无人潜器总体方案设计的多学科优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人智能潜器是典型的多学科耦合的复杂工程系统。设计一艘无人智能潜器涉及到艇型、耐压结构、载体结构、能源选择、推进系统、操纵与控制方式等众多方面。传统的潜器设计,按照方案设计、初步设计等分阶段分学科顺序进行,设计过程中存在大量反复性的修改,并且由于缺乏学科间的均衡考虑可能失去系统的整体最优解,降低了潜器总体设计效率与性能。
     多学科设计优化能够充分利用不同学科之间的相互作用所产生的协同效应,是进行复杂系统优化设计的有效方法。从如何在潜器总体设计过程中考虑各学科间的权衡折衷和数据交流作为出发点,以潜深2000m航程100km的深海无人智能潜器的总体设计优化问题为研究目标,针对当前主流的金属材料框架式结构潜器,及较为新颖的有着良好应用前景的复合材料一体式结构潜器,本文进行了多学科设计优化方法的理论与应用研究。本文作出的主要工作有:
     (1)考虑潜器总体设计包含的艇型、载体结构、耐压结构、能源选择、推进系统、总布置设计六大方面,介绍了阻力性能、结构性能、操纵性能、推进性能等主要学科的分析建模方法。分析了潜器设计中的学科耦合特点,并按照多学科优化的思想进行了系统分解,明确了系统与子系统、子系统之间的关系。
     (2)研究了多学科设计优化的关键技术—近似模型技术。研究了试验设计方法及全局近似技术,根据系列耐压圆柱壳、球壳结构有限元分析结果,建立了强度和屈曲压力的结构性能近似模型;根据系列水滴型回转体数值计算结果,建立了潜器阻力性能近似计算模型,并通过模型试验进行了精度检验。
     (3)研究了两种典型的多学科优化过程—同时分析与设计方法及协同优化方法,通过数学算例得出了各自的计算特点与适用范围。针对多个学科的多目标优化问题,本文研究了基于Pareto解的多目标遗传算法NSGA-Ⅱ,并将其与多学科设计优化过程相结合。应用多学科优化方法完成了潜器设计的两个典型实例:艇型能源的一体化设计、操纵性与快速性的综合优化设计。
     (4)针对目标潜器设计了立体框架式结构方案,建立了能源系统设计、艇型设计、操纵面设计、耐压结构设计和框架结构设计,这五个子系统的分析优化数学模型,提出子系统的输入输出变量,并确立了系统级设计变量、优化目标及约束条件。根据同时分析与设计方法的思想,集成了耐压舱的结构分析、框架结构分析、艇型阻力性能分析的近似模型及操纵性能分析程序,完成了综合5个子系统的框架式潜器的总体多学科优化设计,得到满足任务书要求的最优设计结果。
     (5)针对目标潜器设计了碳纤维复合材料一体式结构方案,研究了复合材料结构艇体的强度分析方法,建立了基于参数化的强度分析命令流。集成了能源系统设计、艇型设计、操纵面设计和艇体结构设计的分析计算模型,完成了复合材料一体式潜器的总体多学科优化设计,获得了满足任务书要求的最优设计结果。计算发现,较之金属材料框架式结构潜器,复合材料结构潜器的优势十分明显,而最终目标潜器也将采用碳纤维复合材料一体式的结构形式。
     结果表明,本文建立的潜器总体设计的多学科优化过程,涵盖了总体设计的主要内容,最优设计方案中能够同时给出能源需求、耐压结构参数、框架结构参数、艇型主尺度、舵面积等重要参数。优化过程不需要人为反复修改设计,仅通过控制和修改设计变量,在较短的时间内即可得到预期的优化结果,并且该方法具有一定的通用性和实用性。
Autonomous underwater vehicle (AUV) is a typical complex engineering systeminvolving many coupling disciplines. Designing an AUV should deal with hull form, pressureshell, frame structure, energy selection, propulsion, manoeuvre and control mode and so on.The conventional design method for AUV is carried through orderly following the principleof different phases and different disciplines, which results in the reiteration in the designcourse. Besides, the optimal result of AUV system is often lost because of an absence ofbalanced consideration among disciplines. Consequently, the design efficiency and systemperformance are decreased using conventional design method.
