施肥与丛枝菌根真菌对兰州百合生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根真菌(Arbuscular Mycorrhizal Fungi; AMF)在陆地生态系统中分布广泛,能够和陆地上80%的高等植物建立共生关系,属于球囊霉门真菌。能够通过促进植物对土壤中氮、磷、钾的吸收来改善植物营养,从而促进植物生长,以达到维持生态系统稳定和植被恢复的目的。丛枝菌根真菌还能帮助其宿主植物抵御不良环境,各种胁迫以及病虫害。兰州百合(Lilium davidi var. unicdor cotton)是闻名中外的甜百合,是兰州的特色产业。但是近年来由于兰州百合栽培年限过长许多农户盲目缩短其生长周期导致兰州百合品质下降,土壤中病虫害严重等问题。针对这些问题,本实验运用传统的显微技术从与兰州百合共生的丛枝菌根真菌方面,在不同施肥处理和杀真菌剂处理下研究兰州百合及与之共生的丛枝菌根真菌的年际变化,进而阐述施肥和丛枝菌根真菌对兰州百合的影响。为解决兰州百合的连作障碍问题提供一定的理论依据。本实验得出的主要结论如下:
     1.兰州百合的基生根(肉质根:Succulent root)和茎生根(纤维根:Fiber root)都有丛枝菌根真菌(AMF)与之共生。根中的AMF主要以重楼型(Paris-type)丛枝结构为主,根系中很少观察到疆南星型(Arum-type)的丛枝结构。而且兰州百合肉质根中AMF不同结构的侵染水平都低于同期纤维根中的侵染。
     2.采用湿筛倾析-蔗糖离心法分离土壤中的AMF孢子,并计数分析,压片。根据孢子的大小、形状、颜色以及有无连孢菌丝等外部形态初步鉴定出2属8个种,分别为摩西球囊霉(Glomus mosseae)、土球囊霉(Glomus geosporum)、聚丛球囊霉(Glomus aggregatum)、幼套球囊霉(Glomus etunicatum)、根内球囊霉(Glomus intraradices)、苦丝球囊霉(Glomus. sinuosum)、和平孢囊霉(Pacispora franciscana)、疣突球囊霉(Glomus. verruculosum),目前尚有8种待进一步鉴定。
     3.兰州百合大鳞茎产量和与兰州百合共生的AMF侵染率都与年份成显著正相关性。兰州百合鳞茎产量和AMF的丛枝、泡囊、菌丝以及总的侵染率基本成逐年增加趋势。AMF总的侵染率都在20%到80%之间。
     4.AMF对兰州百合根系的侵染提高了兰州百合的产量。但是氮肥、磷肥、钾肥等无机肥的施用降低了AMF的侵染,同时本实验发现有机肥鸡粪也会降低AMF的侵染。
     5.苯菌灵处理对兰州百合根中的AMF有明显抑制作用,而且苯菌灵能够降低土壤中的速效钾含量,同时增加土壤中速效氮和速效磷含量。另外苯菌灵可能通过杀死或者抑制植物根际非菌根的有害真菌或线虫来间接提高百合产量。
     6.通过比较本实验田与高产田和低产田的理化性质之间的差异,土壤中氮、钾和有机质的贫乏是限制兰州百合鳞茎增产的重要因素。而且兰州百合在生长过程中对氮、磷、钾肥的利用率很低。同时发现,无机肥并不能提高土壤中氮、磷、钾的含量,而有机肥鸡粪则能全面提升土壤肥力,进而提高百合产量。
     7.兰州百合植株的各项指标都与兰州百合大鳞茎产量成显著正相关性。植株茎粗,地上茎长,主根长和叶片数高的植株鳞茎质量也相应的高。
Arbuscular mycorrhizal fungi (AMF) which belongs to the Glomeromycota is widely distributed in terrestrial ecosystems. And can establish a symbiotic relationship with 80% of the terrestrial plants. AMF facilitates the growth of plants by promoting the absorption of nitrogen,phosphorus and potassium in soil to improve nutrient uptake of plant. Reach the aim of the maintenance of ecosystem stability and vegetation restoration. Also AMF can assist the plants which form symbiotic associations with AMF to resist environmental stress and disserve of pests. LiLum davidi var unicdor cotton is a worldwide sweet lily and a dominating industry in local. Whereas in the latest years the quality of Lilium davidi var. unicdor cotton has a sharp desline and the pests in soil seriously increase.And all these problems are results of too long cultivated years and shortener of the cycle by many farmers. To solve these problems,our experiment from the aspect of AMF which form symbiotic associations with Lilium davidi var. unicdor cotton investigates the influence of fertilization and arbuscular mycorrhizal fungi to Lilium davidi var. unicdor cotton using traditional microscopic inspection. We study the interannual change of Lilium davidi var. unicdor cotton and AMF under treatments of different fertilizations and fungicide. We expect to provide a theoretical basis to solve the problem of succession cropping obstacle of Lilium davidi var. unicdor cotton. And the main results were abstracted as follows:
     1.The base root(Succulent root) and stem root (Fiber root)of Lilium davidi var. unicdor cotton both form intimate symbiosis with arbuscular mycorrhizal fungi (AMF).And Arbuscular mycorrhizal fungi (AMF) is mainly Paris-type, and also observed a small amount of Arum-type. The AMF colonization rate in Fiber root was higher than Succulent root in the same period.
