中国部分地方猪种微卫星DNA指纹的群体遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用微卫星标记技术对我国的五指山小型猪、滇南小耳猪、贵州小型香猪及其近交系、南宁巴马香猪近交系、荣昌猪、沂蒙黑猪、汉中黑猪、二花脸猪、金华猪等10地方猪品种DNA水平上的遗传多态性进行了研究,探讨了它们之间的亲缘关系、群体内的遗传变异。并首次利用微卫星标记分析估计了8个地方猪品种及2个近交群体的近交系数。结果如下:
     1.10个地方猪品种间的遗传变异分析
     1.1 本研究所选用的10个微卫星位点,除S0003位点在7个群体中表现为单态,Sw790为中度多态位点外,其它的8个位点均为高度多态位点。在10个微卫星位点上共检测到了153个等位基因,其中Sw769最多为23个,S0003位点最少为5个,平均每个位点的等位基因数为15.3个。IGF-1位点的197bp、Sw769的148bp可作为巴马香猪区别于其它群体的特征性条带;S0005位点的281bp、285bp可作为荣昌猪和滇南小耳猪的特征性条带。
     1.2 Hardy-Weinberg检验表明:在Sw781位点上,除巴马香猪表现为单态(x1值等于0)外,其余群体都处于遗传不平衡状态;IGF-1位点上,滇南小耳猪、二花脸猪、金华猪和沂蒙黑猪处于平衡状态,其它均处于遗传不平衡状态。
     1.3 10个群体的平均位点杂合度在0.4561~0.6446之间;平均多态信息含量亦较高,在0.4241~0.6184之间,平均有效等位基因数在0.2495~3.7573之间,这表明中国地方猪种的遗传多样性比较高。
     1.4 根据Nei氏标准遗传距离绘制了NJ和UPGMA两种聚类图。NJ聚类结果将本研究10个群体分为3个类群:贵州小型香猪及其近交系、滇南小耳猪和五指山小型猪为一个类群;沂蒙黑猪、汉中黑猪和荣昌猪为一个类群;二花脸猪、金华猪和巴马香猪为一个类群。而UPGMA聚类结果则将这10个猪种分为4个类群:贵州小型香猪及其近交系、五指山小型猪、二花脸猪和滇南小耳猪为一类群;汉中黑猪、沂蒙黑猪和荣昌猪为一类群;金华猪和巴马香猪各为一个类群。根据Cavalli—Sforza和Edwards余弦距离所得的NJ聚类结果将这10个群体分为4个类群:贵州小型香猪及其近交系和荣昌猪为一个类群;二花脸猪、金华猪和巴马香猪为一类群;沂蒙黑猪和汉中黑猪为一类群;五指山小型猪与滇南小耳猪为一类群。而UPGMA聚类结果则将这10个猪种进一步划分为5个类群:五指山小型猪、沂蒙黑猪、贵州小型香猪及其
    
    近交系、荣昌猪和二花脸猪为一个大的类群;汉中黑猪、滇南小耳猪、金华猪和巴马
    香猪各为一个独立的类群。通过对2种遗传距离所得的4个聚类结果的比较分析发现:
    运用Net氏标准遗传距离所得的NJ聚类结果比其它的分类方法更为准确。由Net氏
    标准遗传距离而来的NJ聚类结果中,除巴马香猪外,其它的地方猪品种与它们的地
    理分布以及根据生产性能、外型特征及血液蛋白所得而来的分类结果基本一致。巴马
    香猪的分类结果与地理分布的差异,可能是由于它的近交培育造成的。
    2.10个地方猪种的群体近交分析
    ZI 随机交配群体的近交系数都比较低,贵州小型香猪的最高,为0.1992,荣昌猪的
    最低,为0刀727。小型猪群体内的近交程度较其它5个地方猪种的高,但F检验表明:
    各个品种间近交系数的差异不显著卜0刀5人
    2,2贵州小型香猪近交系和巴马香猪近交系的近交系数分别为0.5907和0.4761,这表
    明两近交系的近交程度较高。
The genetic diversity of the Chinese local pig varieties (ie: Wu zhishan miniature pig, Diannan xiaoer, Guizhou miniature pig and its inbreeding strain, Bama miniature pig of inbreeding strain, Rongchang, Yimenghei, Hanzhonghei, Erhualian and Jinhua) were analyzed by microsatellite marker. The genetic relationship and the inbreeding coefficient on 10 populations (including 8 nature populations and 2 inbreeding populations) were analyzed and evaluated for the first time. The results were showed that:
    1. The analysis of the genetic variation on 10 local pig populations
    1.1 8 of 10 microsatellite loci were high diversity except that S0003 locus was single in the 7 populations, and Sw790 was medium. It was found that the 10 microsatellite loci had 153 allelic. Sw769 had the great number (23 allelic) among the 10 microsatellite loci, S0003 was the fewest (5 allelic), and the average allelic of each locus was 15.3. 198bp band of IGF-1, 148bp of Sw769 could be seen as the characteristic bands of Bama miniature pig, 281bp and 148bp of S0005 as the characteristic bands of Rongchang and Diannan xiaoer.