     Multidisciplinary design optimization (MDO) which can well exploit the mutuallyinteracting phenomena of different subsystems provides an effective method for optimaldesign of complex system. Aimming at figuring out how to compromise and achieving datatransfer among disciplines during the optimal problem of AUV general design, an AUVwhose job depth is2000m and working range is100km is the objective in this study. TheMDO theory and its application in AUV system are studied for two structural forms: themainstream frame structure made of metal and novel integral structure made of carbon fiber.The main work is as follows:
     (1) Six aspects are considered in general design of AUV: hull form, hull frame, energyselsction, pressure shell, propulsion and general layout. The methods of analysis andestablishment of mathematic models for relevant disciplines are summarized. The mutuallycoupling characteristic among subsystems is studied, and the design variables, objectives andconstraints of subsystems and system are defined. Finally, the relations between system andsubsystems are explicated, also the relations among subsystems are explicated.
     (2) Approximation model which is one of the most important technologies in the MDOtheory is studied. Based on design of experiments and approximation technology, finiteelement results of serial spherical pressure shell and cylinder pressure shell stiffened by ringsare gained, and different approximation models of stresses and inflective pressure areestablished according these results. Approximation models of drag for serial revolution shapeare constructed using these samples and responses obtained by hydrodynamic numericalcalculation, and the precisions of these models are tested by flume experiments of serialmodels.
     (3) Two typical MDO methods that are simultaneous analysis and design andcollaborative optimization are studied in this paper, and the calculational specialty andadaptive field of the two methods are analysed according a mathematical example. Thearithmetic of NSGA-II is investigated to deal with multi-objectives problem inmultidisplinary optimization. MDO is applied to two typical problems in AUV design: theintegrative design of hull form and energy and the integrated design of resistance andmanoeuvre.
     (4) The scheme of metal frame structure for object AUV is designed, and fivesubsystems that are energy, hull form, manoeuvre, pressure shell and frame structure are setup.The inputs and outputs of all of the five mathematical model for subsystems and theoptimal objective,constraints and variables for system are defined. According to thesimultaneous analysis and design method, five subsystems are integrated. Finally, the optimalresult that can satisfy the assignment book is gained after MDO calculation.
     (5) The scheme of integral structure made of carbon fiber for object AUV is designed,the structural strength analysis is researched and APDL command lines of strength analysisbased on parameters are set up. Four subsystems that are energy, hull form, manoeuvre andframe structure are integrated. Also, the optimal result that can satisfy the assignment book issuccessfully gained after MDO calculation.Finally, the scheme of structure made of carbonfiber which has a big advantange over that made of metal is adopted by the objective AUV.
     It turns out that the MDO process of AUV general design in this paper covers manyprimary contents and the optimal result can give information of many important parameters ofenergy capability, pressure structure, carrier structure, rudder area and so on. The optimalresult can be efficiently gained from the MDO process only by setting the design variable andcontrol conditions without man-made reiteration in the design course. The method haspreferable practicability and universal property for AUV design.
引文
[1]张铁栋主编.潜器设计原理[M].哈尔滨工程大学出版社,2011
    [2] J. Sobieszczanski-Sobieski. A Linear Decomposition Method for LargeOptimization Problems-Blueprint for Development[R].NASA TM-83248,1982
    [3] J. Sobieszczanski-Sobieski. Multidisciplinary Optimization for Engineeringsystems: Achievements and Potential[R].NASA TM-101566.
    [4] AIAA Multidisciplinary Design Optimization Technical Committee. Current Stateof the Art on Multidisciplinary Design Optimization (MDO)[R].An AIAA Whitepaper, ISBN1-56347-021-7, September1991.