     2.Soil spores around the root of Lilium davidi var. unicdor cotton was filtered by wet screening method and sucrose suspending method. Than count and make the slices of soil spores. Based on their exterior modality such as size, shape, color and whether had germination or not, the spores were differentiated into two genus and eight species were preliminary identified. These AMF species including:Glomus mosseae, Glomus geosporum, Glomus aggregatum, Glomus etunicatum, Glomus intraradices, Glomus. sinuosum, Pacispora franciscana, Glomus. Verruculosum and so on.There are still eight species need to be identified further.
     3.The total colonization of AMF is between 20% and 80%.The bulb weight of Lilium davidi var. unicdor cotton and the AMF colonization rate both has a significant positive correlation with years.The weight,the colonization rate of arbuscule,vesicle and extraradical hyphae increases with years.
     4.Root colonized by AM Fungi enhance the production of Lilium davidi var. unicdor cotton.But the application of inorganic fertilizer such as nitrogen fertilizer, potash fertilizer and phosphate fertilizer reduce the AMF colonization rate. At the same time, Chicken manure,a organic fertilizer, also reduce the AMF colonization.
     5.The application of benomyl significantly inhibit the AMF in Lilium davidi var. unicdor cotton root. Benomyl reduces the available potassium in soil while increases the available nitrogen and the available phosphorus in soil. In addition, benomyl indirectly increase the production of Lilium davidi var. unicdor cotton by kill or inhibit non- rhizosphere harmful fungi and nematodes.
     6.By comparison the difference of the physical and chemical indicators between our experiment yield and high yielding and low-yielding fields,absence of nitrogen, potassium in soil and organic matter is important factors to limit the yield of Lilium davidi var. unicdor cotton.And the utilization efficiency of nitrogen fertilizer, potash fertilizer and phosphate fertilizer is very low in the growth process of Lilium davidi var. unicdor cotton.At the same time, inorganic fertilizer would not improve the content of nitrogen, potash and phosphate in soil. But chicken manure can enhance the soil fertility and thereby improve the yield of Lilium davidi var. unicdor cotton.
     7.The indicators of Lilium davidi var. unicdor cotton has a significant positive correlation with its bulb weight.The plant which has a high stem diameter,stem length,root length and the number of leaves has a high bulb weight.
引文
1. Newman, E.I. and P. Reddell, The distribution of mycorrhizas among families of vascular plants. New Phytologist,1987.106(4):p.745-751.
    2. Schussler, A., Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant and Soil,2002.244(1-2):p.75-83.
    3.杨林莎,孙艳红和方晓艳,中药百合的研究进展.河南中医药学刊,2002(01):p.74-76.
    4.翟范,抗癌明星百合.医药与保健,2001(10):p.55.
    5.肖培根,新编中药志.2002,北京:化学工业出版.
    6.王惠珍,甘肃省几种蔬菜主要营养成分分析结果.甘肃农业科技,2001(06):p.31-32.
    7.王生林和王明霞,兰州百合产业发展的思考与对策甘肃农业大学学报,2002(01):p.82-87+91.
    8.孔宪武,兰州植物通志1958,兰州:甘肃人民出版社.
    9.梁保安和张富捐,火焰原子吸收光谱法测定兰州百合中的8种微量元素.光谱学与光谱分析,2007(04):p.813-815.
    10.李卫民等,百合的药理作用研究.中药材,1990(06):p.31-35.
    11.李卫民和孟宪纾,中药百合的研究概况.中草药,1991.22(6):p.277-279.