    1.2 Hardy-Weinberg equilibrium test showed that: all the breeds were not in genetic equilibrium except for Bama miniature pig in Sw781 locus, and Diannan xiaoer, Erhualian, Jinhua and Yimenghei were in genetic equilibrium in IGF-1 but not others.
    1.3 The locus average heterozygosity was between 0.4561 and 0.6184 of the 10 populations, and average polymorphism information content between 0.4241 and 0.6184, and the average effective numbers of allelic between 0.2495 and 3.7573. All these indicated that the genetic diversity of Chinese local pigs was higher.
    1.4 The 10 breeds were divided into 3 clusters by NJ phylogenetic from Nei' s genetic distance. The first cluster was Guizhou miniature pig and its inbreeding lines, Diannan xiaoer and Wuzhishan miniature pig. The second Yimenghei, Hanzhonghei and Rongchang. The third Erhualia, Jinhuan and Bama miniature pig. But 4 clusters were divided by UPGMA phylogenetic from Nei's genetic distance. The first was Hanzhonghei and its inbreeding strain, Wuzhishan miniature pig, Erhualian and Diannan xiaoer. The second
    
    
    
    Hanzhonghei, Yimenghei and Rongchang. The third Jinhua and the forth Bama miniature pig. And 4 clusters were divided NJ phylogenetic from Cavalli-Sforza and Edwards genetic distance. Firstly, Guizhou miniature pig and its inbreeding line and Rongchang. Secondly, Erhualian, Jinhua and Bama miniature pig. Thirdly, Hanzhonghei and Yimenghei. Fourthly, Wuzhishan miniature pig and Diannan xiaoer. UPGMA phylogenetic from the second distance was that: The first cluster was Wuzhishan miniature pig, Yimenghei, Guizhou miniature pig and its inbreeding strain, Rongchang and Erhualian. Hanzhonghei, Diannan xiaoer, Jinhua and Bama miniature pig belonged to a cluster respectively. The results from 2 different distances were compared that the NJ phylogenetic from Nei's genetic distance was more accurate than any other results. The result was agreed with the before results from productivity, phenotype and blood protein. Bama miniature pig didn't accord with its geography distribution. Perhaps the difference was caused by its inbreeding cultivation.
    2. Inbreeding analysis of 10 breeds
    2.1 The inbreeding coefficients of the random mating populations were lower. That of Guizhou miniature pig was the highest (0.1992) in the 8 breeds, and Rongchang the lowest (0.0727). The inbreeding degree of miniature pigs was higher than other 5 local pigs. F test showed that the inbreeding coefficient difference was not significant in each breeds.
    2.2 The inbreeding coefficient of the Guizhou miniature pig and Bama miniature pig inbreeding lines was 0.5907 and 0.4761 respectively. It indicated that the inbreeding degree of 2 inbreeding lines was higher.