    [5] J.J.Korte, A.O.Salas, H.J.Dunn and N.M.Alexandrov. Multidisciplinary Approachto Linear Aerospike Nozzle Optimization[A].NASA-AIAA-97-3374
    [6] DEMKO D. Tools for Multi-Objective and Multi-Disciplinary Optimization inNaval Ship Design[D].Virginia Polytechnic Institute and StateUniversity,2005
    [7] NEU W.L., HUGHES O., MASON W.H., NI S., CHEN Y., GANESAN V., LIN Z.,and TUMMA S. A prototype tool for multidisciplinary design optimization of ships,Proceedings, Ninth Congress of the International Maritime Association of theMediterranean, Naples, Italy, April,2000
    [8] PERI, D., AND CAMPANA, E. F. A High fidelity models in the multidisciplinaryoptimization of a frigate ship[C], Proceedings, Second MIT Conference on Fluidand Solid Mechanics, Cambridge,2003
    [9]卜广志.鱼雷总体综合设计理论与方法研究[D].西北工业大学博士学位论文,2003
    [10]陈琪锋.飞行器分布式协同进化多学科设计优化方法研究[D].国防科技大学博士学位论文,2003
    [11]胡添元,余雄庆.多学科设计优化在非常规布局飞机总体设计中的应用[J].航空学报,2011.1,32(1):117-127
    [12] Belegundu A.D., Halber E.,Yukish M.A., Simpson T. W. Attribute-basedMultidiscip-linary Optimization of Undersea Vehicles [A]. AIAA-2000-4865, the8th AIAA/USAF/NASA/ISSMOSymposium on Multidisciplinary Analysis andOptimization[C]. Long Beach, CA, Sept.6-8,2000.
    [13] Yukish M, Simpson T W. Requirements on MDO imposed by the Undersea VehicleConceptual Design Problem [A]. AIAA-paper, the8th AIAA/USAF/NASA/ISSMOSymposium Multidisciplinary Analysis and Optimization[C]. Long Beach, CA,Sept.6-8,2000.
    [14] CharlesD.McAllister, T.W.Simpson, PaulH.Kurtz and Mike Yukish.Multidisciplinary design optimization testbed based on autonomous underwatervehicle design[C]. AIAA-2002-5630, the9th AIAA/ISSMO symposium on themultidisciplinary analysis and optimization, Atlanta, Georgia4-6September,2002.
    [15] Cramer E. J., Dennis J. E. Jr., Frank P. D., Lewis R.M. and Shubin G. R. ProblemFormulation for Multidisciplinary Optimization[J]. SIAM Journal of Optimization,Vol.4, No.4,1994, pp.754-776.
    [16] Charles D.McAllister, Timothy W.Simpson, Kemper Lewis. Robust MultiobjectiveOptimization through Collaborative Optimization and Linear PhysicalProgramming [A]. AIAA-2004-4549
    [17] Kam W.Ng. Undersea Weapon Design and Optimization. The RTO AVTSymposium on Reduction of Military Vehicle Acquisition Time and Cost throughAdvanced Modelling and Virtual Simulation, held in Paris, France,22-25April2002.
    [18] Hart, C.G., Vlahopoulos, N., A Multidisciplinary Design Optimization Approach toRelating Affordability and Performance in a Conceptual Submarine Design,University of Michigan,2009.
    [19] Liu Wei, Cui WeiCheng. Multidisciplinary Design Optimization (MDO): Apromising tool for the design of HOV[J].Journal of Ship Mechanics,2004,8(6):95-112.
    [20] LiuWei, Gou Peng, Cao Anxi, Cui Weicheng. Application of Hierarchical BilevelFramework of MDO Methodology to AUV Design Optimization [J].Journal of ShipMechanics,2006,10(6):122-130.
    [21]操安喜.载人潜水器多学科设计优化方法及其应用研究[D].上海交通大学博士学位论文,2008
    [22] I.Kroo. Distributed Multidisciplinary Design and Collaborative Optimization[J].VKI lecture series on Optimization Methods&Tools forMulticriteria/Multidisciplinary Design November15-19,2004
    [23] Sobieszczanski-Sobieski J, Agte J, Sandusky R Jr. Bi-level integrated systemsynthesis (BLISS)[A].AIAA-1998-4916,the7th AIAA/USAF/NASA/ISSMOSymposium on Multidisciplinary Analysis and Optimization [C]. St.Louis, Missouri,Sept.2-4,1998.
    [24]钟毅芳等编著.多学科综合优化设计原理与方法[M].华中科技大学出版社,2006
    [25]王振国等著.飞行器多学科设计优化理论与应用研究[M].国防工业出版社,2006
    [26] Giesing J, Barthelemy J M.A Summary of Industry MDO Application and Needs,an AIAA White Paper, the7thAIAA/USAF/NASA/ISSMO SymposiumMultidisciplinary Analysis and Optimization[C]. St.Louis,Missouri,Step.2-4,1998
    [27] Borland C J, Benton J R, Frank P D. Multidisciplinary Design Optimization of aCommercial Aircraft Wing-An Exploratory Study. AIAA Paper94-4305-CP, the5thAIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis andOptimization[C]. Panama City Beach, Florida, Sept.7-9,1994.