    12.马君义等,兰州百合的研究进展.塔里木大学学报,2005(04):p.53-56+76.
    13.沈赞,兰州百合花营养成分检测分析.江苏预防医学,2008(02):p.41-42.
    14. Han B H, Y.B.W., Goo D H,et al., The Formation and Growth of Bulblets from Bulblet Sections with Swollen Basal Plate in Lilium Oriental HybridCasa Blanca'. Journal of the Korean Society for Horticultural Science,1999.40(6):p.747-750.
    15. Kawagishi, K. and T. Miura, Growth characteristics and effect of nitrogen and potassium topdressing on thickening growth of bulbs in spring-planted edible lily (Lilium leichtlinii var maximowiczii Baker). Japanese Journal of Crop Science,1996.65(1):p.51-57.
    16.刘建常和魏周兴,兰州百合鳞茎增重规律的探讨.中国蔬菜,1994(05):p.27-30.
    17.周世德和宁惠芳,兰州百合适宜生长的气侯条件分析甘肃气象,2001(03):p.34-35.
    18.牛叔文,榆中县发展百合产业化经营的思考.甘肃农业科技,2000(08):p.8-10.
    19.陆家云,药用植物病害.1995,北京:中国农业出版社.
    20.欧阳秩,观赏植物病害.1996,北京:中国农业出版社.
    21.张中义,观赏植物真菌病害.1992,成都:四川科技出版社.
    22. Pirone, P.a., Disease and pests of omamestel plant.1987,北京:中国建筑工业出版社.
    23.钟景辉等,百合病害及其持续治理.森林病虫通讯,2000(02):p.28-30+23.
    24.张于光和肖启明,百合的主要病害及其防治.植物杂志,2003(03):p.16-17.
    25.李诚,李俊杰和薛春胜,百合枯萎病发生规律及防治研究.植物保护学报,1994(02):p.135-139.
    26.朱明德等,百合贮藏病害及其防腐措施的研究.上海农业科技,2004(02):p.92-93.
    27. Ryu, K., Park, HW and Chok, JK Characterization and sequence analysis of a lily isolate of Cucumber mosaic virus from Lilium tsingtauense. Plant Pathol,2002.18:p.85-92.
    28.沈淑琳,百合病毒及其检验.植物检疫,1996(04):p.32-35.
    29. J. Kim, S.L., H. Kim, S. Choi and Mark S. Roh, Survey on virus diseases of Lilium spp 1 And their indexing by tissue and dot immunobinding assays. Acta Horticulture,1996.414:p. 189-194.
    30. J. Cohen, A.G. and G. Loebenstein, Virus diseases of lilies in Israel. Acta Horticulture,1996. 432:p.84-87.
    31. M.G. Bellardi, G.N. and A. Bertaccini, Old and new viruses of lily in Italy. Acta Horticulturae, 2002.568:p.215-220.
    32.王梅等,百合主要病害的发生与防治.农业工程技术(温室园艺),2008(10):p.53.
    33.白松和丁元明,百合病毒病及其检测防治方法.植物医生,1996(01):p.4-7.
    34. ASJ ES C J and B.-B.G.J., Airborne field spread of tulip breaking virus, lily symptomless virus and lily virus in lily affected by seaaonal incidence of flying aphids and control by sprays If mineral oil,veg 2etable oil,insecticide and pheromone in the netherlands. Acta Horticulture,1994.377:p.301-324.
    35. Asjes, C.J., Control of aphid-borne Lily symptomless virus and Lily mottle virus in Lilium in the Netherlands. Virus Research,2000.71(1-2):p.23-32.
    36. 石鸿文和潘晟,百合主要病虫害及防治.植物医生,2001(02):p.30.
    37.李诚,甘肃食用百合夏季枯死原因及对策初探.植保技术与推广,1994(03):p.13-14.
    38.王凤兰,周厚高和黄子锋,百合主要病虫害及其优化防治友术当代蔬菜,2006(03):p.4344.
    39.李亿坤,百合主要病虫害的防治.中国农村小康科技,2000(09):p.24-25.
    40.宁鸿山,百合病虫害的防治技术.江西农业科技,2002(02):p.38-39.
    41. 杨雨华,半干早地区兰州百合对地膜覆盖和施肥的生态学效应研究2011,兰州大学.
    42.黄玉库和买自珍,食用百合种植密度和施肥高产技术数学模型.中国蔬菜,1993(06):p.26-30.