引文
1. 曹红鹤.肉牛主要生产性状的生化和分子遗传标记的研究.中国农业大学博士学位论文,北京,2000
    2. 曹红鹤,王雅春,陈幼春.探讨微卫星DNA作为皮埃蒙特和南阳杂交牛生长性状的遗传标记.遗传学报,1999,26(6):621-626
    3. 常洪,刘小林,耿社民等.中国家畜遗传资源研究.陕西人民教育出版社,1998
    4. 陈丙波,周建华,魏泓等.西双版纳小耳猪DNA指纹分析.遗传,2001,23(4):295-297
    5. 储明星译,Falconer D S,Mackay T F C著.数量遗传学导论(第四版).北京,中国农业出版社,2000
    6. 丁波,姜志华,刘红林等.人源小卫星探针产生的大约克夏和二花脸猪DNA指纹图谱.南京农业大学学报,1996,19(1):60-63
    7. 杜立新,曹顶国,姜运良.小尾寒羊微卫星与RAPD标记的研究.第11次全国动物遗传育种学术会议论文集,合肥,2001:96-99
    8. 樊斌,李奎,彭中镇等.湖北省三品种猪27个微卫星位点的遗传变异.生物多样性,1999,7(2):91-96
    9. 樊斌.微卫星标记评估中国猪遗传多样性与标记辅助选择效率若干制约因素的研究.华中农业大学硕士学位论文,武汉,1999
    10. 耿社民.绒山羊经济性状标记选择的遗传学研究.西北农业大学博士学位论文,杨凌,1998
    11. 耿社民.中国家畜遗传资源特征.中国农业出版社,2001
    12. 龚炎长.猪微卫星DNA的克隆、特性分析及应用研究.中国农业大学博士学位论文,北京,1997
    13. 郭晓令,姜志华,刘红林.二花脸与大约克猪21-羟化酶基因位点限制性片段长度多态性比较.畜牧兽医学报,1999,30(1):1-5
    14. 胡刚安.家禽数量性状基因位点的分子标记.中国家禽,1998,20(5):1-3
    15. 黄培堂.俞炜源等编译,PCR技术的原理和应用.北京,中国科学技术出版社,1990
    16. 黄生强,柳小春,晏光荣等.猪微卫星DNA多态性检测及日增重杂种优势预测.第11次全国动物遗传育种学术会议论文集,合肥,2001:240-244
    17. 黄勇富,张亚平,邱祥聘等.猪线粒体DNA多态性与中国地方猪种起源分化的关系.遗传学报,1998,25(4):322-329
    18. 李谨,张沅.西南地区地方品种猪血液蛋白遗传多样性研究.第11次全国动物遗传育种学术会议论文集,合肥,2001:445-450
    19. 梁永红,邓昌彦,熊远著.DNA指纹技术用于湖北白猪群体遗传结构的研究.畜牧兽医学报,2000,31(2):106-112
    20. 刘剑锋,王立贤.分子遗传标记在猪育种中的应用.国外畜牧科技,1995,22(6):24-27
    
    
    21.刘荣宗,罗玉英.家畜遗传资源保护的新途径.畜牧兽医杂志,1998,17(2):16-19
    22.刘伟敏,熊远著,蒋思文.9个猪微卫星标记在资源家系群体中的多态性检测.华中农业大学学报,2000,19(5):475-477
    23.刘中禄,魏泓,曾养志等.中国三种实验用小型猪线粒体DNA D-loop多态性分析.遗传,2001,23(2):123-127
    24.孟安明,齐顺章,于汝梁等.枫泾猪、香猪和长白猪的DNA指纹图分析.遗传,1995,17(3):19-22
    25.聂龙,施立明.西南地区地方品种猪血液蛋白遗传多样性研究.生物多样性,1995,3(1):1~7
    26.牛荣,商海涛,魏泓等.版纳小耳猪近交系5家系35个微卫星座位的遗传分析.遗传学报,2001,28(6):518-526
    27.牛荣,魏泓,王爱德等.应用STR-PCR进行中国三种实验用小型猪的遗传检测.第10次全国动物遗传育种学术会议论文集,浙江,1999:173-177
    28.萨姆布鲁克,弗里奇等著.金冬雁,黎孟枫等译.分子克隆实验指南(第二版).北京,科学出版社,1992
    29.商海涛,牛荣,黄中波等.三品系小型猪35个微卫星基因座的遗传学研究.遗传,2001,23(1):17-20
    30.沈伟.绒山羊不同生产水平群体遗传标记的研究.西北农林科技大学硕士学位论文,杨凌,2001
    31.孙飞舟,王志刚,杨述林等.利用微卫星标记分析中国地方猪种的遗传结构.第11次全国动物遗传育种学术会议论文集,合肥,2001:455-458
    32.王雅春,曹红鹤,陈幼春.不同取样方式及杂交对南阳黄牛三个蛋白多态位点遗传特性的影响.Animal Biotechnology Bulletin,常州,1998:181-184
    33.吴登俊,马丁.费尔斯特.家畜基因组遗传多态标记—微卫星标记研究进展(上).国外畜牧科技,1999,26(1):33-35
    34.吴丰春,魏泓,甘世祥等.应用100条RAPD引物对中国三种实验用小型猪进行多态性引物的筛选及亲缘关系的初步分析.第10次全国动物遗传育种学术会议论文集,浙江,1999:73-79
    35.吴开平,吴丰春,魏泓等.五种品系猪亲缘关系的RAPD分析.遗传,2000,22(4):217-220,
    36.吴晓林,李栒,Merete Fredholm.连续近交下家猪基因组杂合度与经济性状的相关性研究.遗传学报,2001,28(1):20-28
    37.杨宁.畜禽数量性状位点的研究进展.国外畜牧科技,1997,24(6):29-33
    38.张桂香.猪H-FABP基因分子遗传多样性及其序列分析.中国农业科学院硕士研究生学位论文,北京,2001
    39.张吉清,赵宗胜,李大全等.微卫星标记及其在牛遗传育种中的应用.黄牛杂志,2001,27(3):1-5
    
    
    40.张继全,邵春荣,王毓英等.Nei氏标准遗传距离的估测精度.畜牧兽医学报,1989,29(1):27-32,
    41.张继全,于汝梁.畜禽品种间遗传距离测定精度的影响因素。Animal Biotechnology Bulletin,常州,1998:185-188
    42.张细权,吕雪梅,杨玉华等.用微卫星多态性和RAPD分析广东地方鸡种的群体遗传变异.遗传学报,1998,25(2):112-119
    43.张细权.优质鸡遗传多样性的研究.北京,中国农业大学博士学位论文,1999
    44.章胜乔,傅衍,徐宁迎等.浙江金华猪种血液蛋白与mt DNA多态研究.第10次全国动物遗传育种学术会议论文集,浙江,1999:88-92