    [28] Ruichen Jin, Wei Chen, Timothy W.Simpson.Comparative Studies of MetamodelingTechniques Under Multiple Modeling Criteria. Published by the American Instituteof Aeronautics and Astronautics, AIAA-2000-4801.
    [29] Simpson T.W., Mauery T.M., Korte J.J, et al. Kriging Models for GlobalApproximation in Simulation-Based Multidisciplinary Design Optimization [J].AIAA Journal,2001,39(12):2233-2241
    [30] Simpson T.W.,Booker A.J., Ghosh D, et al. Approximation Methods inMultidisciplinary Analysis and Optimization: A Panel Discussion [J]. Structural andMultidisciplinary Optimization,2004,27:302-313
    [31] Srinivas Kodiyalam, Charles Yuan. Evaluation of methods for MultidisciplinaryDesign Optimization (MDO), Phase II. NASA/CR-2000-210313, North Carolina,November2000.
    [32] Srinivas Kodiyalam. Evaluation of methods for Multidisciplinary DesignOptimization (MDO), Phase I. NASA/CR-1998-208716, North Carolina,September1998.
    [33] Balling R.J. and Wilkinson C.A. Execution of Multidisciplinary DesignOptimization Approaches on Commom Test Problems. AIAA, Vol.35,No.1,1997,pp:178-186
    [34] R.D.Braun. Collaborative Optimization: an Architecture for Large-ScaleDistributed Design, Ph.D. Thesis. Stanford University, Department of Aeronauticsand Astronautics,1996.
    [35] Natalia M.Alexandrov, Robert Michael Lewis. Analytical and ComputationalAspects of Collaborative Optimization[A].NASA/TM-2000-210104
    [36] Sobieszczanski-Sobieski J. A Step from Hierarchic to Non-Hierarchic Systems [R].NASA-CP-3031.Part I, Virginia: NASA,1989
    [37]李响.多学科设计优化方法及其在飞行器设计中的应用[D].西北工业大学博士学位论文,2003
    [38] Renaud J E, Gabriele G A. Approximation in Non-Hierarchic System Optimization.AIAA Journal Vol.32No.1,January1994,PP198-205,Original,AIAA-92-2826.
    [39] Bloebaum C L,Hajela P, Sobieszczanski-Sobieski J. Heuristic SystemDecomposition for Non-Hierarchic System.AIAA-91-1039-CP,AIAA/ASME/ASCE/AHS/ASC32th Structure, Structure Dynamics and MaterialsConference,1991:344-353
    [40] Sellar R S, Stelmack M, Batill S M, Renaud J E. Response Surface Approximationsfor Discipline Coordination in Multidisciplinary Design Optimization. AIAA paper96-1383, AIAA/ASME/ASCE/AHS/ASC37th Structure, Structure Dynamics andMaterials Conference,Salt Lake City,Utah,April1996
    [41]杜月中.流线形回转体外形设计综述与线型拟合[J].声学技术,2004,23(2):93-96页
    [42] Granville P.S. Geometrical Characteristics of Streamlined shapes. Journal of ShipResearch,1969,11(4)
    [43]牛江龙.长航程潜水器艇型设计及结构分析[D].哈尔滨工程大学硕士学位论文,2008
    [44]胡克,俞建成,张奇峰.水下滑翔机器人载体外形设计与优化[J].机器人,2005,27(2):108-117
    [45] E.Eugene Allmendinger. Submersible Vehicle Systems[M].Published by the Societyof Naval Architects and Marine Engineers,601Pavonis Avenue,Jersey City,N.J.07306,1990
    [46] Hoerner S. F., Fluid Dynamic Drag,1965.
    [47] Gillmer, T.C., Johnson, B. Introduction to Naval Architecture, US Naval InstitutePress;2nd print with revisions, December1982.
    [48]王福军著.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004
    [49] FUGLESTAD A L, GRAHL-MADSEN M. Computational fluid dynamics appliedon an autonomous underwater vehicle [C].Proceedings of the23rd InternationalConference on Offshore Mechanics and Arctic Engineering Vancouver, USA,2004.