    43.黄鹏,施肥对兰州百合植株生长及鳞茎产量的影响.植物营养与肥料学报,2007(04):p.753-756.
    44. 喻敏等,百合莲作土壤养分及物理性状分析.土壤通报,2004(03):p.377-379.
    45. 赵欣楠等,施钾对兰州百合叶片抗旱性生理指标的影响.甘肃农业大学学报,2009(01):p.98-101.
    46.孙红梅,李天来和李云飞.低温解除休眠过程中百合鳞茎内的物质代谢及相关分析in中国科协第五届青年学术年会.2004.
    47.靳爱萍,有机肥的种类与作用吉林农业,2008(11):p.26-27.
    48.胡秀芝和程稼科,有机肥可提高土土壤肥力.吉林农业,2008(05):p.30.
    49. 赵明等,鸡粪等有机肥料的钾素释放及钾素形态转化特性.农业网络信息,2005(11):p.148-149.
    50. 徐阳春和沈其荣,长期施用不同有机肥对土壤各粒级复合体中C、N、P含量与分配的影响.中国农业科学,2000(05):p.65-71.
    51. Liu, Y., et al., Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations. FEMS Microbiology Ecology,2009.67(1):p.81-92.
    52. Liu, Y., et al., Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist,2012.194(2):p.523-535.
    53. Schussler, A., D. Schwarzott, and C. Walker, A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research,2001.105:p.1413-1421.
    54. Bever, J.D., et al., Arbuscular mycorrhizal fungi:More diverse than meets the eye, and the ecological tale of why. Bioscience,2001.51 (11):p.923-931.
    55. Oehl, F., et al., Impact of Land Use Intensity on the Species Diversity of Arbuscular Mycorrhizal Fungi in Agroecosystems of Central Europe. Applied and Environmental Microbiology,2003.69(5):p.2816-2824.
    56. Clapp, J.P., et al., Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytologist,1995.130(2):p.259-265.
    57. Helgason, T., A.H. Fitter, and J.P.W. Young, Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Molecular Ecology,1999.8(4):p.659-666.
    58. Liu, Y., et al., Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high altitude in Tibet Plateau. FEMS Microbiology Ecology,2011.78(2):p.355-365.
    59. Helgason T, F.A., Young JPW, Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. Molecular Ecology,1999.8:p.659-666.
    60. 李俊喜和刘润进,菌根真菌菌剂防治作物土传病害潜力分析.植物病理学报,2007(01):p.1-8.
    61. Trouvelot, A., Kough, J.L., and Gianinazzi-Pearson, V, Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayantune signification function nelle. In:Physiological and Genetic Aspects of Mycorrhizae. Gianinazzi-Pearson, Ⅴ. and Gianinazzi, S., eds. INRA Press, Paris,1986. pp:p.217-221.
    62.刘永俊和冯虎元,黄土沟壑区人工柠条丛枝菌根研究.西北民族大学学报(自然科学版),2007.28(66):p.48-51.
    63. T.S.M.M.e., Effect of phosphate application to arbuscular mycorrhizal onion on the development and succiant dehudrogenase activity of internal hyphae. Soil Science and Plant Nutrition 1994.40(4):p.667-673.
    64. 李晓林和曹一平,VA菌根吸收矿质养分的机制.土壤,1993(05):p.274-277+281.
    65. Babu, A.G. and M.S. Reddy, Dual Inoculation of Arbuscular Mycorrhizal and Phosphate Solubilizing Fungi Contributes in Sustainable Maintenance of Plant Health in Fly Ash Ponds. Water, Air and Soil Pollution,2010.219(1-4):p.3-10.
    66. Ngwene, B., et al., Phosphorus uptake by cowpea plants from sparingly available or soluble sources as affected by nitrogen form and arbuscular-mycorrhiza-fungal inoculation. Journal of Plant Nutrition and Soil Science,2010.173(3):p.353-359.
    67. 郭秀珍,郑世楷和毕国昌.vA菌根对怪麻(Crotalaria Juncea L.)的生长效应.杨树丰产栽培中间试验报告集,1985,北京:中国林业科学研究院林业研究所,
    68. 杨茂秋等,VA菌根对玉米和棉花吸收利用氮素的影响辐射防护通讯,1994(04):p.52.
    69. K, S., Infection of vesicular-arbuscular mycorrhizal fungi to plants and spore numbers in cultivated soil.In:Migayl Prefefcture. Scientific Reports of the Miyagl Agriculture College, 1992.40:p.1-10.