    45.赵书红,杨晓鹏,刘榜等.猪12号染色体几个微卫星标记与部分生产性状的关系研究.华中农业大学学报,2000,19(4):360-362
    46.郑丕留,张仲葛,陈效华等.中国猪品种志.上海,上海科学技术出版社,1986
    47.周霞,李宁,张劳等.微卫星标记在鸵鸟育种中的应用.第11次全国动物遗传育种学术会议论文集,合肥,2001:409-412
    48. Alexander L J, Rohrer G A, Beattic C W. Cloning and characterization of 414 polymorphic porcine microsatellites. Anim Genet, 1996, 27:137-148
    49. Andersson L. Genetic mapping of QTL for growth and fatness in pig. Science, 1994, 263:1771-1774
    50. Archibdald A L, Haley C S, Brown J F et al. The PiGMaP consortium linkage map of the (?)sus scrofa). Mammalian Genome, 1995, 6:157-175
    51. Arranz J J, Bayon Y, San Primitivo F. Comparison of protein markers and microsatellites in differentiation of cattle populations. Anim Genet, 1996, 27:415-419
    52. Baker C M A, Manwell C. Heterozygosity of the sheep: polymorphism of 'malic enzyme', isocitrate dehydrogenase (NADP~+), catalase and esterase. Australian Journal of Biological Science, 1977, 30:127-140
    53. Barker J S F, Moore S S, Hetzel D J S et al. Genetic diversity of Asian water buffalo ((?)alus bubalis): microsatellite variation and a comparison with protein-coding loci. Anim Gene, (?)7, 28:103-115
    54. Benavides F, Stern M C, Glasscock E et al. Microsatellite DNA variants between th(?)bred SENCAR mouse strains. Mol Carcinog, 2000, 28(4):191-195
    55. Bishop M D, Kappes S M, Keele J W et al. A genetic linkage map for cattle. Genetics, 1994, 136:619-639
    56. Botstein David, White Raymond L, Skolnick Mark et al. Construction of a genetic link(?)e map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980,32:314-331
    57. Buchanan F C, Adams L J, Littlejohn R P et al. Determination of evolutionary relations(?)ips among
    
    sheep breeds using microsatellites. Genomics, 1994, 22:397-403
    58. Casas-Carrillo E, Prill-Adams A, Price S G et al, Mapping genomic regions associated with growth rate in pigs, J Anim Sci, 1997,75:2047-2053
    59. Cavalli-Sforza L L, Edwards A W F. Phylogenetic analysis models and estimation procedures. Amer J Hum Genet, 1967,19:235-257
    60. Coppieters W, Van de Weghe A, Peelman L et al. Characterization of porcine polymorphic microsatellite loci. Anim Gene, 1993, 24:163-170
    61. Crawford A M, Dodds K G, Ede A J et al. An autosomal genetic linkage map of the sheep genome. Genetics, 1995,140:703-724
    62. Crooijmans R P M A, Van der Poel J J, Groenen M A M. Functional genes mapped on the chicken genome. Anim Genet, 1995,26:73-78
    63. Doris Bachtrog, Martin Agis, Marianne Imhof et al. Microsatellite variability differs between dinucleotide repeat motifs-evidence from Drosophila melanogaster. Mol Biol Evol,2000, 17(9) :1277-1285
    64. Ellegren H, Chandhary B P, Johansson M et al. A primary linkage map of the porcine genome reveals a low rate of genetic recombination. Genetics, 1994,137:1089-1100