    [50] PHILLIPS A, FURLONGM, TURNOCK S R. The use of computational fluiddynamics to assess the hull resistance of concept autonomous underwater vehicles[EB/OL][2007-06-18]/2008-04-10. http://ieeexplore. ieee. org/stamp/stamp.jsp?tp=&arnumber=4302434&isnumber=4302189.
    [51] LISTAKM,PUGAL D,KRUUSMAA M. CFD simulations and real worldmeasurements of drag of biologically inspired underwater robot [EB/OL][2008-05-27]/2008-04-10. http://ieeexplore. ieee. org/stamp/stamp. jsp?tp=&arnumber=4625556&isnumber=4625485.
    [52]彭彦,石仲堃.用改进的B-P网络计算舶阻力研究[J].武汉造,2000,135(6):8-14
    [53]曹为午,石仲堃,邱辽原等. BP神经网络的改进及其在滑行艇阻力估算中的应用[J].海工程,2001(增刊):32~36
    [54]刘涛.大深度潜水器结构分析与设计研究.中国舶科学研究中心.2001
    [55] http://www.tech-fap.com/talisman-autonor
    [56] http://www.km.kongsberg.com/
    [57]中国级社.潜水系统和潜水器入级与建造规范[S].北京:人民交通出版社,1996
    [58]石德新,王晓天.潜艇强度[M].哈尔滨工程大学出版社,1997
    [59]胡勇.某深海载人潜水器载体框架结构强度计算书[R].无锡:中国舶科学研究中西科技报告,2005
    [60]中国级社.舶与海上设施起重设备规范[S].北京:人民交通出版社,2001
    [61]刘涛.大深度潜水器耐压壳体弹塑性稳定性简易计算方法[J].中国造,2001,42(3):8-14
    [62]陆蓓,刘涛,崔维成.深海载人潜水器耐压球壳极限强度研究[J].舶力学,2004.2,8(1):51-58
    [63]李良碧,王仁华等.深海载人潜水器耐压球壳的非线性有限元分析[J].中国造,2005.12,46(4):11-18
    [64] Park C M,Yim S J. Ultimate strength analysis of ring—stiffened cylinders underhydrostatic Pressure,Proceedings of the12th Conf. on OMAE.1993(1):399-404P
    [65]黄建成,胡勇,冷建兴.深海载人潜水器框架结构设计与强度分析[J].中国造,2007.6,48(2):51-59
    [66]叶彬,刘涛,胡勇.深海载人潜水器外部结构设计研究[J].舶力学,2006,10(4):105-114
    [67]胡勇,赵俊海,于涛等.大深度载人潜水器上的复合材料轻外壳结构设计研究[J].中国造.2007,48(1):51-56页
    [68]洪林,刘涛,崔维成等.基于参数化有限元的深潜器主框架优化设计[J].舶力学,2004,4(8):71-78页
    [69] http://www.thunder-sky.com/
    [70] Bohlmann H. J. Prediction of Submarine Maneuverability[J]. USA:Naval Forces,1989, X (V):22-30
    [71]潘子英,吴宝山,沈泓萃. CFD在潜艇操纵性水动力工程预报中的应用研究[J].舶力学,2004.10,8(5):42-51
    [72]黄昆仑.微小型水下机器人水动力系数计算[D].哈尔滨工程大学硕士学位论文,2006
    [73]张赫.长航程潜水器操纵性能与运动仿真研究[D].哈尔滨工程大学硕士学位论文,2008
    [74] Peterson R S.Evaluation of Semi-empirical Methods for Predicting Linear Staticand Rotary Hydrodynamic Cofficients[R].New York:NCSC TM,1997.