    70. 薛炳烨和罗新书,克服苹果苗圃地连作障碍的初步研究.山东农业科学,1990(04):p.18-20.
    71. Liu, Y, et al., Rapid change of AM fungal community in a rain-fed wheat field with short-term plastic film mulching practice. Mycorrhiza,2011.22(1):p.31-39.
    72. Li, X.L., H. Marschner, and E. George, Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant and Soil,1991. 136(1):p.49-57.
    73. Solaiman, M.Z. and L.K. Abbott, Phosphorus uptake by a community of arbuscular mycorrhizal fungi in jarrah forest. Plant and Soil,2003.248(1-2):p.313-320.
    74. Bolan, N.S., A critical-review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil,1991.134(2):p.189-207.
    75. Li, X.L., E. George, and H. Marschner, Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil,1991.136(1):p.41-48.
    76. Hodge, A. and A.H. Fitter, Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. PNAS,2010.107(31):p.1354-1359.
    77. Alice Jones, S.F.J., James F. Fox, and Harold Rowe, Quantifying Nitrogen Cycling on Surface Mined Lands Using Natural Delta 15N Abundances and Fungal Relationships:An Exploratory Study. Geological Society of America Annual Meeting.,2009. Portland Oregon.
    78. Moche, M., et al., Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles. Planta,2009.231(2):p.425-436.
    79. Tobar R, A.R. and Barea JM, Improved nitrogen uptake and transport from 15N-labeled nitrate by external hyphae of arbuscular mycorrhizal under water stressed conditions. New Phytologist,1994.126:p.119-122.
    80. Jankong, P. and P. Visoottiviseth, Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere,2008.72(7):p.1092-1097.
    81. Adeleke, R.A., et al., Mobilisation of potassium and phosphorus from iron ore by ectomycorrhizal fungi. World Journal of Microbiology and Biotechnology,2010.26(10):p. 1901-1913.
    82. Eom, A.H., et al., The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. American Midland Naturalist,1999.142(1):p.55-70.
    83. NC, J., Can fertilization of soil select less mutualistic mycorrhizae? Ecological Applications, 1993.3:p.749-757.
    84. Muthukumar, T. and K. Udaiyan, Influence of organic manures on arbuscular mycorrhizal fungi associated with Vigna unguiculata (L.) Walp. in relation to tissue nutrients and soluble carbohydrate in roots under field conditions. Biology and Fertility of Soils,2000.31(2):p. 114-120.
    85.刘润进,丛枝菌根及其应用.2000,北京:科学出版社.
    86.张美庆,王幼珊和邢礼军,环境因子和AM真菌分布的关系菌物系统,1999(01):p.25-29.
    87. Dhillion, S.S. and T.L. Gardsjord, Arbuscular mycorrhizas influence plant diversity, productivity, and nutrients in boreal grasslands. Canadian Journal of Botany-Revue Canadienne De Botanique,2004.82(1):p.104-114.
    88.宋勇春等,根间菌丝桥对三时草生长及磷营养状况的影响.中国农业大学学报,1999(01):p.26-32.
    89. Egerton-Warburton, L.M., J.I. Querejeta, and M.F. Allen, Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. Journal of Experimental Botany,2007.58(12):p.3484-3484.
    90. Ruiz-Lozano, J.M., Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza,2003.13(6):p.309-317.
    91. Porcel, R. and J.M. Ruiz-Lozano, Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany,2004.55(403):p.1743-1750.
    92. Goicoechea, N., M.C. Antolin, and M. SanchezDiaz, Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiologia Plantarum, 1997.100(4):p.989-997.
    93. J. M. Ruiz-OLozanol,R.A., and M. Gomez, Effects of Arbuscular-Mycorrhizal Glomus Species on Drought Tolerance:Physiological and Nutritional Plant Responses. Applied and Environmental Microbiology,1995.61(2):p.456-460.
    94. Smith, S.E. and F.A. Smith, Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annual Review of Plant Biology,2011. 62(1):p.227-250.
    95.李海燕等,AM真菌和胞曩对大豆根内酶活性的影响.菌物系统,2003(04):p.613-619.
    96. 李敏等,AM真菌与西瓜枯萎病关系初探.植物病理学报,2000(04):p.327-331.
    97. Liu, R.J., Effect of vesicular-arbuscular mycorrhizal fungi on verticillium wilt of cotton. Mycorrhiza,1995.5(4):p.293-297.