    65. Ellegren H, Johansson M, Sandberg K et al. Cloning of highly polymorphic microsatellites in the horse. Anim Gene, 1992,23:133-142
    66. Ernst C W, Robic A, Yerle M et al. Maping of calpastatin and three microsatellites to porcine chromosome 2q2. 1-q2. 4. Anim Gene, 1998, 29:212-215
    67. Farid A, Renlly E O, Dollard C et al Genetic analysis of ten sheep breeds using microsatellite markers. Canadian Journal of animal science, 1999,11: 9-17
    68. Felsenstein J. PHYLIP (phylogeny inference package),version 3. 5c. University of Washington Seattle (WA),USA, 1995
    69. Goldstein D B, Pollock D D. Launching microsatellites: a review of mutation processes and methods of phylogenetic inference. J Hered, 1997,88:335-342
    70. Gortari M J, Freking B A, Kappes S M et al. Extension genomic conservation of cattle microsatellite heterozygosity in sheep. Anim Genet, 1997,28:274-290
    71. Groenen M A M, Ruyter D, Verstege E J M et al. Development and mapping of ten porcine microsatellite markers. Anim Genet, 1995,26:115-118
    72. Hanslik S, Harr B, Brem G et al. Microsatellite analysis reveals substantial genetic differentiation between contemporary new world and old world Holstein Friesian populations. Anim Gene, 2000,31:31-38
    73. Heyen D W, Beever J E, Da Y et al. Exclusion probabilities of 22 bovine microsatellite markers in fluorescent multiplexes for semi-automated parentage testing. Anim Gene, 1997,28:21-27
    
    
    74. Inoue-Murayama M, Kayang B B, Kimura K et al. Chicken microsatellite primers are not efficient markers for Japanese quail. Anim Gene, 2001,32:7-11
    75. Jamieson J. The effectiveness of using co-dominant polymorphism allelic series for (1) checking pedigrees and (2) distinguishing full-sib pair members. Anim Gene, 1994, 25(Suppl 1) : 37-44
    76. Jeffreys A J, Wilson V, Them S L. Hypervariable minisatellite regions in human DNA. Nature, 1985,314:67-73
    77. Jordana J, Piedrafita J, Sanchez A. Genetic relationships in Spanish dog breeds. II The analysis of morphological polymorphism. Gene Sel Evol, 1992, 24:245-263
    78. K Li, Y Chen, C Moran et al. Analysis of diversity and genetic relationships between four Chinese indigenous pig breeds and one Australian commercial pig breed. Anim Genet, 2000, 3 1 :322-325
    79. Kacrirek SL, Rogers AR, Banshad M et al. Variation at microsatellite loci in the Large White, Yorkshire and Hampshire breeds of swine. Proc 6th WCGALP, 1998,23:640-643
    80. Kirkpatrick B W. Identification of a conserved microsatellite site in the porcine and bovine insulin-like growth factor-1 gene 5' flank. Animal Genetics, 1992,23,543-548
    81. Kuhnlein U D, Zadworny Y, Dawe Y et al. Assessment of inbreeding by DNA fingerprinting: Development of a calibration curve using defined strains of chickens. Genetics, 1990,125:161-165