    [75] Eric P H.Prediction of Hydrodynamic Cofficients Utilizing GeometricConsiderations [D].Monterey,California:Naval Postgraduate School,1995
    [76] George D W. Estimates for added Mass of A Multi-Component Deeply SubmergedVehicle[R].Canada, DTIC,1998
    [77]施生达.潜艇操纵性[M].北京,国防工业出版社,1995
    [78]中华人民共和国国家军用标准GJB/Z205-2001.潜艇操纵性设计计算方法[S].国防科学技术工业委员,2001年发布
    [79]蔡昊鹏.基于面元法理论的用螺旋桨设计方法研究[M].哈尔滨工程大学博士学位论文,2011
    [80]陈魁.试验设计与分析[M].北京,清华大学出版社,2005
    [81]方开泰,马长兴.正交与均匀试验设计[M].北京,科学出版社,2001
    [82]郑金华,罗彪.一种基于拉丁超立方体抽样的多目标进化算法[J].模式识别与人工智能,2009.4,22(2):223-233
    [83]张科施.飞机设计的多学科优化方法研究[M].西北工业大学博士学位论文,2006
    [84] Giunta A.A., Dudley J.M., Narducci R., Grossman B., Haftka R.T., Mason W.H,and Watson L.T. Noisy Aerodynamic Response and Smooth Approximation inHSCT Design. Proceedings Analysis and Optimization (PanamaCity, FL), Vol.2,AIAA, Washington, DC,1994, pp.1117-1128.
    [85] Kaufman M., Balabanov V., Burgee S.L., Giunta A.A.,Grossman B., Mason W. H.,and Watson L.T. Variable-Complexity Response Surface Approximations forWingStructural Weight in HSCT Design.34thAerospace Sciences Meeting and Exhibit,Reno, NV,1996, AIAA Paper96-0089.
    [86] Xu Yuanming, Li Shuo, Rong Xiaomin.Composite Structural Optimization byGenetic Algorithm and Neural Network Response Surface Modeling[J].ChineseJournal of Aeronautics,2005.11,Vol.18No.4,pp.310-316
    [87]任远,白广忱.径向基神经网络在近似建模中的应用研究[J].计算机应用,2009.1,Vol.29No.1,pp.115-118
    [88] Koch P.N.,Wujek B.Facilitating Probabilistic Multidisciplinary DesignOptimization Using Kriging Approximation Models [C]. AIAA-2002-5415.
    [89]刘克龙,姚卫星,穆雪峰.基于Kriging代理模型的结构形状优化方法研究[J].计算力学学报,2006.6,23(3):344-349
    [90]谢延敏,于沪平等.基于Kriging模型的可靠度计算[J].上海交通大学学报,2007.2,41(2):177-184
    [91] Timothy W.Simpson, Timothy M.Mauery. Comparison of Response Surface andKriging Models for Multidisciplinary Design Optimization. AIAA-98-4755
    [92] Giunta A.A. and Watsony L.T.A Comparison of Approximation ModelingTechniques: Polynomial versus Interpolating Models[C]. AIAA-98-4758
    [93]王仁华,俞铭华,王自力,李良碧等.大深度载人潜水器耐压壳的非线性有限元分析[J].安世亚太2006年用户年论文,
    [94]颜力.飞行器多学科设计优化若干关键技术的研究与应用[D].国防科技大学博士学位论文,2006.
    [95]齐恩伍,蒋丹,刘斌.前处理软件GAMBIT参数化建模功能增强研究[J].东华大学学报,2008.6,34(3):341-343
    [96] Tappeta R V, Renaud J E. Multiobjective Collaborative Optimization[J].Journal ofMechanical Design,1997,119(3):403-411
    [97]王平,郑松林,吴光强.基于协同优化和多目标遗传算法的车身结构多学科优化设计[J].机械工程学报,2011.1,47(2):102-108
    [98] S.I.Yi, J. K. Shin, G. J. Park.Comparison of MDO methods with mathematicalexamples, Journal of Structural and Multidisciplinary Optimization,35(5),391-402,2007.
    [99] K. F. Hulme and C. L. Bloebaum. A Comparison of Solution Strategies forSimulation-Based Multidisciplinary Design Optimization, Proceedings SeventhAIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,2143-2153,1998.
    [100] Kroo, LM., Valerie M. Collaborative Optimization: Status and Directions. AIAA2000-4721
    [101] James Allison, Michael Kokkolaras, Marc Zawislak, Panos Y. Papalambros. On theUse of Analytical Target Cascading and Collaborative Optimization for ComplexSystem Design. The6th World Congress on Structural and MultidisciplinaryOptimization, Rio de Janeiro,30May–03June,2005Brazil
    [102] Charles D.McAllister, Timothy W.Simpson. Goal Programming Applications inMulti-disciplinary Design Optimization. The proceedings of the8thAIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis andOptimization, September6-8,2000, Long Beach, CA, AIAA-2000-4717
    [103]王琦.MDO优化算法研究[D].南京航空航天大学博士学位论文,2008.
