2002,17(3):901-906.
    [148]Park J B, Pack Y M, Won J R. An improved gnetic algorithm for gneneration expansion planning[J]. IEEE. Transactions on Power Systems,2000,15(3):916-922.
    [149]Park Y, Won J, Park J, et al. An improved genetic algorithm for generation expansion planning[J]. IEEE Trans. on Power Systems,2000,15:916-922.
    [150]Gwo-Ching liao, Tapeng Tsao. Using chaos search immune genetic and fuzzy system for short-term unit commitment algorithm [J]. Electrical Power and Energy Systems,2006,28: 1-12.
    [151]Rajeev Kumar, Peter Rocjett. Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution:a Pareto converging genetic algorithm [J]. Evolutionary Computation,2002,10(3):283-314.
    [152]J. Horn, N. Nafpliotis, D.E. Goldberg, A niched Pareto genetic algorithm for multiobjective optimization, Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence,1994(1):82-87.
    [153]Zitzler E, Thiele L.Multiobjective evolutionary algorithm:A comparative case study and the strength Pareto approach[J].IEEE Transactions on Evolutionary Computation.1999,3(4): 257-271.
    [154]E. Zitzler, M. Laumanns, L. Thiele, SPEA2:Improving the Strength Pareto Evolutionary Algorithm, Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich,2001.
    [155]Fonscca C M, Fleming P J.Genetic algorithm for multiobjective optimization:Formulation discussion and generation[C]//Proceedings of the Conference on genetic algorithm,San Mateo, California,1993:416-423.
    [156]H. Lu, GG Yen, Rank-density based multiobjective genetic algorithm, in:Proceedings of the 9th IEEE Congress on Evolutionary Computation,2002:944-949.
    [157]Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective gengtic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6 (2):182-197.
    [158]孙新德,施熙灿.水电站群长期优化调度的一种改进算法[J].水利科技与经济,1995,(03):124-128.
    [159]杨永建,付湘,李亚强.鄂坪水电站长期优化调度研究[J].水科学与工程技术,2008,(03):40-42.
    [160]徐鼎甲,戴国瑞.梯级水电站的长期优化调度[J].水利学报,1989,(05):43-48.
    [161]Petr Hajek. Metamathematics of fuzzy logic[M]. Springer,2002. (5.4.1.1).
    [162]Thomas L. Saaty. The Analytic Hierarchy Process:Planning, Priority Setting, Resource Allocation [M]. Mcgraw-Hill, January 1980. (5.4.1.1).
    [163]徐志勇,曾鸣,鄢帆,等.基于改进模糊层次分析法的电网建设项目后评价研究[J].中国市场.2009,(18):86-87.
    [164]林俊,王钇,苏迪.改进的模糊层次分析法在配电网规划中的应用[J].高压电技术.2008,34(6):1161-1167
    [165]Fargal S A, Kandil M S, Elmitwally A. Quantifying electric power quality via fuzzy modeling and analytic hierarchy processing[J]. IEE Proceedings-Generation, Transmission andDistribution,2002,149(1):44-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700