    82. Levin L, Cheng H H, Baxter-Jones C et al. Turkey microsatellite DNA loci amplified by chicken-specific primers. Anim Gene, 1995,26:107-110
    83. Martinez A M, Delgado J V, Rodero A et al. Genetic structure of the Iberian pig breed using microsatellites. Anim Genet, 2000,31:295-301
    84. Ma R Z, Russ I, Park C et al, Isolation and characterization of 45 polymorphic microsatellites from the bovine genome, 1996, 27:43-47
    85. Matsuyama N, Hadano S, Onoe K et al. Identification and characterization of the miniature pig Huntington's disease gene homolog: evidence for conservation and polymorphism in the CAG triplet repeat. Anim Genet, 1999,30(6) : 407-17
    86. Mikawa S, Akita T, Hisamatsu N et al. A linkage map of 243 DNA markers in an intercross of Gottingen miniature and Meishan pigs. Anim Genet, 2000, 31(1) :80-81
    87. Morera L, Barba C J, Garrido J J et al. Genetic variation detected by microsatellites in five Spanish dog breeds, the Journal of Heredity, 1999,90(6) :654-656
    88. Nakajima E, Matsumoto T, Yamada T et al. Technical note: use of a PCR-RFLP for detection of a point mutation in the swine ryanodine receptor (RYR1) gene. J. Anim. Sci, 1996,74:2904-2906
    89. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978,89:583-590
    90. Perez-Enciso M, Clop A, Noguera J L et al. A QTL on pig chromosome 4 affects fatty acid metabolism: Evidence from an Iberian by landrace Intercross. J. Anim. Sci, 2000,78:2525-2531
    
    
    91. Petiot A, Anderson Dear D V. Two new polymorphism microsatellites, S0533 and S034. Anim Gene, 1997,28:453-461
    92. Pomp et al. Plant & Animal Genome V Conference (Abstract). San Diego, 1997
    93. Ponsuksili S, Wimmers K, Schmoll F et al. Comparison of multilocus DNA fingerprints and microsatellite in an estimate of genetic distance in chicken, the Journal of Heredity, 1999,90(6) :656
    94. R Z Liu, M S Wu, X L Wu et al. Genetic diversity in shaziling pig population assessed by RAPD fingerprinting. Proceedings of the 6th national symposium on Animal genetic markers, 1998, 6(1) : 83-87
    95. Rathje T A, Rohrer G A, Johnson R K. Evidence for quantitative trait loci affecting ovulation rate in pigs. J Anim Sci, 1997,75:1486-1494
    96. Rohrer G A. Identification of quantitative trait loci affecting birth characters and accumulation of backfat and weight in a Meishan-White composite resource population. J Anim. Sci. 2000,78:2547-2553
    97. Rohrer G A, Keele J W. Identification of quantitative trait loci affecting carcass composition in swine: I fat deposition traits. J Anim Sci, 1998, 76:2247-54
    98. Rohrer G A, Alexander L J. Hu Z et al. A comprehensive map of the porcine genome. Genome Res, 1996,6(5) : 371-391