    [104] Sobieski L P, Kroo I. Response Surface Estimation and Refinement in CollaborativeOptimization. AIAA-98-4753
    [105] Sobieski L P, Kroo I.M. Collaborative optimization using response surfaceestimization. AIAA-98-0915
    [106]余雄庆,薛飞等.用遗传算法提高协同优化方法的可靠性[J].中国机械工程,2003,14(21):1808-1881
    [107]崔逊学.多目标进化算法及其应用[M].国防工业出版社,2008.
    [108] Goldberg DE. Genetic algorithm for search, optimization, and machine learning.Boston: Addison-Wesley Longman Publishing Co., Inc.,1989.
    [109] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap and T Meyarivan. A Fast ElitistNon-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization:NSGA v.Kanpur Genetic Algorithms Laboratory Report No.200001
    [110]陈婕,熊盛武,林宛如.NSGA-II算法的改进策略研究[J].计算机工程与应用,2007,47(19):42-45
    [111] Christopher L. Submarine Design Optimization Using Boundary Layer Control [D].Corolina: Massachusetts institute of technology,1997
    [112]陈明高,石仲埅.遗传算法优化的RBF神经网络确定潜艇排水量和主尺度[J].中国舰研究,2006,1(3):38-41
    [113]王志东,杨松林,朱仁庆.舶操纵性能的预报_衡准及优化[J].华东舶工业学院学报,1999.12,Vol.13No.6:10-12.
    [114]王志东,杨松林,朱仁庆.舶操纵性能优化中隶属函数及权重的确定方法[J].华东舶工业学院学报,2002.04,Vol.16No.2:11-14.
    [115]杨松林,朱仁庆,王志东,张火明.大型中速舶快速性和操纵性综合优化研究[J].舶,2003.10,No.5:18-23.
    [116] Lisa Minnick. A parametric Model for Predicting Submarine Dynamic Stability inEarly Stage design [D].Virginia: Virginia Polytechnic Institute and State University,2006.
    [117] Daniel Demko. Tools for Multi-Disciplinary Optimization in Naval Ship Design[D]. Virginia: Virginia Polytechnic Institute and State University,2005.
    [118] Karstein Vestgard and Roar Hansen. The Hugin3000Survey AUV-Design and FieldResults.
    [119] AUVs Hydro Surveys. Hydro International2009.09
    [120]操喜安,刘蔚,崔维成.载人潜水器耐压球壳的多目标优化设计[J].中国造,2007.9,48(3):107-113
    [121] Engineious. iSIGHT Reference Guide. USA: Engineious Software,2004
    [122]杨卓懿,庞永杰,王燕,宋磊.基于iSIGHT的耐压壳静动力学综合优化设计[J].海工程,2009.6,38(3):84-87
    [123]冯佰威,刘祖源等.基于iSIGHT的舶多学科综合优化集成平台的建立[J].武汉理工大学学报交通科学与工程版,2009.10,Vol.33No.5,pp897-899.
    [124] PAN Bin-bin CUI Weicheng. Multidisciplinary Design Optimization Methods forShip Design. Journal of Ship Mechanics,2008.12, Vol.12No.6,pp914-931.
    [125]杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12.
    [126]中华人民共和国国家标准GB50367-2006.混凝土结构加固设计规范[S],中国建筑工业出版社,北京,2006
    [127] http://www.dlxk.com/index.asp
    [128]杨乃宾,章怡宁编著.复合材料飞机结构设计[M].航空工业出版社,2002.5
    [129]朱志斌,吴平伟.深海探测用高强轻质浮力材料的研究与发展[J].现代技术陶瓷,2009.1,Vol119:15-20
    [130]李松松,段秋实,吴一辉.应用有限元法分析碳纤维复合飞轮强度[J].吉林大学学报(工学版),2003.1,33(1):33-37
    [131]刘强,马小康,宗志坚.斜纹机织碳纤维/环氧树脂复合材料性能研究及其在电动汽车轻量化设计中的应用[J].复合材料学报,2011.5:83-88

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700