    98. Thygesen, K., J. Larsen, and L. Bodker, Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen inoculum. European Journal of Plant Pathology,2004.110(4):p.411-419.
    99. Carey, P.D., A.H. Fitter, and A.R. Watkinson, A fiield-study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia,1992.90(4):p.550-555.
    100. Kahiluoto, H., E. Ketoja, and M. Vestberg, Creation of a non-mycorrhizal control for a bioassay of AM effectiveness 1. Comparison of methods. Mycorrhiza,2000.9(5):p.241-258.
    101. 黄鹏,施钾对不同栽培模式兰州百合植株生长及鳞茎产量的影响.甘肃农业大学学报,2007(01):p.41-44.
    102. Smith, F.A. and S.E. Smith, Tansley Review No.96 Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytologist,1997.137(3):p.373-388.
    103. 黄超杰,兰州百合根系内生真菌生态学的学的研究.2010,兰州大学.
    104. 马嘉琦等,兰州百合根系菌根特征研究.中国植物学会七十五周年年会.2008.中国甘肃兰州.
    105.王树和,兰州百合与丛枝菌根真菌的共生效应.2008,兰州大学.
    106. 黄超杰,孟益聪和冯虎元,濒危药用植物桃儿七根的显微结构及其菌根真菌分布研究.菌物学报,2008(06):p.922-929.
    107. 周淑清等,化肥与农产品质量及过量施肥问题的探讨.中国农村小康科技,2006(03):p.14-15+39.
    108. 胡玉忠,果树施肥勿过量.植物医生,2008(01):p.49.
    109. 钱永清等,鸡粪的营养成分分析.上海农业学报,1994(S1):p.37-40.
    110. Walker, S.A., V. Viprey, and J.A. Downie, Dissection of nodulation signaling using pea mutants defective for calcium spiking induced by Nod factors and chitin oligomers. Proceedings of the National Academy of Sciences of the United States of America,2000. 97(24):p.13413-13418.
    111.郭涛等,氮、磷供给水平对丛枝菌根真菌生长发育的影响.植物营养与肥料学报,2009(03):p.690-695.
    112. Li, X.L., E. George, and H. Marschner, Phosphorus depletion and pH decrease at the root soil and hyphae soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytologist,1991.119(3):p.397-404.
    113.李晓林和姚青,VA菌根与植物的矿质营养.自然科学进展,2000(06):p.46-53.
    114. Q, G.J.H.L.R., Development of external hyphae by different isolates of mycorrhizal Glornus spp in relation to root colonization and growth of Troyer citrange. New phytologist 1982.91: p.183-189.
    115. Schroeder, M.S. and D.P. Janos, Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant and Soil,2004.264(1-2):p.335-348.
    116. Hays, R., et al., Efficts of nitrogen and phosphorus on blue grama growth and mycorrhizal infection. Oecologia,1982.54(2):p.260-265.
    117. Balaz, M. and M. Vosatka, Vesicular-arbuscular mycorrhiza of Calamagrostis villosa supplied with organic and inorganic phosphorus. Biologia Plantarum,1997.39(2):p.281-288.
    118. Dekkers, T.B.M. and P.A. van der Werff, Mutualistic functioning of indigenous arbuscular mycorrhizae in spring barley and winter wheat after cessation of long-term phosphate fertilization. Mycorrhiza,2001.10(4):p.195-201.
    119. Land, S., H. Alten, and F. Schonbeck, The influence of host plant, nitrogen fertilization and fungicide application on the abundance and seasonal dynamics of vesicular-arbuscular mycorrhizal fungi in arable soils of northern Germany. Mycorrhiza,1993.2(4):p.157-166.
    120. Corkidi, L., et al., Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant and Soil,2002.240(2):p.299-310.
    121. 王淼焱等,长期定位施肥土壤中的丛枝菌根真菌.菌物研究,2006(04):p.5-9+37.
    122. Ryan, M.H., G.A. Chilvers, and D.C. Dumaresq, Colonization of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbor. Plant and Soil,1994.160(1):p.33-40.
    123. Hayman, D.S., Influence of soils and fertility on activity and survival of vesicular-arbuscular mycorrhizal fungi. Phytopathology,1982.72(8):p.1119-1125.
    124. Mosse, B., Mycorrhiza in a sustainable agriculture. Biological Agriculture & Horticulture, 1986.3(2-3):p.191-209.
    125. 徐瑞富和王小龙,花生连作田土壤微生物群落动态与土壤养分关系研究.花生学报,2003(03):p.19-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700