    99. Rohrer Gary A, Alexander Leeson J, John W Keele et al. A microsatellite linkage of the porcine genome. Genetics, 1994, 136:231-245
    100. Singer E N, Jeffreys A J, Licence S et al. DNA profiling reveals remarkable low genetic variability in a herd of SLA homozygous pigs. Res Vet Sci, 1999,67(2) : 207-211
    101. Sun Wei Guo, Thompson Elizabeth A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 1992,48(6) : 361-372
    102. Takezaki Naoko, Nei Masatoshi. Genetic distance and reconstruction of phylogenetic trees from microsatellite DNA. Genetics, 1996,144(9) : 389-399
    103. Thomas E. Le Voyer. Kent W.Hunter, Microsatellite DNA wariants among the FVB/NJ, C58/J, and I/LnJ mouse strains. Mammalian Genome, 1999,10:542-543
    104. Vaiman D, Schibler L, Bourgeois F et al. A genetic linkage map of the male goat genome. Genetics, 1996,144:279-300
    105. Van-Zeveren A, Peelman L, Van de Weghe A et al. A genetic study of four Belgian pig populations by means of seven micro-satellite loci. J Anim Breed Genet, 1995,112(3) :191-204
    106. Visscher P M, Haley C S. Utilizing genetic markers in pig breeding programs. Animal Breeding Abstracts, 1995,63(1) : 1-7
    107. Vogeli P, Bolt R, Fries R et al. Co-segregation of the maolignant hyperthermia and the Arg-615-cys mutation in the skeletal muscle calcium release channel protein in five European Landrance and
    
    Pietrain pig breeds. Anim Genet, 1994,25Suppl (1) : 59-60
    108. Wang L. Plant & Animal Genome V Conference (Abstract). San Diego, 1997
    109. Weller J T, Kashi K. Power of daughter and granddaughter design for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci, 1990,73:2535-2537
    110. X Li, K Li, B Fan et al, The genetic diversity of seven pig breeds in China, Estimated by means of microsatelites, Asian-Aus. J. Anim. Sci. 2000,13(9) : 1193-1195
    111. Yang L, Zhao S H, Li K et al. Determination of genetic relationships among five indigenous Chinese goat with six microsatellite makers. Anim Gene, 1999,30:452-455
    112. Zar J H. Biostatistical analysis, Prentice-Hall. Inc Englewood Cliffs, NJ, 1984
    113. Zhang W, Haley C, Moran C. Alignment of the PiGMaP and USDA linkage maps of porcine chromosomes 2 and 5. Anim Gene, 1995,26:361-364
    114. Zhao F, Ambady S, Ponce de leon F A et al. Microsatellite markers from a microdissected swine chromosome 6 genomic library. Anim Gene, 1999,30:251-255
    115. Zhou H, Lament SJ. Genetic characterization of biodiversity in highly inbred chicken lines by microsatellite markers. Anim Genet, 1999,30(4) : 56-264
    116. Zhu J, Nestor K E, Moritsu Y. Relationship between band sharing levels of DNA fingerprints and inbreeding coefficients and estimation of true inbreeding in Turkey lines. Poultry Science, 1996,75:25-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700